专题四-万有引力与航天
高考物理知识点专题之万有引力与航天 专题04 神州飞船(解析版)

04 神州飞船—万有引力与航天神舟飞船是中国自行研制,具有完全自主知识产权,达到或优于国际第三代载入飞船技术的飞船。
神舟号飞船是采用三舱一段,即由返回舱、轨道舱、推进舱和附加段构成,由13个分系统组成。
神舟号飞船与国外第三代飞船相比,具有起点高、具备留轨利用能力等特点。
神舟系列载人飞船由专门为其研制的长征二号F火箭发射升空,发射基地是酒泉卫星发射中心,回收地点在内蒙古中部的四子王旗航天着陆场。
截至2019年4月24日,神舟飞船、天舟飞船正在进行正(试)样产品组批生产。
各型号概览1. 一质量为8.00×104 kg 的太空飞船从其飞行轨道返回地面。
飞船在离地面高度1.60×105 m 处以7.5×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面。
取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s 2。
(结果保留2位有效数字) (1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。
【解析】(1)飞船着地前瞬间的机械能为20021mv E k =① 式中,m 和v 0分别是飞船的质量和着地前瞬间的速率。
由①式和题给数据得8kp 4.010J E =⨯②设地面附近的重力加速度大小为g ,飞船进入大气层时的机械能为212h h E m mgh =+③ 式中,v h 是飞船在高度1.6×105m 处的速度大小。
由③式和题给数据得122.410J h E =⨯④(2)飞船在高度h' =600 m 处的机械能为21 2.0()2100h h E m v mgh ''=+⑤由功能原理得k0h W E E '=-⑥式中,W 是飞船从高度600m 处至着地瞬间的过程中克服阻力所做的功。
专题04 万有引力与航天方法模型(原卷版)

专题04 万有引力与航天方法模型一、天体质量和密度的估算1.如图所示是嫦娥探测器的变轨示意图,已知探测器在变入低轨后的绕月圆轨道上运动的周期为T ,轨道半径为r ,月球表面重力加速度为0g ,则( ) A .探测器在变轨以后机械能比变轨前大B .探测器在圆轨道上运动时处于平衡状态,飞船内的物体所受合力为零C 02rrTg π D .月球的平均密度为3023()8g rπ 2.中国空间站天和核心舱绕地球的运行可视为匀速圆周运动,已知其轨道距地面的高度为h ,运行周期为T ,地球半径为R ,万有引力常量为G ,由此可得到地球的平均密度为( ) A .23GT πB .24GT πC .3233()R h GT R π+D .23233()R h GT R π-3.北斗卫星导航系统[BeiDou (COMPASS )NavigationSatelliteSystem]是我国自主发展、独立运行的全球卫星导航系统。
如图,I 为地球近地卫星,II 为北斗卫星导航系统中的一颗静止轨道卫星,其对地张角为2θ。
已知地球自转周期为0T ,万有引力常量为G 。
下列说法正确的是( )A .地球的平均密度为2303sin GT πθ B .卫星I 和卫星II 的加速度之比为31sin θC .卫星I 的周期为3sin 2T θD .卫星II 的发射速度大于11.2km/s4.2022年11月1日,梦天实验舱与“天宫”空间站在轨完成交会对接,目前已与天和核心舱、问天实验舱形成新的空间站“T”字基本构型组合体。
已知组合体的运行轨道距地面高度为h (约为400km ),地球视为理想球体质量为M ,半径为R ,地球表面的重力加速度为g ,引力常量为G ,下列说法正确的是( ) A .航天员漂浮在组合体中,处于平衡状态 B .地球的平均密度可表示为34gGRρπ= C .组合体轨道处的重力加速度为22()gR R h + D .组合体的运行速度为GMR h+ 【模型方法总结】1.“自力更生”法(g -R ):利用天体表面的重力加速度g 和天体半径R 。
第4章 专题强化4 天体运动中的三种典型问题

否则无法在万有引力作用下绕地球做匀速圆周运动。而同步静止轨道卫 星相对地面静止,与地球自转周期相同,所以其轨道平面一定和赤道平 面重合,即同步静止轨道卫星需要在赤道上空做匀速圆周运动,不可能 经过北京上空,故C错误;由题意可知卫星b的周期为24 h,卫星c的周期 为8 h,某时刻两者相距最近,设经过时间t后二者再次相距最近,则 Ttc-Ttb=1,解得 t=12 h,故 D 正确。
[解析]设地球质量为 M,质量为 m 的卫星绕地球做半径为 r、线速度 大小为 v 的匀速圆周运动,根据牛顿第二定律有 GMr2m=mvr2,解得 v=
GrM,因为卫星 b 的轨道半径比卫星 c 的轨道半径大,根据上式可知 卫星 b 运行的线速度小于卫星 c 的线速度,故 A 错误;卫星 a 与卫星 b 轨道高度相同,周期相同,线速度大小相同,但二者质量不一定相同, 所以机械能不一定相同,故 B 错误;人造卫星的轨道平面一定过地心,
道上,Q 为同步卫星,故两者的周期相等,而 N 和 Q 同为卫星,由万有 引力充当向心力,故有 GMr2m=m4Tπ22r,解得 T= 4GπM2r3。由上式可知, 轨道半径越大,周期越大,故卫星 Q 的周期大于天和核心舱 N 的周期, 故有 TP=TQ>TN,C 错误;Q 是同步卫星,其轨道在赤道上方即纬度为 0°, 南充市不在赤道上,所以卫星 Q 一定不会经过南充上空,D 正确。
(3)在地球表面有 GMRm20 =mg,卫星一绕地球做圆周运动,有 GMRm21 =
m2Tπ1 2R1, 联立解得 g=32Tπ220R0。
[答案]
(1)2 2T0
42 (2)6 2-3T0
(3)32Tπ220R0
〔专题强化训练〕
1.(多选)(2022·四川南充三模)我国“神舟十三号”航天员翟志刚、 王亚平和叶光富在空间站驻留长达6个月之久,是我国入驻太空时间最 长的三人组,已知“天和”核心舱N绕地球运行的轨道距地面的高度约 为400 km,地球半径约6 400 km。关于地球赤道静止的物体P、同步卫 星Q和“天和”核心舱N的运动,下列说法正确的是( AD )
万有引力与航天科学知识点总结

万有引力与航天科学知识点总结1. 万有引力的定义和原理- 万有引力是指质点之间的引力相互作用力,由牛顿于17世纪提出的普适物理定律。
- 万有引力的原理是质点间的引力与它们的质量成正比,与它们之间的距离成反比。
2. 万有引力公式- 万有引力公式表达了两个质点间的引力大小与它们质量和距离的关系:`F = G * (m1 * m2) / r^2`。
- 其中,F表示引力的大小,m1和m2分别是两个质点的质量,r是它们之间的距离,G为万有引力常数。
3. 航天科学中的万有引力应用- 万有引力是航天科学中至关重要的概念,对行星运行、地球轨道等都具有重要影响。
- 宇宙飞行器与地球的相对位置和角度,以及运动轨迹的计算都需要考虑万有引力的作用。
- 万有引力也是行星探测任务中的重要影响因素,科学家通过研究行星的引力场,获得行星的质量、结构和组成信息。
4. 航天科学的其他知识点除了万有引力,航天科学还涉及许多其他重要知识点,如:- 轨道力学:研究天体运动的力学原理和方法。
- 航天器设计:包括航天器的结构、推进系统、导航和控制等设计原理与技术。
- 火箭发动机:研究和设计用于航天器推进的火箭发动机。
- 航天器轨道控制:保持航天器在特定轨道上的运动稳定与精确控制。
5. 航天科学的前沿领域- 航天科学作为一个不断发展的领域,目前还有许多前沿研究领域,如:- 卫星导航与定位技术- 空间站和深空探测任务- 火星和月球探测- 太阳风与地球磁层相互作用研究以上是对万有引力与航天科学的知识点进行了简要总结。
了解这些基本概念和相关领域的发展情况,有助于更好地理解和探索航天科学的奥秘与魅力。
万有引力与航天知识点

万有引力与航天知识点(第一篇:万有引力)1. 万有引力的发现历程在17世纪,爱尔兰的天文学家牛顿通过观测行星运动,发现了万有引力定律。
他认为行星之间存在着相互吸引的力量,并且根据它们之间的质量和距离,可以计算出这种引力的大小。
牛顿的万有引力定律被公认为现代物理学史上最重要的成就之一。
2. 万有引力的表达方式万有引力的表达方式是:F =G * (m1 * m2) / r^2其中,F代表两个物体之间的引力,m1和m2分别代表这两个物体的质量,r代表它们之间的距离。
G被称为万有引力常数,它是一个恒定值。
3. 万有引力的应用万有引力广泛应用于各个领域,例如航天科技、机械工程等。
在航天科技中,万有引力是一个非常重要的概念。
它帮助我们理解行星、卫星、宇宙空间中的物体相互作用。
在机械工程中,万有引力有助于我们设计和制造机械或者设备,使其能够承受某些力量或重力。
4. 万有引力对航天的影响万有引力对航天有深远的影响。
在航天器的发射和载荷的计算中,万有引力是一个非常重要的因素。
在飞行中,航天器需要考虑地球和其他天体之间的吸引力。
如果没有万有引力,我们将无法精确地计算空间飞行器的轨道。
5. 万有引力的研究进展随着科技的不断进步和技术的不断发展,对万有引力的研究也越来越深入。
例如,科学家们正在研究越来越微小的物体之间的相互作用,以及在微重力环境中的行星运动。
总之,万有引力是宇宙中最基本的力之一。
它深刻影响了我们对行星和宇宙的理解,对航天科技的发展也产生了重要影响。
在未来的研究中,科学家们将继续深入研究它的影响和应用。
(第二篇:航天知识点)1. 轨道轨道是一个天体围绕中心天体运动的路径。
根据天体所处的位置和其运动的方式,轨道可以分为不同的类型,例如环绕地球的低轨道、高轨道、近地轨道、远地轨道等。
2. 空间垃圾空间垃圾是指在太空中无法使用、已经失效或丢失控制的物体,包括航天器部件、残骸、废料等等。
空间垃圾的数量是一个非常严重的问题,它可能导致卫星或者航天器碰撞,对太空探索造成极大的危害。
课件4:4.4 万有引力与航天

为其轨道半径 r 等于天体半径 R,则天体密度 ρ=G3Tπ2. 可见,只要测出卫星环绕天体表面运动的周期 T,就可
第四章 曲线运动 万有引力与航天
(1)开普勒行星运动第三定律指出:行星绕太阳运 动的椭圆轨道的半长轴 a 的三次方与它的公转周期 T 的二次方成正比,即Ta32=k,k 是一个对所有行星都相 同的常量.将行星绕太阳的运动按圆周运动处理,请你 推导出太阳系中该常量 k 的表达式.已知引力常量为 G, 太阳的质量为 M 太. (2)开普勒定律不仅适用于太阳系,它对一切具有中心天 体的引力系统(如地月系统)都成立.经测定月地距离为 3.84×108 m,月球绕地球运动的周期为 2.36×106 s,试 计算地球的质量 M 地.(G=6.67×10-11 N·m2/kg2,结果 保留一位有效数字)
2-2.(单选)一宇航员在某星球上以速率 v0 竖直上抛 一物体,经 t 秒落回原处,已知该星球半径为 R,那 么该星球的第一宇宙速度是( B )
A.vR0t
B.
2v0R t
C.
v0R t
D.
v0 Rt
第四章 曲线运动 万有引力与航天
3.(单选)在日常生活中我们并没有发现物体的质量 随物体的运动的变化而变化,其原因是( B ) A.物体运动无法称质量 B.物体的速度远小于光速,质量变化极小 C.物体质量太大 D.物体的质量不随速度变化而变化
2-1.(单选)嫦娥三号的成功登月再次表明我国已具 备火星探测能力,假设我国欲发射一颗探测火星的卫 星,其发射速度 v 应为( C ) A.7.9 km/s B.7.9 km/s<v<11.2 km/s C.11.2 km/s<v<16.7 km/s D.v≥16.7 km/s
4万有引力与航天

专题四 万有引力与航天1. (2021广州天河区二模)火星直径约为地球的一半,质量约为地球的十分之一,它绕太阳公转的轨道半径约为地球公转半径的1.5倍。
根据以上数据,以下说法正确的是 A .火星表面重力加速度的数值比地球表面小 B .火星公转的周期比地球的短 C .火星公转的线速度比地球的大 D .火星公转的向心加速度比地球的大2. (2021江门市一模)中国的“天问一号”火星探测器于2020年7月23日成功发射,目前已经成功环绕火星,成为我国第一颗人造火星卫星。
已知火星与地球绕太阳公转的轨道半径之比为3:2,火星与地球的质量之比为1:10,火星与地球的半径之比为1:2,则下列说法正确的是( ) A. 火星绕太阳公转的向心加速度比地球大 B. 在火星表面以7.9km/s 发射的物体可在火星表面绕火星做匀速圆周运动 C. 火星与地球绕太阳的动能之比为1:15 D. 地球和太阳的连线与火星和太阳的连线在相等时间内扫过的面积相等3. (2021河源市一模)假设某个国家发射了一颗绕火星做圆周运动的卫星.已知该卫星万有引力提供向心力: r T m mr r mv r Mm G 22222⎪⎭⎫ ⎝⎛===πω 万有引力与航天追及和相遇问题低轨道到高轨道: 发动机加速,变轨后速度减小 周期黄金代换式22,Mm GM mg G g R R ==卫星运行参量的比较双星问题 仅引力做功 机械能不变 动力学 功和能 变轨 问题 万有引力等于重力: 22,Mm GM mg G g R R == 线速度 估算天体质量和密度高轨道到低轨道: 发动机减速,变轨后速度增大 发动机做功 机械能改变贴着火星表面运动,把火星视为均匀球体,如果知道该卫星的运行周期为T ,引力常量为G ,那么( )A .可以计算火星的质量B .可以计算火星表面的引力加速度C .可以计算火星的密度D .可以计算火星的半径4. (2021揭阳一中模拟)2018年3月30日我国成功发射第三十颗北斗导航卫星,这颗卫星属于中圆地球轨道卫星,在轨高度约为21500km ,该高度处重力加速度为g 1,该卫星的线速度为v 1,角速度为ω1,周期为T 1.2017年9月17日天舟一号在高度约400km 的圆轨道上开始独立运行,该高度处重力加速度为g 2,天舟一号的线速度为v 2,角速度为ω2,周期为T 2.则( )A. g 1>g 2B. v 1>v 2C. ω1<ω2D. T 1<T 2 5. (2021韶关市一模)位于贵州的“中国天眼”是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,通过FAST 测得水星与太阳的视角为θ(水星、太阳分别与观察者的连线所夹的角),如图所示,若最大视角的正弦值为k ,地球和水星绕太阳的运动视为匀速圆周运动,则地球和水星的公转周期的比值为( )A.B. C. k 3D. 6. (2021广州一模)我国于2020年11月24日发射的嫦娥五号探测器成功实施无人月面取样返回。
高考物理 热点4 万有引力与航天

热点4万有引力与航天考向一星球表面重力与引力的关系【典例】(2022·山东等级考)“羲和号”是我国首颗太阳探测科学技术试验卫星。
如图所示,该卫星围绕地球的运动视为匀速圆周运动①,轨道平面与赤道平面接近垂直。
卫星每天在相同时刻,沿相同方向经过地球表面A点正上方,恰好绕地球运行n圈②。
已知地球半径为地轴R,自转周期为T,地球表面重力加速度为g③,则“羲和号”卫星轨道距地面高度为()A.(gR2T22n2π2)13-R B.(gR2T22n2π2)13 C.(gR2T24n2π2)13-R D.(gR2T24n2π2)13【审题思维】题眼直击信息转化①万有引力全部提供圆周运动向心力②地球自转周期是卫星周期的n倍③黄金代换GM=gR2涉及地球自转问题的解题流程1.维度:万有引力定律的应用理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零。
现假设地球是一半径为R 、质量分布均匀的实心球体,O 为球心,以O 为原点建立坐标轴Ox ,如图所示,一个质量一定的小物体(假设它能够在地球内部移动)在x 轴上各位置受到的引力大小用F 表示,则选项所示的四个F 随x 变化的关系图像中正确的是 ( )2.维度:万有引力定律在火星上的应用“祝融号”火星车搭载着陆平台着陆火星,如图所示为着陆后火星车与着陆平台分离后的“自拍”合影。
着陆火星的最后一段过程为竖直方向的减速运动,且已知火星质量约为地球质量的110,火星直径约为地球直径的12。
则 ( )A .该减速过程火星车处于失重状态B .该减速过程火星车对平台的压力大于平台对火星车的支持力C .火星车在火星表面所受重力约为在地球表面所受重力的25D .火星的第一宇宙速度与地球第一宇宙速度之比约为15考向二 天体质量和密度【典例】(2021·全国乙卷)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置①如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
专题四 万有引力与航天
一、万有引力定律
1、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验
③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律
①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r的二次方成反比。
即: ②适用条件
(Ⅰ)可看成质点的两物体间,r为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r为两个球体球心间的距离。
二、万有引力定律的运用
1、万有引力与重力的关系:
重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。
忽略地球自转可得:
【例1】.设地球的质量为M ,赤道半径R ,自转周期T,则地球赤道上质量为m 的物体所受重力的大小为?(式中G为万有引力恒量)
2、计算重力加速度 地球表面附近(h《R) 方法:万有引力≈重力 地球上空距离地心r=R+h 处 方法:
在质量为M’,半径为R ’的任意天体表面的重力加速度''g
方法:
3、计算天体的质量和密度 利用自身表面的重力加速度: 利用环绕天体的公转: 等等 (注:结合 得到中心天体的密度)
【例2】宇航员站在一星球表面上的某高处,以初速度V 0沿水平方向抛出一个小球,经过时间t,球落到星球表面,小球落地时的速度大小为V . 已知该星球的半径为R,引力常量为G ,求该星球的质量M 。
三、宇宙航行
1、人造卫星的运行规律
2Mm F G r =1122
6.6710/G N m kg -=⨯⋅1
22m m F G r =2R Mm G mg =2')(h R Mm G mg +=2'
'''''R m M G mg =mg R Mm G =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2R Mm G mg =r T
m r m r v m r Mm G 222224πω===
-- 332T=2.GM GM GM r M v a G r r r ωπ=== , , ,
【例3】两颗人造卫星A T A :T B =1:8,则轨道半径之比和运动速率之比分别为( )
2、宇宙速度
第一宇宙速度:V1=7.9k m/s 第二宇宙速度:V 2=11.2km/s 第三宇宙速度:V 3=16.7km/s 注:(1)宇宙速度均指发射速度
(2)第一宇宙速度为在地面发射卫星的最小速度,也是环绕地球运行的最大速度
3、地球同步卫星(通讯卫星)
(1)运动周期与地球自转周期相同,且T=24h ;
(2)运转角速度等于地球自转的角速度,周期等于地球自转的周期;
(3)同步卫星高度不变,运行速率不变(因为T 不变);
(4)同步卫星的轨道平面必须与赤道平面平行,在赤道正上方。
对同步卫星:运动规律:
由于同步卫星的运动周期确定(为T=24h ),故而 其 r 、 v、ω、T 、a 等均为定值。
四.、小专题
(一)地面上物体的运动规律
1、物体随着地球一起自转
2、物体圆周运动的周期为T=24h
3、圆周运动轨道平面与赤道平面平行
4、圆周运动向心力由万有引力的分力提供
【例4】如图所示,由于地球的自转,地球表面上P 、O 两物体均绕地球自转轴做匀速圆周运动,对于P、O 两物体的运动,下列说法正确的是
A.P 、O两点的角速度大小相等
B.P 、O 两点的线速度大小相等
C.同一物体在O 点的向心加速度比在P 点的向心加速度大
D.放在P 、O 两处的物体均只受重力和支持力两个力作用
(二)地面上物体与天上物体规律比较
经验总结———“天上”:万有引力提供向心力
22(1) :M m GM v G m v r r r ==卫地地卫由得223(2) :M m GM G
m r r r ωω==卫地地卫由得23
224 2(3) :M m r G m r T r T GM π==卫地卫地
由得r T m r m r v m r GMm 2222)2(πω===2M ma=m m F G r πω⎛⎫= ⎪⎝⎭222v 2一条龙:=mr =mr r T
-- 月球
“地上”:随地球自转
【例5】如图A 为静止于地球赤道上的物体、B为近地卫星、C 为地球同步卫星,地球表面的重力加速度为,关于它们运行线速度、角速度、周期和加速度的比较正确的是
A .
B.
C .
D.
(三)卫星变轨问题 卫星绕天体稳定运行时,F 引=m v 2r 。
当卫星由于某种原因速度v 突然改变时,F引和m 错误!不再相等,因此不能再根据v = 错误!来确定r 的大小。
当F 引>错误!时,卫星做近心运动;当F 引<错误!时,卫星做离心运动。
【例6】嫦娥”三号探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道Ⅱ为圆形。
下列说法正确的是
A .探测器在轨道Ⅱ上运动时不需要火箭提供动力
B.探测器在轨道Ⅲ经过P点时的加速度小于在轨道Ⅱ经过P 时的加速度
C .探测器在P 点由轨道Ⅱ进入轨道Ⅲ必须加速
D.轨道Ⅱ是月球卫星绕月球做匀速圆周运动的唯一轨道
A B C
v v v >>A B C
ωωω>>A C B
T T T =>B C A a g a a =>>。