导数公式证明大全(更新版)

合集下载

导数公式大全

导数公式大全

导数公式大全导数是微积分中的重要概念之一,它反映了函数在某一点的变化率。

在实际应用中,导数公式的掌握对于求解函数的极值、曲线的切线以及解决实际问题具有重要的作用。

本文将介绍一些常见的导数公式,帮助读者更好地理解和应用导数。

一、基本导数公式1. 常数函数导数公式:若y = c(c为常数),则dy/dx = 0。

2. 幂函数导数公式:若y = x^n(n为常数),则dy/dx = nx^(n-1)。

3. 指数函数导数公式:若y = a^x(a为常数),则dy/dx = a^x * ln(a)。

4. 对数函数导数公式:若y = log_a(x)(a为常数),则dy/dx = 1 / (x * ln(a))。

5. 三角函数导数公式:若y = sin(x),则dy/dx = cos(x);若y = cos(x),则dy/dx = -sin(x);若y = tan(x),则dy/dx = sec^2(x)。

6. 反三角函数导数公式:若y = arcsin(x),则dy/dx = 1 / √(1 - x^2);若y = arccos(x),则dy/dx = -1 / √(1 - x^2);若y = arctan(x),则dy/dx = 1 / (1 + x^2)。

二、基本运算法则1. 和差法则:若u(x)和v(x)是可导函数,c为常数,则有: (u ± v)' = u' ± v';(cf)' = cf'。

2. 积法则:若u(x)和v(x)是可导函数,则有:(uv)' = u'v + uv'。

3. 商法则:若u(x)和v(x)是可导函数,则有:(u/v)' = (u'v - uv') / v^2。

4. 复合函数法则:若y = f(g(x)),其中u = g(x),则有:dy/dx = f'(u) * u'。

高等数学导数公式大全

高等数学导数公式大全

高等数学导数公式大全1.基本导数公式:-若f(x)=c(c为常数),则f'(x)=0;- 若f(x) = x^n(n为正整数),则f'(x) = nx^(n-1);- 若f(x) = a^x(a为常数),则f'(x) = a^x * ln(a);-若f(x)=e^x,则f'(x)=e^x;2.三角函数与反三角函数的导数公式:- 若f(x) = sin(x),则f'(x) = cos(x);- 若f(x) = cos(x),则f'(x) = -sin(x);- 若f(x) = tan(x),则f'(x) = sec^2(x);- 若f(x) = cot(x),则f'(x) = -csc^2(x);- 若f(x) = sec(x),则f'(x) = sec(x) * tan(x);- 若f(x) = csc(x),则f'(x) = -csc(x) * cot(x);- 若f(x) = arcsin(x),则f'(x) = 1 / sqrt(1 - x^2);- 若f(x) = arccos(x),则f'(x) = -1 / sqrt(1 - x^2);- 若f(x) = arctan(x),则f'(x) = 1 / (1 + x^2);- 若f(x) = arccot(x),则f'(x) = -1 / (1 + x^2);- 若f(x) = arcsec(x),则f'(x) = 1 / (x * sqrt(x^2 - 1));- 若f(x) = arccsc(x),则f'(x) = -1 / (x * sqrt(x^2 - 1));3.对数函数与指数函数的导数公式:- 若f(x) = log_a(x),则f'(x) = 1 / (x * ln(a));- 若f(x) = ln(x),则f'(x) = 1 / x;- 若f(x) = ln,u(x),则f'(x) = u'(x) / u(x);- 若f(x) = a^x(a>0且a ≠ 1),则f'(x) = a^x * ln(a);-若f(x)=e^x,则f'(x)=e^x;4.复合函数的导数公式:-若g(x)可导,f(x)可导,则(f(g(x)))'=f'(g(x))*g'(x);-若f(x)可导,f^-1(x)可导,则(f^-1(x))'=1/f'(f^-1(x));5.乘积与商的导数公式:-若f(x)与g(x)都可导,则(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x);-若f(x)与g(x)都可导,且g(x)≠0,则(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x)6.反函数的导数:-若f(x)在x_0处可导,且f'(x_0)≠0,则f^(-1)(x)在f(x_0)处可导,且(f^(-1))'(f(x_0))=1/f'(x_0);7.链式法则:- 若y = f(u)且u = g(x)都可导,则y = f(g(x))也可导,且dy/dx = f'(u) * g'(x) = f'(g(x)) * g'(x);8.泰勒展开式:-若f(x)在x_0处有n阶导数,则它在x_0处的泰勒展开式为:f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)^2f''(x_0)/2! + ... + (x - x_0)^nf^n(x_0)/n!;这只是高等数学导数公式的部分内容,实际上导数公式非常多且多样化,可以根据需要不断学习和掌握。

16个基本导数公式推导过程

16个基本导数公式推导过程

16个基本导数公式推导过程推导过程如下:1.常数函数:f(x)=c求导结果:f'(x)=0。

证明过程:由导数定义可得,当函数为常数时,无论x取任何值,函数的增量都为0,即f(x + Δx) - f(x) = 0。

所以,f'(x) =lim(Δx→0) [f(x + Δx) - f(x)] / Δx = 0。

2.幂函数:f(x)=x^n,其中n为正整数。

求导结果:f'(x) = nx^(n-1)。

证明过程:利用定义求导。

计算f(x + Δx) = (x + Δx)^n与f(x) = x^n的差值,然后除以Δx,当Δx趋于0时求极限。

利用二项式展开,可以得出f'(x) = nx^(n-1)。

3.指数函数:f(x)=e^x。

求导结果:f'(x)=e^x。

证明过程:由指数函数的性质可知,e^0 = 1,且(d(e^x)/dx) = e^x。

因此,可以据此推导出f'(x) = e^x。

4. 对数函数:f(x) = ln(x)。

求导结果:f'(x)=1/x。

证明过程:由导数定义可得f'(x) = lim(Δx→0) [ln(x + Δx) - ln(x)] / Δx。

利用对数的性质,将差值化简为ln((x + Δx)/x),再除以Δx并取极限,最终得出f'(x) = 1/x。

5. 正弦函数:f(x) = sin(x)。

求导结果:f'(x) = cos(x)。

证明过程:利用极限定义求导。

计算f(x + Δx) - f(x) = sin(x + Δx) - sin(x),然后除以Δx并取极限。

应用三角函数的合角公式并利用三角恒等式可得f'(x) = cos(x)。

6. 余弦函数:f(x) = cos(x)。

求导结果:f'(x) = -sin(x)。

证明过程:同样应用极限定义。

计算f(x + Δx) - f(x) = cos(x + Δx) - cos(x),然后除以Δx并取极限。

导数公式大全

导数公式大全

导数公式大全1.如果一个函数y是一个常数c,那么它的导数y'就是0.2.如果一个函数y是x的n次方,那么它的导数y'就是nx 的XXX。

3.如果一个函数y是正切函数tanx,那么它的导数y'就是1除以余弦函数cosx的平方。

4.如果一个函数y是余切函数cotx,那么它的导数y'就是-1除以正弦函数sinx的平方。

5.如果一个函数y是正弦函数sinx,那么它的导数y'就是余弦函数cosx。

6.如果一个函数y是余弦函数cosx,那么它的导数y'就是负的正弦函数-sinx。

7.如果一个函数y是以a为底的指数函数a^x,那么它的导数y'就是a的x次方乘以自然对数的底数lna。

8.如果一个函数y是以自然对数的底数e为底的指数函数e^x,那么它的导数y'就是e的x次方。

9.如果一个函数y是以a为底的对数函数logax,那么它的导数y'就是自然对数的底数lna除以x。

10.如果一个函数y是自然对数函数lnx,那么它的导数y'就是1除以x。

此外,导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在某一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。

10.推导arccos x的导数公式为y'=-1/√1-x^2.这个公式可以通过求导的方式得到,也可以通过反三角函数的定义来推导。

因为arccos x是cos y=x的反函数,所以有cos(arccos x)=x,即y=arccos x时,cos y=x。

对两边求导可得-y'sin y=x',即y'=-sin y/x。

因为cos y=x,所以sin y=√1-x^2,代入可得y'=-1/√1-x^2.11.推导arctan x的导数公式为y'=1/1+x^2.同样地,可以通过求导或者反三角函数的定义来推导。

求导公式大全

求导公式大全

求导公式大全1、原函数:y=c(c为常数)导数: y'=0导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx6、原函数:y=cosx 导数: y'=-sinx7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x导数:y'=logae/x10、原函数:y=lnx导数:y'=1/x求导公式大全整理y=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1 x^2)高中数学导数学习方法1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。

2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。

导数公式证明大全

导数公式证明大全

导数公式证明大全导数的定义是函数变化率的极限。

下面将给出导数的一些重要公式的证明。

1.常数函数的导数:设常数函数$f(x)=c$,其中$c$为常数。

由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{c-c}{h} \\ &= \lim_{h\to 0}0 \\ &= 0\end{aligned}\]因此,常数函数的导数为0。

2.幂函数的导数:设幂函数$f(x)=x^n$,其中$n$为正整数。

由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{(x+h)^n-x^n}{h} \end{aligned}\]将$(x+h)^n$展开为二项式,有:\[(x+h)^n = x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \ldots + \binom{n}{n-1}xh^{n-1} + h^n\]代入上式,消去$x^n$,并除以$h$,得:\[\begin{aligned} f'(x) &= \lim_{h\to0}\left(\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h + \ldots +\binom{n}{n-1}xh^{n-2} + h^{n-1}\right) \\ &= \binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}\cdot 0 + \ldots + \binom{n}{n-1}x\cdot 0 + 0^{n-1} \\ &= n\cdot x^{n-1} \end{aligned}\]因此,幂函数的导数为$n$倍的$x$的$n-1$次方。

24个基本求导公式

24个基本求导公式

24个基本求导公式求导公式:1、f(x)=a的导数,f'(x)=0,a为常数。

即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。

就是当幂函数的指数等于1的时候的导数。

可以根据幂函数的求导公式求得。

2、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数。

求导公式1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]。

即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。

其它所有基本求导公式都是由这个公式引出来的。

包括幂函数、指数函数、对数函数、三角函数和反三角函数。

2、f(x)=a的导数,f'(x)=0,a为常数。

即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。

就是当幂函数的指数等于1的时候的导数。

可以根据幂函数的求导公式求得。

3、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数。

即系数为1的单项式的导数,以指数为系数,指数减1为指数。

这是幂函数的指数为正整数的求导公式。

4、f(x)=x^a的导数,f'(x)=ax^(a-1),a为实数。

即幂函数的导数,以指数为系数,指数减1为指数。

5、f(x)=a^x的导数,f'(x)=a^xlna,a>0且a不等于1。

即指数函数的导数等于原函数与底数的自然对数的积。

6、f(x)=e^x的导数,f'(x)=e^x。

即以e为底数的指数函数的导数等于原函数。

7、f(x)=log_ax的导数,f'(x)=1/(xlna),a>0且a不等于1。

即对数函数的导数等于1/x与底数的自然对数的倒数的积。

8、f(x)=lnx的导数,f'(x)=1/x,即自然对数函数的导数等于1/x。

9、(sinx)'=cosx,即正弦的导数是余弦。

10、(cosx)'=-sinx,即余弦的导数是正弦的相反数。

11、(tanx)'=(secx)^2,即正切的导数是正割的平方。

导数公式大全

导数公式大全

导数公式大全导数公式是微积分中非常重要的一部分,它可以用来计算函数在其中一点处的斜率。

以下是一些常见的导数公式:1.基本导数公式:- 总幂法则:如果 $f(x) = x^n$,其中 $n$ 是任意实数,则 $f'(x) = nx^{n-1}$- 幂函数常数因子法则:如果 $f(x) = cx^n$,其中 $c$ 是常数,$n$ 是任意实数,则 $f'(x) = cnx^{n-1}$-和差法则:如果$f(x)=u(x)+v(x)$,其中$u(x)$和$v(x)$可导,则$f'(x)=u'(x)+v'(x)$- 积法则:如果 $f(x) = u(x) \cdot v(x)$,其中 $u(x)$ 和$v(x)$ 可导,则 $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$ - 商法则:如果 $f(x) = \frac{u(x)}{v(x)}$,其中 $u(x)$ 和$v(x)$ 可导,且 $v(x) \neq 0$,则 $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$2.指数函数与对数函数的导数:- 指数函数:如果 $f(x) = a^x$,其中 $a$ 是常数且 $a > 0$,则$f'(x) = a^x \ln(a)$-自然指数函数:如果$f(x)=e^x$,则$f'(x)=e^x$- 对数函数:如果 $f(x) = \log_a(x)$,其中 $a$ 是常数且 $a >0$,则 $f'(x) = \frac{1}{x \ln(a)}$- 自然对数函数:如果 $f(x) = \ln(x)$,则 $f'(x) =\frac{1}{x}$3.三角函数的导数:- 正弦函数:如果 $f(x) = \sin(x)$,则 $f'(x) = \cos(x)$- 余弦函数:如果 $f(x) = \cos(x)$,则 $f'(x) = -\sin(x)$- 正切函数:如果 $f(x) = \tan(x)$,则 $f'(x) = \sec^2(x)$- 反正弦函数:如果 $f(x) = \arcsin(x)$,则 $f'(x) =\frac{1}{\sqrt{1-x^2}}$- 反余弦函数:如果 $f(x) = \arccos(x)$,则 $f'(x) = -\frac{1}{\sqrt{1-x^2}}$- 反正切函数:如果 $f(x) = \arctan(x)$,则 $f'(x) =\frac{1}{1+x^2}$4.常用函数的导数:-常数函数:如果$f(x)=c$,其中$c$是常数,则$f'(x)=0$- 反函数:如果 $f(x)$ 的反函数为 $f^{-1}(x)$,则 $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$-绝对值函数:如果$f(x)=,x,$,则$f'(x)$可以分为两段来计算,当$x>0$时,$f'(x)=1$;当$x<0$时,$f'(x)=-1$这里列出的只是一些常见的导数公式,实际上导数还可以通过链式法则、隐函数求导法则以及高阶导数等方法计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx=lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx)) =lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx)) =lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsin Δxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx =f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx)) =lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx)) =lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(f(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。

相关文档
最新文档