导数公式证明大全(更新版)

合集下载

导数公式大全

导数公式大全

导数公式大全导数是微积分中的重要概念之一,它反映了函数在某一点的变化率。

在实际应用中,导数公式的掌握对于求解函数的极值、曲线的切线以及解决实际问题具有重要的作用。

本文将介绍一些常见的导数公式,帮助读者更好地理解和应用导数。

一、基本导数公式1. 常数函数导数公式:若y = c(c为常数),则dy/dx = 0。

2. 幂函数导数公式:若y = x^n(n为常数),则dy/dx = nx^(n-1)。

3. 指数函数导数公式:若y = a^x(a为常数),则dy/dx = a^x * ln(a)。

4. 对数函数导数公式:若y = log_a(x)(a为常数),则dy/dx = 1 / (x * ln(a))。

5. 三角函数导数公式:若y = sin(x),则dy/dx = cos(x);若y = cos(x),则dy/dx = -sin(x);若y = tan(x),则dy/dx = sec^2(x)。

6. 反三角函数导数公式:若y = arcsin(x),则dy/dx = 1 / √(1 - x^2);若y = arccos(x),则dy/dx = -1 / √(1 - x^2);若y = arctan(x),则dy/dx = 1 / (1 + x^2)。

二、基本运算法则1. 和差法则:若u(x)和v(x)是可导函数,c为常数,则有: (u ± v)' = u' ± v';(cf)' = cf'。

2. 积法则:若u(x)和v(x)是可导函数,则有:(uv)' = u'v + uv'。

3. 商法则:若u(x)和v(x)是可导函数,则有:(u/v)' = (u'v - uv') / v^2。

4. 复合函数法则:若y = f(g(x)),其中u = g(x),则有:dy/dx = f'(u) * u'。

导数公式证明大全

导数公式证明大全

导数公式证明大全导数是微积分中的重要概念,它描述了函数变化率的性质。

在这篇文章中,我们将给出一些导数的常用公式的证明。

1.一次函数的导数证明:我们考虑一条一次函数的图像,其方程为y = ax + b,其中a和b是常数。

假设我们有两个点(x, y)和(x + h, y + kh)在图像上,其中h是一个趋近于0的非零常数。

由直线的斜率公式知道,两点之间的斜率为k = (y + kh - y) / (x + h - x) = k。

函数的导数定义为函数曲线上任意一点切线的斜率,我们需要证明这个斜率与常数a相等。

根据定义,导数为dy / dx = lim(h -> 0) [(y + kh - y) / (x + h - x)] = lim(h -> 0) (kh / h) = a。

因此,一次函数y = ax + b的导数为dy / dx = a。

2.幂函数的导数证明:考虑一个幂函数y=x^n,其中n是常数。

我们仍然用限制h趋近于0的两个点(x, y)和(x + h, y + kh)来证明这个导数。

根据定义,导数为dy / dx = lim(h -> 0) [(y + kh - y) / (x + h - x)] = lim(h -> 0) [(x + h)^n - x^n] / h。

我们可以使用二项式定理展开(x + h)^n = x^n + nx^(n-1)h + ... + h^n,并取消掉所有除以h的项:dy / dx = lim(h -> 0) [nx^(n-1)h + ... + h^n] / h = lim(h -> 0) [nx^(n-1) + ... + h^(n-1)] = nx^(n-1)。

因此,幂函数y = x^n的导数为dy / dx = nx^(n-1)。

3.指数函数的导数证明:考虑一个指数函数y=a^x,其中a是常数。

我们仍然使用限制h趋近于0的两个点(x, y)和(x + h, y + kh)来证明导数。

导数公式大全(最具说服力的)

导数公式大全(最具说服力的)
d 2 y 如对二阶导数再求导,则 . 记作 f (x) 或 y 或 2 dx d3 y 称三阶导数, . 四阶或四阶以上导 记作 f (x) 或 3 dx
数记为
y(4),y(5),·· (n) ·,y
f (x) 称为 f (x) 的一阶导数.
d4 y dn y 或 ·, n , , ·· 4 dx dx
( x 2 1) - 2 x( x - 1) 2 x - x 2 1 . 2 2 2 2 ( x 1) ( x 1)
教材P32 例2 求下列函数的导数:
(1) y x - cos x (2) y x e x 3 2 (4) y 2x 3x sin x e (3) y 2 1- x
2 2 2 2
(2)把 x - 2当作中间变量, y ' cos( x - 2) ( x - 2) ' 1 cos( x - 2) 2 x cos( x - 2) 2 x
(3)把 cos x当作中间变量, 1 sin x y' (cos x) ' - tan x cos x cos x
例4.求下列函数的导数: 1 y (3x 1) ; )
2 3
2) y sin( x - 2); 4) y e
tan x
3) y ln cos x; 5) y 2
-x
;
解: 函数可以分解为y u ( x), u ( x) 3x 1, (1)
3 2
y ' [u 3 ( x)]' 3u 2 ( x) u ( x) ' 3(3x 2 1) 2 (3x 2 1) ' 3(3x 1) 6 x 18 x(3x 1)

求导公式大全

求导公式大全

求导公式大全1、原函数:y=c(c为常数)导数: y'=0导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx6、原函数:y=cosx 导数: y'=-sinx7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x导数:y'=logae/x10、原函数:y=lnx导数:y'=1/x求导公式大全整理y=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1 x^2)高中数学导数学习方法1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。

2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。

导数公式大全

导数公式大全

导数公式大全导数公式是微积分中非常重要的一部分,它可以用来计算函数在其中一点处的斜率。

以下是一些常见的导数公式:1.基本导数公式:- 总幂法则:如果 $f(x) = x^n$,其中 $n$ 是任意实数,则 $f'(x) = nx^{n-1}$- 幂函数常数因子法则:如果 $f(x) = cx^n$,其中 $c$ 是常数,$n$ 是任意实数,则 $f'(x) = cnx^{n-1}$-和差法则:如果$f(x)=u(x)+v(x)$,其中$u(x)$和$v(x)$可导,则$f'(x)=u'(x)+v'(x)$- 积法则:如果 $f(x) = u(x) \cdot v(x)$,其中 $u(x)$ 和$v(x)$ 可导,则 $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$ - 商法则:如果 $f(x) = \frac{u(x)}{v(x)}$,其中 $u(x)$ 和$v(x)$ 可导,且 $v(x) \neq 0$,则 $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$2.指数函数与对数函数的导数:- 指数函数:如果 $f(x) = a^x$,其中 $a$ 是常数且 $a > 0$,则$f'(x) = a^x \ln(a)$-自然指数函数:如果$f(x)=e^x$,则$f'(x)=e^x$- 对数函数:如果 $f(x) = \log_a(x)$,其中 $a$ 是常数且 $a >0$,则 $f'(x) = \frac{1}{x \ln(a)}$- 自然对数函数:如果 $f(x) = \ln(x)$,则 $f'(x) =\frac{1}{x}$3.三角函数的导数:- 正弦函数:如果 $f(x) = \sin(x)$,则 $f'(x) = \cos(x)$- 余弦函数:如果 $f(x) = \cos(x)$,则 $f'(x) = -\sin(x)$- 正切函数:如果 $f(x) = \tan(x)$,则 $f'(x) = \sec^2(x)$- 反正弦函数:如果 $f(x) = \arcsin(x)$,则 $f'(x) =\frac{1}{\sqrt{1-x^2}}$- 反余弦函数:如果 $f(x) = \arccos(x)$,则 $f'(x) = -\frac{1}{\sqrt{1-x^2}}$- 反正切函数:如果 $f(x) = \arctan(x)$,则 $f'(x) =\frac{1}{1+x^2}$4.常用函数的导数:-常数函数:如果$f(x)=c$,其中$c$是常数,则$f'(x)=0$- 反函数:如果 $f(x)$ 的反函数为 $f^{-1}(x)$,则 $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$-绝对值函数:如果$f(x)=,x,$,则$f'(x)$可以分为两段来计算,当$x>0$时,$f'(x)=1$;当$x<0$时,$f'(x)=-1$这里列出的只是一些常见的导数公式,实际上导数还可以通过链式法则、隐函数求导法则以及高阶导数等方法计算。

导数公式大全范文

导数公式大全范文

导数公式大全范文一、基础公式1.常数函数的导函数为零:f(x)=c,f'(x)=02. 幂函数的导函数:f(x) = x^n,f'(x) = nx^(n-1)3. 指数函数的导函数:f(x) = a^x,f'(x) = ln(a) * a^x4. 对数函数的导函数:f(x) = log_a(x),f'(x) = 1 / (x * ln a)5. 正弦函数的导函数:f(x) = sin(x),f'(x) = cos(x)6. 余弦函数的导函数:f(x) = cos(x),f'(x) = -sin(x)7. 正切函数的导函数:f(x) = tan(x),f'(x) = sec^2(x)8. 余切函数的导函数:f(x) = cot(x),f'(x) = -csc^2(x)9. 反正弦函数的导函数:f(x) = arcsin(x),f'(x) = 1 / sqrt(1 - x^2)10. 反余弦函数的导函数:f(x) = arccos(x),f'(x) = -1 /sqrt(1 - x^2)11. 反正切函数的导函数:f(x) = arctan(x),f'(x) = 1 / (1 + x^2)12. 反余切函数的导函数:f(x) = arccot(x),f'(x) = -1 / (1 + x^2)二、运算法则1.常数倍法则:f(x)=k*g(x),f'(x)=k*g'(x)2.和差法则:f(x)=g(x)±h(x),f'(x)=g'(x)±h'(x)3.积法则:f(x)=g(x)*h(x),f'(x)=g'(x)*h(x)+g(x)*h'(x)4.商法则:f(x)=g(x)/h(x),f'(x)=(g'(x)*h(x)-g(x)*h'(x))/h^2(x)5. 复合函数求导:如果y = f(u) 且 u = g(x),则dy/dx = (dy/du) * (du/dx)三、高级公式1. 指数函数与对数函数互导:如果 y = a^u 且 u = log_a(x),则dy/dx = (ln a) * (a^u) * (1/x) = (ln a) * (y/x)2. 反函数求导:如果 y = f(x) 且 x = g(y),则 dy/dx =1/(dx/dy)3. 参数方程求导:如果 x = f(t) 且 y = g(t),则 dy/dx =(dy/dt) / (dx/dt)4. 隐函数求导:如果 F(x, y) = 0,则 dy/dx = - (∂F/∂x) /(∂F/∂y)5.导数的加减乘除:如果f(x)/g(x)偏导数都存在,则导数为(f'(x)*g(x)-f(x)*g'(x))/(g^2(x))综上所述,以上是导数公式的一些基础和常见的应用。

导数公式大全

导数公式大全

导数公式大全1、原函数:y=c(c为常数)导数:y'=02、原函数:y=x^n导数:y'=nx^(n-1)3、原函数:y=tanx导数:y'=1/cos^2x4、原函数:y=cotx导数:y'=-1/sin^2x5、原函数:y=sinx导数:y'=cosx6、原函数:y=cosx导数:y'=-sinx7、原函数:y=a^x导数:y'=a^xlna8、原函数:y=e^x导数:y'=e^x9、原函数:y=logax导数:y'=logae/x10、原函数:y=lnx导数:y'=1/xy=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1+x^2)导数(Derivative)是微积分中的重要基础概念。

当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。

16个基本导数公式详解

16个基本导数公式详解

16个基本导数公式详解在微积分中,导数是指函数在其中一点的切线斜率或变化率。

它在计算斜率、切线和极值时起着重要作用。

以下是16个基本导数公式的详解。

1. 常数函数导数:对于常数函数y=c,导数为dy/dx = 0。

这是因为常数函数在任何点的斜率都是零。

2. 幂函数导数:对于幂函数y=x^n(这里n是常数),其导数为dy/dx = nx^(n-1)。

这个公式可以通过使用极限定义导数来证明。

例如,对于y=x^2,导数为dy/dx = 2x。

3. 指数函数导数:对于指数函数y=a^x(这里a是常数且a>0),其导数为dy/dx = a^x * ln(a)。

这个公式可以通过使用极限定义导数和对数函数的导数来证明。

4. 对数函数导数:对于自然对数函数y=ln(x),其导数为dy/dx =1/x。

对数函数的导数是指数函数导数的倒数。

这个公式也可以通过使用极限定义导数来证明。

5. 正弦函数导数:对于正弦函数y=sin(x),其导数为dy/dx =cos(x)。

这个公式可以通过使用极限定义导数和三角函数的定义来证明。

6. 余弦函数导数:对于余弦函数y=cos(x),其导数为dy/dx = -sin(x)。

这个公式可以通过使用极限定义导数和三角函数的定义来证明。

7. 正切函数导数:对于正切函数y=tan(x),其导数为dy/dx =sec^2(x)。

这个公式可以通过使用sin(x)和cos(x)的导数公式来证明。

8. 反正弦函数导数:对于反正弦函数y=arcsin(x),其导数为dy/dx = 1/√(1 - x^2)。

这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。

9. 反余弦函数导数:对于反余弦函数y=arccos(x),其导数为dy/dx = -1/√(1 - x^2)。

这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。

10. 反正切函数导数:对于反正切函数y=arctan(x),其导数为dy/dx = 1/(1 + x^2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。

愤怒啊)导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)]=lim a^x*lna/ln[(m+1)^(1/m)]=lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2 所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1) (sinx)'=cosx (cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna) (lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2(cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。

相关文档
最新文档