高二数学必修4《三角函数》单元测试(1)1
(2021年整理)必修四第一章三角函数测试题(含答案)

(完整版)必修四第一章三角函数测试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)必修四第一章三角函数测试题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)必修四第一章三角函数测试题(含答案)的全部内容。
(完整版)必修四第一章三角函数测试题(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)必修四第一章三角函数测试题(含答案) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)必修四第一章三角函数测试题(含答案)> 这篇文档的全部内容。
必修四第一章三角函數測試題班別姓名分數一、選擇題1.已知cos α=12,α∈(370°,520°),則α等於( )A.390°B.420°C.450°D.480°2.若sin x·tan x〈0,則角xの終邊位於( )A.第一、二象限B.第二、三象限 C.第二、四象限D.第三、四象限3.函數y=tan 错误!是()A.週期為2πの奇函數B.週期為错误!の奇函數C.週期為πの偶函數D.週期為2πの偶函數4.已知函數y=2sin(ωx+φ)(ω>0)在區間[0,2π]の圖象如圖,那麼ω等於()A.1 B.2 C.错误!D。
高中数学必修四第一章《三角函数》单元测试题(含答案)

高中数学必修四第一章单元测试题《三角函数》(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.( )A. B. C. D.2.函数的一条对称轴可能是( )A. B. C. D.3.已知1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ= A. 2- B. 2- C. 24-D. 28- 4.已知,,则( ).A. B. C. D. ,5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A. 2 B.C.D.6.下列区间上函数cos 3y x π⎛⎫=+⎪⎝⎭为增函数的是( )A. ,44ππ⎡⎤-⎢⎥⎣⎦ B. 2,63ππ⎡⎤⎢⎥⎣⎦ C. 24,33ππ⎡⎤⎢⎥⎣⎦ D. 711,66ππ⎡⎤⎢⎥⎣⎦7.已知α为第二象限角,则222sin 1-sin cos 1-cos αααα+的值是( ) A. -1 B. 1 C. -3 D. 3 8.如图,函数(,)的图象过点,则的函数解析式为( )A.B.C. D.9.将函数的图象向右平移个单位后关于轴对称,则的值可能为( )A. B. C. D.10.已知tan 4θ=,则2sin cos sin 17sin 4θθθθ++的值为( )A.1468 B. 2168 C. 6814 D. 682111.函数()()sin f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图像,可以将()f x 的图像( )A. 向右平移12π个单位长度 B. 向右平移512π个单位长度C. 向左平移12π个单位长度 D. 向左平移512π个单位长度 12.同时具有以下性质:“①最小正周期是π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数;④一个对称中心为,012π⎛⎫⎪⎝⎭”的一个函数是( ) A. sin 26x y π⎛⎫=+⎪⎝⎭B. sin 23y x π⎛⎫=+ ⎪⎝⎭C. sin 26y x π⎛⎫=- ⎪⎝⎭D. sin 23y x π⎛⎫=-⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若角α的终边经过点()1,2--,则2sin2cos αα+=____________. 14.函数()()π20,2f x sin x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,则ω=__________, ϕ=__________.15.若()()sin 2cos 2,αππα-=-则()()()()sin 5cos 23cos sin παπαπαα-+----的值为____________.16.给出下列四个命题: ①函数2sin 23y x π⎛⎫=-⎪⎝⎭的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③函数2cos sin y x x =+的最小值为1-;= 0,则12x x k π-=,其中k Z ∈; 以上四个命题中正确的有_____________(填写正确命题前面的序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10(1(2)2sin sin2αα+.18.(本小题12分)(1)已知角α终边上一点,求cos α和tan α的值.(2)已知α是第三象限的角,且简()f α;②若,求()f α19.(本小题12分)已知函数()()sin (0,24,)2f x A wx b A w πϕϕ=++><<<.(1)求函数()f x 的解析式;(2)求()f x 的图象的对称中心及()2f x 的递减区间.20.(本小题12分)某同学用“五点法”画函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><在某一个周期内的图象时,列表并填入了部分数据,如下表:6π23π0 22-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并求出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动12π个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心. 21.(本小题12分)已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.(1)求的值;(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.22.(本小题12分)函数()()sin (0,)2f x x πωϕωϕ=+><在它的某一个周期内的单调减区间是511,1212ππ⎡⎤⎢⎥⎣⎦. (1)求()f x 的解析式;(2)将()y f x =的图象先向右平移6π个单位,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),所得到的图象对应的函数记为()g x ,求函数()g x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.高中数学必修四第一章单元测试题《三角函数》参考答案(时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.( )A. B. C. D.【答案】D 【解析】,选D.2.函数的一条对称轴可能是( )A. B. C. D.【答案】B3.已知1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ= A. 2- B. 2- C. 24- D. 28- 【答案】C 【解析】∵1sin 3θ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,∴222cos 1sin 3θθ=--=-,则1sin 23tan cos 4223θθθ===--,故选C.4.已知,,则( ).A. B. C. D. ,【答案】D 【解析】 ∵,,∴,,∴.故选.5.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A. 2 B. C.D.【答案】C【解析】6.下列区间上函数cos 3y x π⎛⎫=+⎪⎝⎭为增函数的是( ) A. ,44ππ⎡⎤-⎢⎥⎣⎦ B. 2,63ππ⎡⎤⎢⎥⎣⎦ C. 24,33ππ⎡⎤⎢⎥⎣⎦ D. 711,66ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】当44x ππ-≤≤时,712312x πππ≤+≤, 函数不是增函数;当263x ππ≤≤时, 23x πππ≤+≤,函数是减函数;当2433x ππ≤≤时, 533x πππ≤+≤,函数是增函数;选C.7.已知α为第二象限角,则222sin 1-sin cos 1-cos αααα+的值是( ) A. -1 B. 1 C. -3 D. 3 【答案】B8.如图,函数(,)的图象过点,则的函数解析式为( )A.B.C. D.【答案】B【解析】由题意可得A=2,f(0)=由所以,,选B.9.【2018届河南省天一大联考高三上测试二(10月】将函数的图象向右平移个单位后关于轴对称,则的值可能为( )A. B. C. D.【答案】D10.已知tan 4θ=,则2sin cos sin 17sin 4θθθθ++的值为( )A.1468 B. 2168 C. 6814 D. 6821【答案】B【解析】()2222sin cos sin 1sin 17sin 417tan 4sin cos tan θθθθθθθθθ+++=++ ()22141162117tan 68686841tan tan tan θθθθ++=+=+=+,故选B 11.函数()()sin f x A x ωϕ=+的图象如下图所示,为了得到()cos g x A x ω=-的图像,可以将()f x 的图像( )A. 向右平移12π个单位长度B. 向右平移512π个单位长度 C. 向左平移12π个单位长度 D. 向左平移512π个单位长度【答案】B【解析】试题分析:由题意可得,解之得,故,又可得,即,所以,而,即函数可由函数的图象向右平移512π个单位长度而得到,故应选B. 12.【2018届广西柳州市高三上摸底】同时具有以下性质:“①最小正周期是π;②图象关于直线3x π=对称;③在,63ππ⎡⎤-⎢⎥⎣⎦上是增函数;④一个对称中心为,012π⎛⎫ ⎪⎝⎭”的一个函数是( )A. sin 26x y π⎛⎫=+⎪⎝⎭B. sin 23y x π⎛⎫=+ ⎪⎝⎭C. sin 26y x π⎛⎫=- ⎪⎝⎭D. sin 23y x π⎛⎫=-⎪⎝⎭【答案】C第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届福建省惠安惠南中学高三10月月考】若角α的终边经过点()1,2--,则2sin2cos αα+=____________.【答案】1【解析】由三角函数定义得2tan 21α-==∴- 2sin2cos αα+= 22222sin cos cos 2tan 1411sin cos 141tan ααααααα+++===+++14.函数()()π20,2f x sin x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,则ω=__________, ϕ=__________.【答案】2π3 π615.若()()sin 2cos 2,αππα-=-则()()()()sin 5cos 23cos sin παπαπαα-+----的值为____________.【答案】35-【解析】因为()()sin 2cos 2sin 2cos ,αππααα-=-∴=-()()()()sin 5cos 2sin 5cos 3cos 33cos sin 3cos sin 5cos 5παπααααπααααα-+-+===-----+-故答案为35-.16.给出下列四个命题: ①函数2sin 23y x π⎛⎫=-⎪⎝⎭的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③函数2cos sin y x x =+的最小值为1-;④若12sin 2sin 244x x ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ = 0,则12x x k π-=,其中k Z ∈; 以上四个命题中正确的有_____________(填写正确命题前面的序号). 【答案】①②③ 【解析】把512x π=代入函数得1y =,为最大值,故正确; 结合函数tan y x =的图象可得点,02π⎛⎫⎪⎝⎭是函数tan y x =的图象的一个对称中心,故正确; 函数 22215cos sin sin 124y x x x sinx sinx ⎛⎫=+=-++=--+ ⎪⎝⎭ []1,1sinx ∈-Q 当sin 1x =-时,函数取得最小值为1-,故正确。
最新新人教A版高中数学必修四 第一章三角函数测试题(含答案解析)

第二学期高一数学三月月考试卷(第一章三角函数)一、选择题.(每小题5分,共50分)1. ⎪⎭⎫⎝⎛-π 623sin 地值等于 A. 21 B. 21- C. 23 D. 23- 2. 下列角中终边与 330° 相同地角是 A. 30° B. - 30° C. 630° D . -630°3. 函数y =||x x sin sin +x x cos cos ||+||x x tan tan 地值域是 A. {1} B. {1,3} C. {- 1} D. {- 1,3}4. 如果 α α α α cos 5sin 3cos 2sin +-= - 5,那么tan α地值为 A.-2 B. 2 C. 1623D.-16235. 如果 sin α + cos α =43,那么 sin 3 α – cos 3α 地值为A. 2312825B. -2312825C. 2312825或-2312825D. 以上全错6. 若 a 为常数,且a >1,0≤x ≤2π,则函数f (x )= cos 2x + 2a sin x - 1地最大值为A. 12+aB. 12-aC. 12--aD. 2a7. 函数y = sin ⎪⎭⎫ ⎝⎛-x 2 4π地单调增区间是 A. ⎥⎦⎤⎢⎣⎡+-8π3π 8π3πk k ,,k ∈Z B. ⎥⎦⎤⎢⎣⎡++8π5π 8ππk k ,,k ∈Z C. ⎥⎦⎤⎢⎣⎡+-83ππ 8ππk k ,,k ∈Z D. ⎥⎦⎤⎢⎣⎡++87ππ 83ππk k ,,k ∈Z8. 若函数y = f (x )地图象上每一点地纵坐标保持不变,横坐标伸长到原来地2倍;再将整个图象沿x 轴向左平移2π个单位;沿y 轴向下平移1个单位,得到函数y =21sin x 地图象;则函数 y = f (x )是 A.y =12π2sin 21+⎪⎭⎫⎝⎛+xB. y =12π2sin 21+⎪⎭⎫ ⎝⎛-x C. y =14π2sin 21+⎪⎭⎫⎝⎛+xD. y =14π2sin 21+⎪⎭⎫ ⎝⎛-x 9. 如图是函数y = 2sin(ωx + φ),φ<2π地图象,那么A. ω = 1110,φ =6πB. ω = 1011,φ = -6πC. ω = 2,φ = 6π D. ω = 2,φ =10. 如果函数 f (x )是定义在(-3,3)上地奇函数,当0<x <3时,函数 f (x )地图象如图所示,那么不等式f (x )cos x <0地解集是A. 2π 3⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫⎝⎛, B. 1 2π⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫⎝⎛, C.(- 3,- 1)∪(0,1)∪(1,3)D. 2π 3⎪⎭⎫⎝⎛--,∪(0,1)∪(1,3) (第9题)(第10题)二、填空题. (每小题5分,共30分) 11. 若(cos )cos3f x x =,那么(sin30)f ︒地值为 . 12. 若扇形地半径为R ,所对圆心角为α,扇形地周长为定值c ,则这个扇形地最大面积为___.13. 若 sin θ =53+-m m ,cos θ =524+-m m,则m =___. 14. 若 cos(75° + α)=31,其中α为第三象限角,则cos(105° - α)+ sin(α - 105°)= ___.15. 函数y = lg (sin x ) +216x -地定义域为 .16. 关于函数f (x )= 4 sin ⎪⎭⎫ ⎝⎛+3π2x (x ∈R),有下列命题:①函数 y = f (x )地表达式可改写为y = 4cos(2x - π6); ②函数 y = f (x )是以2π为最小正周期地周期函数;③函数 y = f (x )地图象关于点⎪⎭⎫ ⎝⎛-0 6π,对称;④函数y = f(x)地图象关于直线x = - π6对称.其中正确地是___.答题卷一、选择题.二、填空题.11、12、13、14、15、16、三、解答题.(共70分)17. (12分)已知角α是第三象限角,求:(1)角α是第几象限地角;(2)角2α终2边地位置.18.(16分)(1)已知角α地终边经过点P(4,- 3),求2sin α+ cos α地值;(2)已知角α地终边经过点P(4a,- 3a)(a≠0),求 2sin α+ cos α地值;(3)已知角α终边上一点P与x轴地距离和与y 轴地距离之比为3 : 4,求2sin α+ cos α地值.19. (12分)已知tan α,1是关于x地方程tanx2 - kx + k2 - 3 = 0地两实根,且3π<α<7π,求cos(3π+ α)- sin(π+ α)2地值.20. (14分)已知0≤x≤π,求函数y= cos2x2- 2a cos x地最大值M(a)与最小值m(a).21. (16分)某商品一年内出厂价格在6元地基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元. 该商品在商店内地销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.(1)试分别建立出厂价格、销售价格地模型,并分别求出函数解析式;(2)假设商店每月购进这种商品m 件,且当月销完,试写出该商品地月利润函数;(3) 求该商店月利润地最大值.参考答案一、选择题. 1. A【解析】⎪⎭⎫ ⎝⎛-π623sin =216πsin 2π2π623sin =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯+-. 2. B【解析】与 330° 终边相同地角为{α|α = 330° +k ∙ 360°,k ∈Z}.当 k = - 1时,α = - 30°.3. D【解析】将x 分为第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限四种情况分别讨论,可知值域为{- 1,3}.4. D【解析】∵ sin α - 2cos α = - 5(3sin α + 5cos α),∴ 16sin α = - 23cos α,∴ tan α = -1623.5. C【解析】由已知易得 sin α cos α = -327.∴ |sin 3 α - cos 3 α| = |(sin α- cos α)(sin 2α + cos 2α + sin α cos α)|=ααcos sin 21- ∙ |1 + sin α cosα| = 1282325. ∴ sin 3 α - cos 3α = ±1282325. 6. B【解析】f (x )= 1 - sin 2x + 2a sin x - 1= - sin 2x + 2a sin x .令sin x = t ,∴ t ∈[-1,1].∴ f (t )= - t 2+ 2at = -(t - a )2+ a 2,t ∈[-1,1].∴ 当t = 1时,函数 f (t )取最大值为2a - 1. 7. D【解析】∵ y = sin(4π- 2x )= - sin(2x -4π),∴ 2π+ 2k π ≤ 2x -4π≤23π+ 2k π, ∴ 83π+ k π ≤ x ≤87π+ k π. 8. B 9. C 10. B 二、填空题. 11. -1【解析】(sin30)f ︒=()1180cos 603cos 60cos -==⨯=οοοf12. 162c .【解析】设扇形面积为S ,弧长为l . ∴ S = 21lR = 21(c -2R )· R = -R 2+21cR .c - 2R >0, R >0,∵∴ 0<R <2c.当 R = 4c时,S max =162c .13. 0或8;【解析】sin 2θ +cos 2θ = 1, ∴ (m - 3)2+(4 - 2m )2=(m + 5)2,m = 0,或m = 8.14. 3122-.【解析】cos(105º - α)+ sin(α - 105º) = - cos(75º + α)- sin(α + 75º). ∵ 180º<α<270º,∴ 255º<α + 75º<345º.又 cos(α + 75º)=31,∴ sin(α + 75º)= -232. ∴ 原式 =312223231-=+-.15. [- 4,- π)∪(0,π). 【解析】由已知得∴ x ∈[- 4,- π)∪(0,π).16. ①③.【解析】① f (x )= 4sin ⎪⎭⎫ ⎝⎛+3π2x = 4cos ⎪⎭⎫ ⎝⎛--3π22πx = 4cos ⎪⎭⎫ ⎝⎛+-6π2x = 4cos ⎪⎭⎫⎝⎛-6π2x . ② T =22π= π,最小正周期为π.③ ∵ 2x +3π= k π,当 k = 0时,x =6π-, ∴ 函数 f (x )关于点⎪⎭⎫⎝⎛-0 6π,对称. ④ 2x +3π= k π +2π,当 x = -6π时,k =21-,与 k ∈Z 矛盾.∴ ①③正确. 三、解答题.17.【解】(1)由2k π + π<α<2k π +23π,k ∈Z , 得k π +2π<2α<k π +43π,k ∈Z. 将整数 k 分奇数和偶数进行讨论,易得角2α为第二象限或第四象限地角.(2)由2k π + π<α<2k π +23π,k ∈Z ,得4k π + 2π<2α<4k π + 3π,k ∈Z. ∴ 2α终边位置可能在第一象限、第二象限或y 轴地非负半轴.18.【解】(1)∵ 22y x r +== 5,∴ sin α =53-=r y ,cos α =54=r x , ∴ 2sin α + cos α =525456-=+-. (2)∵ ay x r 522=+=,∴ 当 α>0时,∴ r = 5a ,sin α =5353-=-a a ,cos α =54∴ 2sin α + cos α =52-;当 a <0时,∴ r = -5a ,sin α =5353=--a a ,cos α = -54,∴ 2sin α + cos α =52.(3)当点P 在第一象限时, sin α =53,cos α =54,2sin α + cos α = 2;当点P 在第二象限时, sin α =53,cos α =54-,2sin α + cos α =52;当点P 在第三象限时,sin α =53-,cos α =54-,2sin α + cos α = - 2;当点P 在第四象限时,sin α =53-,cos α =54,2sin α + cos α =52-.19.【解】由已知得 tan α αtan 1= k 2- 3=1, ∴ k =±2.又 ∵ 3π<α<27π,∴ tan α>0,αtan 1>0. ∴ tan α +αtan 1= k = 2>0 (k = -2舍去), ∴ tan α =αtan 1= 1, ∴ sin α = cos α = -22,∴ cos(3π +α) - sin(π +α) = sin α - cos α = 0.20.【解】y = cos 2x - 2a cos x = (cos x -a )2- a 2,令 cos x = t ,∵ 0≤x ≤2π, ∴ t ∈[0,1].∴ 原函数可化为f (t ) = (t - a )2- a 2,t ∈[0,1].①当 a <0 时,M (a ) = f (1) = 1 – 2a ,m (a ) =f (0) = 0.②当 0≤a <21 时,M (a ) = f (1) = 1 – 2a ,m (a ) = f (a ) = –a 2.③当 21≤a ≤1 时,M (a ) = f (0) = 0,m (a ) = f (a ) = –a 2.④当 a >1 时,M (a ) = f (0) = 0,m (a ) = f (1) = 1–2a .21. 【解】分别令厂价格、销售价格地函数解析式为 厂价格函数: ()11111sin b x A y ++=ϕω, 销售价格函数:()22222sin b x A y ++=ϕω, 由题意得:22281=-=A;226102=-=A,61=b;82=b()83721=-⨯=T ;()85922=-⨯=T482221111πππϖϖπ===⇒=T T ;482222222πππϖϖπ===⇒=T T∴64sin 211+⎪⎭⎫⎝⎛+=ϕπx y;84sin 222+⎪⎭⎫⎝⎛+=ϕπx y把x=3,y=8代入64sin 211+⎪⎭⎫⎝⎛+=ϕπx y得41πϕ-= 把x=5,y=10代入84sin 222+⎪⎭⎫ ⎝⎛+=ϕπx y 得432πϕ-=∴644sin 21+⎪⎭⎫ ⎝⎛-=ππx y;8434sin 22+⎪⎭⎫ ⎝⎛-=ππx y(2)、()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=•-=m x m m x m m y yy 644sin 28434sin 212ππππ=m x m 244sin 4+⎪⎭⎫⎝⎛--ππ (3)、当144sin -=⎪⎭⎫⎝⎛-ππx 时y 取到最大值,()mm m y 6214max=+-⨯-=。
必修4三角函数单元测试题(含答案)

必修4三角函数单元测试题(含答案) 三角函数单元测试1.sin210的值是多少?A。
3/2B。
-3/2C。
1/2D。
-1/22.终边相同的角是哪一组?A。
π或kπB。
(2k+1)π或(4k±1)π(k∈Z)C。
kπ±π/3或π/3k(k∈Z)D。
kπ±π/6或kπ±π/6(k∈Z)3.已知cosθ·tanθ<0,那么角θ在哪两个象限之间?A。
第一或第二象限角B。
第二或第三象限角C。
第三或第四象限角D。
第一或第四象限角4.已知弧度数为2的圆心角所对的弦长是2,则这个圆心角所对的弧长是多少?A。
2sin1B。
sin2C。
2D。
π5.要得到函数y=2sin(xπ/36),x∈R的图像,只需把函数y=2sinx,x∈R的图像上所有的点:A。
向左平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标伸长到原来的3倍B。
向右平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标伸长到原来的3倍C。
向左平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标缩短到原来的1/3D。
向右平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标缩短到原来的1/36.设函数f(x)=sin((x+π/3)/3)(x∈R),则f(x)在区间:A。
(2π/7,2π/3)上是增函数B。
(-π,2π/3)上是减函数C。
(π,8π/4)上是增函数D。
(-π,2π/3)上是增函数7.函数y=Asin(ωx+φ)(ω>0,φ<π)的部分图象如图所示,则函数表达式是:A。
y=-4sin(x+π/4)B。
y=4sin(x-π/4)C。
y=-4sin(x-π/4)D。
y=4sin(x+π/4)8.函数y=sin(3x-π/4)的图象是中心对称图形,其中它的一个对称中心是:A。
(-π/4,0)B。
(-π,0)C。
(π,0)D。
(11π/12,0)9.已知f(1+cosx)=cos2x,则f(x)的图象是下图的:(删除明显有问题的段落)4.A5.D6.C7.B8.A9.C10.B二、填空题11.012.513.1/214.-sin(15π/4)三、解答题15.cosα=√(1-sin²α)=√(1-1/4)=√(3/4)=±√3/216.M={θ|θ∈[0,π/4]},N={θ|θ∈[π/4,π]}17.(1)sin²θ+cos²θ+sinθ+cosθ+2sinθcosθ=1+sinθ+cosθsinθ+cosθ+2sinθcosθ=sinθ+cosθ2sinθcosθ=0sinθ=0或cosθ=0θ=kπ或θ=kπ±π/2 (k∈Z)2)将sinθ和cosθ代入原方程得m=1/218.(1)f(x)=sin(3x-π/2)2)a=2,b=419.最大值为1/√3,最小值为-120.(I)π/2II)g(x)=2cos(2x-π/2)-sin(2x)二、填空题11.412.013.414.20三、解答题15.已知 $A(-2,a)$ 是角 $\alpha$ 终边上的一点,且$\sin\alpha=-\dfrac{a}{\sqrt{a^2+16}}$,求 $\cos\alpha$ 的值。
人教A版高中数学必修四学单元测试三角函数Word含答案

必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=CC .A CD .A=B=C202120sin 等于 ( )A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=xx 22tan 1tan 1+- 5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34±D 36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8π D.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数12.函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________ 15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(1)必修4第一章三角函数(1)参考答案一、选择题:1. B2. B3. D4. D5.B6.A7.B8.A9.D 10. B 11.D 12.D 二、填空题 13.21 14 0158 0000020022160158,(21603606)-=-+=⨯ 15.23-16 [2,0][,2]3π- 三、解答题:17.略18 解:(1)222222222121sin cos tan 2173434sin cos 34sin cos tan 112x x x x x x x x +++===++ (2)2222222sin sin cos cos 2sin sin cos cos sin cos x x x xx x x x x x-+-+=+ 22tan tan 17tan 15x x x -+==+19.–2tanα 20 T=2×8=16=ωπ2,ω=8π,A=2设曲线与x 轴交点中离原点较近的一个点的横坐标是0x ,则2-0x =6-2即0x =-2 ∴ϕ=–ω0x =()428ππ=-⨯-,y=2sin(48ππ+x ) 当48ππ+x=2kл+2π,即x=16k+2时,y 最大=2当48ππ+x =2kл+23π,即x=16k+10时,y 最小=–2 由图可知:增区间为[16k-6,16k+2],减区间为[16k+2,16k+10](k ∈Z)。
(易错题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)

一、选择题1.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (51AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④2.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦3.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .84.函数3cos 2cos2sin cos cos510y x x x ππ=-的递增区间是( )A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 5.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x6.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 7.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->- B .cos tan cos tan αββα+<+ C .sin tan sin tan αββα> D .tan sin tan sin αββα<8.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④9.函数()13cos313x xf x x -=+的图象大致是( ) A . B .C .D .10.函数()()sin ln 0=->f x x x ωω只有一个零点,则实数ω的取值范围是( ) A .()0,πB .5,2⎫⎛⎪⎝⎭ππe C .50,2⎫⎛ ⎪⎝⎭πe D .5,2⎫⎛∞⎪⎝⎭π+e11.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦上最大值是3 二、填空题13.已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0>ω)有且仅有3个零点,则ω的最小值是_________.14.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 15.已知函数()()πsin (00)2f x M x M ωϕωϕ=+>><,的部分图象如图所示,其中()23A ,(点A 为图象的一个最高点)502B ⎛⎫- ⎪⎝⎭,,则函数()f x =___________.16.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .17.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 18.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.19.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.在①将函数f (x )图象向右平移12π个单位所得图象关于y 轴对称:②函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数;③当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值.三个中任选一个,补充在题干中的横线处,然后解答问题.题干:已知函数()2sin()f x x ωϕ=+,其中0,||2πωϕ><,其图象相邻的对称中心之间的距离为2π,___________. (1)求函数y =f (x )的解析式;(2)求函数y =f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值,并写出取得最小值时x 的值. 注:如果选择多个条件分别解答,按第一个解答计分.22.如图,一个半径为4米的筒车按逆时针方向每π分钟转1圈,筒车的轴心O 距水面的高度为2米.设筒车上的某个盛水筒W 到水面的距离为d (单位:米)(在水面下则d 为负数).若以盛水筒W 刚浮出水面时开始计算时间,则d 与时间t (单位:分钟)之间的关系为sin()0,0,22d A t K A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭.(1)求,,,A K ωϕ的值;(2)求盛水筒W 出水后至少经过多少时间就可到达最高点?(3)某时刻0t (单位:分钟)时,盛水筒W 在过O 点的竖直直线的左侧,到水面的距离为5米,再经过6π分钟后,盛水筒W 是否在水中? 23.为整治校园环境,设计如图所示的平行四边形绿地ABCD ,在绿地中种植两块相同的扇形花卉景观,两扇形的边(圆心分别为A 和C )均落在平行四边形ABCD 的边上,圆弧均与BD 相切,其中扇形的圆心角为120°,扇形的半径为12米.(1)求两块花卉景观扇形的面积;(2)记BDA θ∠=,求平行四边形绿地ABCD 占地面积S 关于θ的函数解析式,并求面积S 的最小值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 25.已知函数()231cos 2f x x x =-+.(1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设51AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(22227342m π-⨯==,))271222l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.2.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确;()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 3.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.4.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.5.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.6.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C7.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断. 【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫ ⎪⎝⎭上单调递减,因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-, 所以cos tan cos tan αββα+<+,所以B 对,不符合题意; C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫⎪⎝⎭都为正数,且都单调递增, 所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.8.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.9.A解析:A 【分析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x xx f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B , 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10.C解析:C 【分析】函数()()sin ln 0=->f x x x ωω只有一个零点,等价于sin y x ω=与ln y x =图象只有一个交点,作出两个函数的图象,数形结合即可求解. 【详解】函数()()sin ln 0=->f x x x ωω只有一个零点, 可得sin ln 0x x ω-=只有一个实根,等价于sin y x ω=与ln y x =图象只有一个交点, 作出两个函数的图象如图所示,由sin y x ω=可得其周期2T πω=,当x e =时,ln 1y e ==sin y x ω=最高点5,12A πω⎛⎫⎪⎝⎭所以若恰有一个交点,只需要5ln 12πω>,即52e πω>, 解得:52e πω<,又因为0>ω,所以502eπω<<, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=,所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确;对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.2【分析】根据函数为偶函数可知函数必有一个零点为可得根据函数的图象可知解得即可得解【详解】因为函数为偶函数且有且仅有3个零点所以必有一个零点为所以得所以函数的图象与直线在上有且仅有3个交点因为函数的解析:2 【分析】根据函数为偶函数可知函数必有一个零点为0x =,可得1a =-,根据函数cos y x ω=(0)>ω的图象可知222πππωω≤<⨯,解得24ω≤<即可得解.【详解】因为函数cos ,[],y a x x ωππ=+∈-为偶函数,且有且仅有3个零点,所以必有一个零点为0x =, 所以cos00a +=,得1a =-,所以函数cos y x ω=(0)>ω的图象与直线1y =在[,]-ππ上有且仅有3个交点, 因为函数cos y x ω=(0)>ω的最小正周期2T πω=,所以2T T π≤<,即222πππωω≤<⨯,得24ω≤<,所以ω的最小值是2.故答案为:2 【点睛】关键点点睛:根据偶函数图象的对称性求出a 是解题关键.14.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+=⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.15.【分析】由点的坐标可得的值由图象可求得函数的图象可得该函数的最小正周期可求得的值再将点的坐标代入函数的解析式结合的取值范围可求得的值可得出函数的解析式【详解】由于函数的图象的一个最高点为则由图象可知解析:ππ3sin 36x ⎛⎫- ⎪⎝⎭【分析】由点A 的坐标可得M 的值,由图象可求得函数()y f x =的图象可得该函数的最小正周期,可求得ω的值,再将点A 的坐标代入函数()y f x =的解析式,结合ϕ的取值范围可求得ϕ的值,可得出函数()y f x =的解析式. 【详解】由于函数()y f x =的图象的一个最高点为()2,3A ,则3M =, 由图象可知,函数()y f x =的最小正周期为452632T ⎛⎫=+= ⎪⎝⎭, 23T ππω∴==,()3sin 3x f x πϕ⎛⎫∴=+⎪⎝⎭, 将点A 的坐标代入函数()y f x =的解析式得()223sin 33f πϕ⎛⎫=+=⎪⎝⎭,可得2sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,则27636πππϕ<+<,232ππϕ∴+=,解得6πϕ=-,()3sin 36x f x ππ⎛⎫∴=- ⎪⎝⎭故答案为:()3sin 36x f x ππ⎛⎫=- ⎪⎝⎭ 【点睛】本题考查利用三角函数图象求解函数解析式,考查计算能力,属于中等题.16.【分析】取中点连结交于点交于点连结设推导出和从而得出文化景观区域面积利用三角函数的性质解出面积最大值【详解】取中点连结交于点交于点连结设则文化景观区域面积:当即时文化景观区域面积取得最大值为故答案为 解析:()40023-【分析】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,推导出DC 和CF ,从而得出文化景观区域面积,利用三角函数的性质,解出面积最大值. 【详解】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,则20sin DN CN ϕ==,40sin DC ϕ∴=,20cos 20cos 203sin tan 30PFCF DE PN ON OP ϕϕϕ===-=-=-︒,∴文化景观区域面积:()4020203EFCD S sin cos sin ϕϕϕ=-矩形 400sin 24003(1cos 2)ϕϕ=--800sin(2)40033πϕ=+-,∴当232ππϕ+=,即12πϕ=时,文化景观区域面积取得最大值为2400(23)()m -.故答案为:400(23)-. 【点睛】本题考查文化景观区域面积的最大值的求法,考查扇形、三角函数恒等变换等基础知识,考查运算求解能力,是中档题.17.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称,∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.18.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应解析:14【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=tan36DR DQ π∴=⋅==PR DP PQ ∴=====由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则sin sin PR PRQPQR PQ⋅∠∠===故答案为:2114【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.19.【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.条件选择见解析;(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)12x π=-时,函数f (x )取得最小值,最小值为2-. 【分析】(1)由相邻中心距离得周期,从而可得ω,选择①,写出平移后解析式,由对称性得新函数为偶函数,结合诱导公式求得ϕ, 选择②,求出6y f x π⎛⎫=+ ⎪⎝⎭,由函数为奇函数,结合诱导公式求得ϕ, 选择③,求出()6y f x π=-,代入712x π=,结合正弦函数最大值可得ω, 从而得函数解析式; (2)()2sin 23f x x π⎛⎫=- ⎪⎝⎭由,求得23x π-的范围,然后由正弦函数性质得最小值.【详解】(1)因为函数f (x )=2sin(ωx +φ)的图象相邻的对称中心之间的距离为2π,所以周期22T π=,即T =π,所以22T πω==.若选择①,因为函数f (x )图象向右平移12π个单位所得图象关于y 轴对称,所以()2sin 22sin 2126g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象关于y 轴对称,所以62k ππϕπ-=+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择②,因为2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦是奇函数,所以3k πϕπ+=,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择③,2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=⨯-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由题设,当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值,所以当722()1232k k Z πππϕπ⨯-+=+∈,即2()3k k Z πϕπ=-∈, 因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.(2)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,所以422,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当232x ππ-=-,即12x π=-时,函数f (x )取得最小值,最小值为2-.【点睛】关键点点睛:本题考查由三角函数的图象与性质求解析式,解题关键是掌握正弦函数的图象与性质,解题时注意“五点法”和整体思想的应用.对于奇偶性问题注意诱导公式的应用,由此计算比较方便. 22.(1)4,2,,26A K πωϕ===-=;(2)3π分钟;(3)再经过6π分钟后盛水筒不在水中.【分析】(1)先结合题设条件得到T π=,4,2A K ==,求得2ω=,再利用初始值计算初相ϕ即可;(2)根据盛水筒达到最高点时6d =,代入计算t 值,再根据0t >,得到最少时间即可; (3)先计算0t 时03sin 264t π⎛⎫-= ⎪⎝⎭,根据题意,利用同角三角函数的平方关系求0cos 26t π⎛⎫- ⎪⎝⎭,再由6π分钟后00sin()=sin 2sin 26663t t t ππππωϕ⎡⎤⎡⎤⎛⎫⎛⎫++-=-+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,进而计算d 值并判断正负,即得结果. 【详解】解:(1)由题意知,T π=,即2ππω=,所以2ω=,由题意半径为4米,筒车的轴心O 距水面的高度为2米,可得:4,2A K ==, 当0t =时,0d =,代入4sin(2)2d t ϕ=++得,1sin 2ϕ=-, 因为22ππϕ-<<,所以6πϕ=-;(2)由(1)知:4sin 226d t π⎛⎫=-+ ⎪⎝⎭,盛水筒达到最高点时,6d =, 当6d =时,64sin 226t π⎛⎫=-+ ⎪⎝⎭,所以sin 216t π⎛⎫-= ⎪⎝⎭, 所以22,Z 62t k k πππ-=+∈,解得,Z 3t k k ππ=+∈,因为0t >,所以,当0k =时,min 3t π=, 所以盛水筒出水后至少经过3π分钟就可达到最高点; (3)由题知:04sin 2256t π⎛⎫-+= ⎪⎝⎭,即03sin 264t π⎛⎫-= ⎪⎝⎭, 由题意,盛水筒W 在过O 点的竖直直线的左侧,知0cos 206t π⎛⎫-< ⎪⎝⎭,所以0cos 264t π⎛⎫-=- ⎪⎝⎭,所以00313sin 2sin 2666342428t t ππππ⎛-⎡⎤⎡⎤⎛⎫⎛⎫+-=-+=⨯+-⨯= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭,所以,再经过6π分钟后321721420d --=⨯+=>, 所以再经过6π分钟后盛水筒不在水中. 【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.23.(1)96π平方米;(2)1443sin 262S θ+-⎪⎝⎭=,且最小值为2883平方米. 【分析】(1)根据题中条件,由扇形面积公式,即可计算出结果;(2)过点A 作AE BD ⊥于点E ,由题中条件,得到12AE =,再由θ分别表示出BE 和DE ,得出BD ,进而可得出平行四边形ABCD 的面积S 关于θ的函数解析式,由三角函数的性质,即可求出最小值. 【详解】(1)因为两扇形所在圆的半径均为12米,扇形的圆心角为23π, 所以两块花卉景观扇形的面积为112212129623S ππ=⨯⨯⨯⨯=平方米;(2)过点A 作AE BD ⊥于点E ,因为圆弧均与BD 相切,所以E 即为切点,则12AE =, 又BDA θ∠=,23BAD π∠=,所以3DBA πθ∠=-,π0θ3, 在Rt ADE △中,tan AE DE θ=,所以1212cos tan sin DE θθθ==; 在Rt ABE △中,tan 3AE BE πθ⎛⎫=- ⎪⎝⎭,所以12cos 123tan sin 33BE πθππθθ⎛⎫- ⎪⎝⎭==⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 则12sin cos cos sin 12cos 3312cos 3sin sin sin sin 33BD BE DE πππθθθθθθππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=+=+=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭12sin31 sin sin sin2 362444πππθθθ====⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此平行四边形绿地ABCD占地面积1sin216222S BD AEπθ⎛⎫+-⎝⨯⨯⎪⎭=⨯=,因为π0θ3,所以52666πππθ<+<,因此当262ππθ+=,即6πθ=时,1sin262Sπθ⎛⎫+-⎪⎝⎭=取得最小值,且最小值为minS=.【点睛】关键点点睛:求解本题的关键在于用θ表示出BD,再由S BD AE=⨯,得出平行四边形的面积S关于θ的函数解析式,利用正弦函数的性质,即可求解最值.24.(1)()2sin24f x xπ⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x值域为⎡⎤⎣⎦.【分析】(1)利用最高点与最低点坐标可求出A和周期T,由2Tπω=可求得ω的值,再将点,28Mπ⎛⎫⎪⎝⎭代入即可求得ϕ的值,进而可得函数()f x的解析式;(2)解不等式222242k x kπππππ-≤+≤+,k Z∈,可得()f x的单调的增区间,再与0,2π⎡⎤⎢⎥⎣⎦求交集即可得()f x在0,2π⎡⎤⎢⎥⎣⎦上的单调区间,利用单调性求出最值即得值域.【详解】(1)因为()f x图象上相邻两个最高点和最低点分别为,28π⎛⎫⎪⎝⎭,5,28π⎛⎫-⎪⎝⎭所以2A=,52882Tπππ=-=,则Tπ=,又2||Tπω=,0>ω,所以2ω=,()2sin(2)f x xϕ=+,又图象过点,28π⎛⎫ ⎪⎝⎭,所以22sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭,即sin 14πϕ⎛⎫+= ⎪⎝⎭,所以242k ππϕπ+=+,k Z ∈,即24k πϕπ=+,k Z ∈.又||2ϕπ<,所以4πϕ=,所以()2sin 24f x x π⎛⎫=+ ⎪⎝⎭. (2)由222242k x k πππππ-≤+≤+,k Z ∈,得388k x k ππππ-≤≤+,k Z ∈, 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈, 又0,2x π⎡⎤∈⎢⎥⎣⎦,所以()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦, 同理()f x 的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦.又(0)2sin 4f π==28f π⎛⎫= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 值域为⎡⎤⎣⎦. 【点睛】关键点点睛:本题解题的关键点是由五点法作图的特点得出相邻两个最高点和最低点横坐标之差的绝对值为半个周期,纵坐标为振幅,利用峰点或谷点坐标求ϕ,利用整体代入法求()f x 的单调区间,利用单调性求最值.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 222226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,. (2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-. 【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。
高中数学北师大版必修4《第一章三角函数》单元测试卷含试卷分析详解
所示,则当t =1100s 时,电流强度是( )A .-5 AB .5 AC .5 3 AD .10 A 答案:A解析:由图像知A =10,T 2=4300-1300=1100,∴T =150,∴ω=2πT=100π,∴I =10sin(100πt+φ).又⎝⎛⎭⎫1300,10在图像上,∴100π×1300+φ=π2+2k π,k ∈Z .又0<φ<π2,∴φ=π6 .∴I =10sin ⎝⎛⎭⎫100πt +π6,当t =1100 s 时,l =-5 A ,故选A. 7.下列四个命题:①函数y =tan x 在定义域内是增函数;②函数y =tan(2x +1)的最小正周期是π;③函数y =tan x 的图像关于点(π,0)成中心对称;④函数y =tan x 的图像关于点⎝⎛⎭⎫-π2,0成中心对称.其中正确命题的个数是( ) A .0 B .1 C .2 D .3 答案:C解析:对于①,函数y =tan x 仅在区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )内递增,如π4<5π4,但tan π4=tan 5π4,所以①不正确;对于②,其最小正周期是π2,所以②也不正确;观察正切曲线可知命题③④都正确.8.要得到函数y =sin2x 的图像,只需将函数y =cos(2x -π4)的图像( )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位答案:B解析:将函数y =cos(2x -π4)向右平移π8个单位,得到y =cos ⎝⎛⎭⎫2⎝⎛⎭⎫x -π8-π4=cos ⎝⎛⎭⎫2x -π2=sin2x ,故选B.9.在△ABC 中,若sin A sin B cos C <0,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角或钝角三角形 答案:C解析:正弦函数在区间(0,π)的函数值都为正,故cos C <0,角C 为钝角.10.已知定义在区间⎣⎡⎦⎤0,3π2上的函数y =f (x )的图像关于直线x =3π4对称,当x ≥3π4时,。
(好题)高中数学必修四第一章《三角函数》测试卷(包含答案解析)(1)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 3.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增;④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增.其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④4.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .D .25.已知函数()cos2sin 2f x x x =-,将()y f x =的图象向左平移a (0a >)个单位长度可以得到一个奇函数的图象,将()y f x =的图象向右平移b (0b >)个单位长度可以得到一个偶函数的图象,则a b -的最小值等于( )A .0B .8π C .4π D .2π 6.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增; C .若某声音甲对应函数近似为111()sin sin 2sin3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin33h x x =更低沉.7.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x8.设函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减,则下述结论: ①()f x 关于,012π⎛⎫⎪⎝⎭中心对称;②()f x 关于直线23x π=轴对称;③()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦;④方程()1f x =在[]0,2π有4个不相同的根. 其中正确结论的编号是( ) A .①②B .②③C .②④D .③④9.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数;(3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+. 同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭10.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-11.函数()sin ln ||f x x x =⋅的部分图象大致为( )A .B .C .D .12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.14.已知函数()sin()0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,关于函数()y f x =有下列结论:①图象关于点,03π⎛⎫⎪⎝⎭对称; ②单调递减区间为2,,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ; ③若()f x a =,则cos 32a x πω⎛⎫-= ⎪⎝⎭; ④2()()log g x f x x =-有4个零点. 则其中结论正确的有____________(填上所有正确结论的序号)15.2020年是苏颂诞辰1000周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,当点P 从枢轮最高处随枢轮开始转动时,退水壶内水面位于枢轮中心下方1.19米处.此时打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动,则点P 至少经过______分钟(结果取整数)进入水中.(参考数据:cos0.9815π≈,2cos0.9115π≈,cos 0.815π≈)16.函数()2sin(2),0,32f x x x ππ⎡⎤=-∈⎢⎥⎣⎦的单调减区间___________ 17.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.18.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.19.已知函数()2sin()(0)f x x ωϕω=+>满足()24f π=,()0f π=,且()f x 在区间(,)43ππ上单调,则ω的值有_________个.20.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.三、解答题21.在①将函数f (x )图象向右平移12π个单位所得图象关于y 轴对称:②函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数;③当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值.三个中任选一个,补充在题干中的横线处,然后解答问题.题干:已知函数()2sin()f x x ωϕ=+,其中0,||2πωϕ><,其图象相邻的对称中心之间的距离为2π,___________. (1)求函数y =f (x )的解析式;(2)求函数y =f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值,并写出取得最小值时x 的值. 注:如果选择多个条件分别解答,按第一个解答计分.22.如图,在矩形OABC 中,22OA OC ==,将矩形OABC 绕着顶点O 逆时针旋转,得到矩形OA B C ''',记旋转的角度为θ,0,2πθ⎛⎫∈ ⎪⎝⎭旋转前后两个矩形公共部分的面积为()S θ.(1)求3S π⎛⎫⎪⎝⎭; (2)若()728S θ=,求sin θ. 23.为整治校园环境,设计如图所示的平行四边形绿地ABCD ,在绿地中种植两块相同的扇形花卉景观,两扇形的边(圆心分别为A 和C )均落在平行四边形ABCD 的边上,圆弧均与BD 相切,其中扇形的圆心角为120°,扇形的半径为12米.(1)求两块花卉景观扇形的面积;(2)记BDA θ∠=,求平行四边形绿地ABCD 占地面积S 关于θ的函数解析式,并求面积S 的最小值.24.下图是函数()()sin()0,0f x x ωϕωϕπ=+><<的部分图象.(1)求ϕ的值及()f x 单调递增区间.(2)若()f x 的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移3π个单位,最后向上平移1个单位,得到函数()g x 的图象,若()g x 在[0,](0)b b >上恰有10个零点,求b 的取值范围.25.长春某日气温()C y ︒是时间t (024t ≤≤,单位:小时)的函数,下面是某天不同时间的气温预报数据: t (时)3 6 9 12 15 18 21 24 ()C y ︒ 15.714.015.720.024.226.024.220.015.7cos()y A t b ωϕ=++的图象.(1)根据以上数据,试求cos()y A t b ωϕ=++(0A >,0>ω,0ϕπ<<)的表达式; (2)大数据统计显示,某种特殊商品在室外销售可获3倍于室内销售的利润,但对室外温度要求是气温不能低于23C ︒.根据(1)中所得模型,一个24小时营业的商家想获得最大利润,应在什么时间段(用区间表示)将该种商品放在室外销售,单日室外销售时间最长不能超过多长时间?(忽略商品搬运时间及其它非主要因素,理想状态下哦,奥力给!)26.如图,在平面直角坐标系xOy 中,31,22A ⎛⎫⎪ ⎪⎝⎭为单位圆上一点,射线OA 绕点O 按逆时针方向旋转θ后交单位圆于点B ,点B 的纵坐标y 关于θ的函数为()y fθ=.(1)求函数()y f θ=的解析式,并求223f f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭; (2)若1()3f θ=,求7cos sin 36ππθθ⎛⎫⎛⎫--+⎪ ⎪⎝⎭⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】 解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫ ⎪⎝⎭对称,选项A 错误;当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.3.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后 解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误. 故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 4.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.5.A解析:A 【分析】先整理函数,再根据平移后函数的奇偶性得到a ,b 的值,即可得结果. 【详解】解:函数()cos 2sin 224f x x x x π⎛⎫=-=+ ⎪⎝⎭,函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移a 个单位得到()224g x x a π⎛⎫=++ ⎪⎝⎭,又因为函数为奇函数,则242a k πππ+=+(k Z ∈),整理得28k a ππ=+(k Z ∈);函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移b 个单位得到()224h x x b π⎛⎫=-+ ⎪⎝⎭,由于得到的函数的图象为偶函数,2=4b k ππ-+-,=,()82k b k Z ππ+∈;当0k =时,min 0a b -= 故选:A. 【点睛】本题考查了三角函数的平移变换和奇偶性,属于中档题.6.B解析:B 【分析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断 CD 可取特值说明 【详解】A. ()1111sin sin 2sin 3sin 4sin100234100f x x x x x x =+++++ ()()()()()()()1111sin sin 2sin 3sin 4sin 100234100f x x x x x x f x -=-+-+-+-++-=-,()f x 为奇函数B. ,1616x ππ⎡⎤∈-⎢⎥⎣⎦时,2,88x ππ⎡⎤∈-⎢⎥⎣⎦,333,1616x ππ⎡⎤∈-⎢⎥⎣⎦,4,44x ππ⎡⎤∈-⎢⎥⎣⎦,故sin ,sin 2,sin 3,sin 4x x x x 在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数故111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增. C. ()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 4034g f h ππππππ=-=++=故声音甲的响度不一定比纯音1()sin 22h x x =响度大 D. ()11()()sin sin 2sin 323h x g x h x x x x =-=+- ()11()()sin sin 2sin 3023h g h ππππππ=-=+-=甲不一定比纯音1()sin33h x x =更低沉 故选:B 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.7.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.8.D解析:D 【分析】利用题干中的已知条件求得2ω=,可得出()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,利用正弦型函数的对称性可判断①②的正误,利用正弦型函数的值域可判断③的正误,求出方程()1f x =在[]0,2π上的解,可判断④的正误. 【详解】N ω*∈,由55,126x ππ⎡⎤∈⎢⎥⎣⎦可得55126666x πωπππωπω-≤-≤-, 由于函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,()553,2,21266622k k k Z πωππωπππππ⎡⎤⎡⎤--⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以,521262532662k k ωππππωππππ⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,解得()248121055k k k Z ω++≤≤∈,由248121055k k ++≤,解得16k ≤,N ω*∈且k Z ∈,0k ∴=,可得825ω≤≤,2ω∴=,则()sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于①,sin 2sin 00126ππ⎛⎫⨯-== ⎪⎝⎭,所以,112f π⎛⎫= ⎪⎝⎭, 所以,函数()f x 的图象关于点,112π⎛⎫⎪⎝⎭成中心对称,①错误; 对于②,271sin 2sin 13662πππ⎛⎫⨯-==-≠± ⎪⎝⎭,②错误;对于③,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,5112,666x πππ⎡⎤-∈⎢⎥⎣⎦,则11sin 262x π⎛⎫-≤-≤ ⎪⎝⎭, 所以,()302f x ≤≤,即()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦,③正确; 对于④,当[]0,2x π∈时,232,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 令()1f x =,可得sin 206x π⎛⎫-= ⎪⎝⎭,206x π∴-=或26x ππ-=或226x ππ-=或236x ππ-=.所以,方程()1f x =在[]0,2π有4个不相同的根,④正确. 故选:D. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).9.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭,故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D . 因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=-⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数,故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍; 故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.10.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈,则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 11.D解析:D 【分析】先根据函数的奇偶性,可排除A ,C ,根据当01x <<时,()0f x <即可排除B .得出答案. 【详解】因为()sin ln ||(0)f x x x x =⋅≠,所以()sin()ln ||sin ln ||()f x x x x x f x -=-⋅-=-=-,所以()f x 为奇函数,故排除A ,C .当01x <<时,sin 0x >,ln ||0x <,则()0f x <,故排除B , 故选:D .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t 的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.【分析】根据题意可得从而可得讨论或再求出的单调递增区间只需是单调递增区间的子集即可求解【详解】由正弦函数的性质的每个增区间的长度为其中函数的最小正周期为函数在区间上单调地藏可得即①当时此时单调递增当解析:130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭【分析】 根据题意可得22T π≥,从而可得2ω≤,讨论0>ω,0ω=或0ω<,再求出()sin()f x x ωϕ=+的单调递增区间,只需,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集即可求解.【详解】()()sin f x x ωϕ=+,0,4πϕ⎡⎤∈⎢⎥⎣⎦,由正弦函数的性质,()f x 的每个增区间的长度为2T,其中函数()f x 的最小正周期为2T ωπ=.函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调地藏,可得22T π≥,即2ω≤.①当0>ω时,此时02ω<≤,x ωϕ+单调递增,当2,2,22x k k k Z ππωϕππ⎡⎤+∈-+∈⎢⎥⎣⎦,()f x 单调递增, 解得112,2,22x k k k Z πππϕπϕωω⎡⎤⎛⎫⎛⎫∈--+-∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 只需11,2,2,222k k k Z πππππϕπϕωω⎡⎤⎡⎤⎛⎫⎛⎫⊆--+-∈ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦, 从而可得1222,122k k Z k πππϕωπππϕω⎧⎛⎫≥-- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩,解得2141,2,2k k k Z ϕϕωππ⎡⎤∈--+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 则21410214k k πωππ--⨯≤≤+-⨯,即141,2,4k k k Z ω⎡⎤∈-+∈⎢⎥⎣⎦,由124141204k k k ⎧+>-⎪⎪⎨⎪+>⎪⎩,解得1588k -<<,k Z ∈,0k ∴=.所以,10,4ω⎛⎤∈ ⎥⎝⎦;②当0ω=时,函数()sin f x ϕ=为常函数,不合乎题意; ③当0ω<时,20ω-≤<,x ωϕ+单调递减, 由322,22k x k k Z πππωϕπ+≤+≤+∈, 解得13122,22k x k k Z πππϕπϕωω⎛⎫⎛⎫+-≤≤+-∈ ⎪ ⎪⎝⎭⎝⎭对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 可得13222,122k k Z k πππϕωπππϕω⎧⎛⎫≥+- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩,解得122,43,2k k k Z ϕϕωππ⎡⎤∈+-+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立,于是12210434k k πωππ+-⨯≤≤+-⋅,即521,4,2k k k Z ω⎡⎤∈++∈⎢⎥⎣⎦,由5142225402k k k ⎧+≥+⎪⎪⎨⎪+<⎪⎩,解得518k -≤<-,由k Z ∈,1k =-,此时,32ω=-.综上所述,实数ω的取值范围是130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.故答案为:130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是求出函数的单调递增区间,使,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集,考查了分类讨论的思想. 14.②③【分析】先根据图象结合已知条件限制求出的解析式再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题数形结合判断④错误即解析:②③ 【分析】先根据图象,结合已知条件限制求出()y f x =的解析式,再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题,数形结合判断④错误即可. 【详解】由图象可知,2A =,(0)2sin 1f ϕ==,故1sin 2ϕ=,又2πϕ<,故6π=ϕ,故()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭,又由11112sin 012126f πππω⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭得,112,126k k Z ππωπ+=∈,即224,1111kk Z ω=-+∈, 由题意0>ω,由图知1112T π>,即22411T πω=<,故1k =时2ω=.故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. ①因为252sin 2sin 103366f ππππ⎛⎫⎛⎫=+==≠⎪ ⎪⎝⎭⎝⎭,故点,03π⎛⎫ ⎪⎝⎭不是()y f x =图象的对称中心,故错误; ②令322,2,622x k k k Z πππππ⎛⎫+∈++∈ ⎪⎝⎭, 解得单调递减区间为2,,63k k k ππππ⎛⎫++∈⎪⎝⎭Z ,故正确;③若()2sin 26f x x a π⎛⎫=+= ⎪⎝⎭,则sin 262a x π⎛⎫+= ⎪⎝⎭,则cos cos 2sin 2sin 2332362a x x x x πππππω⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=+-=+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故正确; ④令2()()log 0g x f x x =-=,得方程2()log f x x =的根的问题, 即函数()2sin 26y f x x π⎛⎫==+⎪⎝⎭与函数2log y x =的交点个数问题,如图,令22,62x k k Z πππ+=+∈,则,6x k k Z ππ=+∈时()y f x =取得最大值2.如图,6x π=时,2()log f x x >;76x π=时,746π<,227log log 426π<=2()2log f x x =>;当136x π=时,1346π>,2213log log 426π>=,2()2log f x x =<. 故函数()2sin 26y f x x π⎛⎫==+ ⎪⎝⎭与函数2log y x =有3个交点,即2()()log g x f x x =-有3个零点.故错误. 故答案为:②③. 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()0f x =等价于()()h x g x =,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.15.【分析】根据题意作出示意图结合枢纽中心到初始水平面的高度水面下降的高度刚进入水面时枢纽中心到水面的高度这三者间的关系列出关于运动时间的方程结合所给数据分析的取值即可【详解】设至少经过分钟进入水中如下 解析:13【分析】根据题意作出示意图,结合枢纽中心到初始水平面的高度、水面下降的高度、P 刚进入水面时枢纽中心到水面的高度这三者间的关系,列出关于运动时间x 的方程,结合所给数据分析x 的取值即可. 【详解】设至少经过x 分钟,P 进入水中,如下图P '为刚好进入水中的位置,由条件可知: 1.7, 1.19OP OA '==,P 转过的角度为23015x x ππ⋅=,所以15xP OB ππ'∠=-,因为OA AB OB +=,所以1.170.017 1.7cos 15x x ππ⎛⎫+=-⎪⎝⎭,所以70100cos 15x x ππ⎛⎫+=- ⎪⎝⎭(*),根据所给数据可知:当12x =时,(*)的左边82=,右边81=,此时左边>右边,说明P 还未进入水中,当13x =时,(*)的左边83=,右边91=,此时左边<右边,说明P 已经进入水中, 当14x =时,(*)的左边84=,右边98=,此时左边<右边,说明P 已经进入水中, 由上可知:x 的取值介于12和13之间,又因为x 的结果取整数,所以13x =, 故答案为:13. 【点睛】关键点点睛:解答本题的关键是通过示意图寻找到枢纽中心到水面的高度与水面下降高度之间的等量关系,通过所给的数据去分析方程的解也是很重要的一步.16.【解析】当时由得所以减区间为解析:5,122ππ⎡⎤⎢⎥⎣⎦【解析】当[0,]2x π∈时,ππ2π2[,]333x -∈-,由22233x πππ≤-≤,得5122x ππ≤≤,所以减区间为5[,]122ππ. 17.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.18.6【分析】根据题意可求得然后利用正弦定理求得最后在中利用求得答案【详解】在中由正弦定理得;在中(米)所以升旗速度(米/秒)故答案为06【点睛】本题主要考查了解三角形的实际应用此类问题的解决关键是建立解析:6 【分析】根据题意可求得,45BDC ∠=︒,30CBD ∠=︒,CD =BC ,最后在Rt ABC 中利用sin60AB BC =︒求得答案. 【详解】在BCD 中,45BDC ∠=︒,30CBD ∠=︒,CD =由正弦定理,得sin 45sin 30CD BC ︒==︒在Rt ABC 中,sin?6030AB BC =︒==(米). 所以升旗速度300.650t AB v ===(米/秒). 故答案为0.6. 【点睛】本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决,属于中档题.19.9【分析】由在区间上单调可得故进一步求出范围即可【详解】由知故;又在区间上单调故即18符合条件的的值有9个故答案为:9【点睛】本题考查三角函数的图象与性质考查转化与化归思想考查逻辑推理能力运算求解能解析:9 【分析】 由()f x 在区间(,)43ππ上单调,可得342T ππ-,故6T π,进一步求出ω范围即可. 【详解】由()24f π=,()0f π=知,34244T kT πππ+=-=,k ∈N , 故312T k π=+,2(12)3k ω+=,k ∈N ; 又()f x 在区间(,)43ππ上单调,∴342T ππ-,故6T π,∴212T πω=,即2(12)123k +, ∴172k,k ∈N , 0k ∴=,1,2⋯,8符合条件的ω的值有9个. 故答案为:9. 【点睛】本题考查三角函数的图象与性质,考查转化与化归思想,考查逻辑推理能力、运算求解能力,属中档题.20.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误; ③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.三、解答题21.条件选择见解析;(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)12x π=-时,函数f (x )取得最小值,最小值为2-. 【分析】(1)由相邻中心距离得周期,从而可得ω,选择①,写出平移后解析式,由对称性得新函数为偶函数,结合诱导公式求得ϕ,选择②,求出6y f x π⎛⎫=+ ⎪⎝⎭,由函数为奇函数,结合诱导公式求得ϕ,选择③,求出()6y f x π=-,代入712x π=,结合正弦函数最大值可得ω, 从而得函数解析式; (2)()2sin 23f x x π⎛⎫=- ⎪⎝⎭由,求得23x π-的范围,然后由正弦函数性质得最小值.【详解】(1)因为函数f (x )=2sin(ωx +φ)的图象相邻的对称中心之间的距离为2π, 所以周期22T π=,即T =π,所以22T πω==.若选择①,因为函数f (x )图象向右平移12π个单位所得图象关于y 轴对称,所以()2sin 22sin 2126g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象关于y 轴对称,所以62k ππϕπ-=+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择②,因为2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦是奇函数,所以3k πϕπ+=,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择③,2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=⨯-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由题设,当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值,所以当722()1232k k Z πππϕπ⨯-+=+∈,即2()3k k Z πϕπ=-∈, 因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.(2)因为()2sin 23f x x π⎛⎫=-⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,所以422,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当232x ππ-=-,即12x π=-时,函数f (x )取得最小值,最小值为2-.【点睛】关键点点睛:本题考查由三角函数的图象与性质求解析式,解题关键是掌握正弦函数的图象与性质,解题时注意“五点法”和整体思想的应用.对于奇偶性问题注意诱导公式的应用,由此计算比较方便. 22.(1)336S π⎛⎫= ⎪⎝⎭;(2)1sin 3θ=. 【分析】(1)作出图形,可知公共部分区域为直角三角形,计算出两直角边的长,由此可求得该直角三角形的面积; (2)分6πθ=、06πθ<<、62ππθ<<三种情况讨论,求出()S θ的表达式,结合()72S θ=可求得sin θ的值. 【详解】 (1)当3πθ=时,A '点在矩形OABC 外部,公共部分形状为三角形,设A O BC D '⋂=,则6COD π∠=,3tan6CD CO π==, 则11331322S CD CO π⎛⎫=⨯⨯=⨯⨯=⎪⎝⎭;(2)①当6πθ=时,点A '在线段BC 上,此时,223A C A O OC ''-=11313622S OC A C π⎛⎫'=⨯=⨯=⎪⎝⎭; ②当06πθ<<时,公共部分为四边形,A '点在矩形OABC 内部,过点A '作线段AB 的平行线,分别交线段AO 、BC 于点E 、。
【2019-2020高一数学试卷】人教A版必修4《三角函数》单元测试卷一 答题卡及答案解析
必修4《三角函数》单元测试卷一(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.每一小题给出的四个选项中只有一项是符合题目要求的.1.若点(,)P x y 是330︒角终边上异于原点的一点,则yx的值为( )A B .C D . 2.已知角α的终边经过点(3,4)-,则cos α的值为( ) A .34-B .35C .45-D .43-3.若|cos |cos θθ=,|tan |tan θθ=-,则2θ的终边在( )A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数()sin(2)(02)f x x πθθπ=+<<的最小正周期是T ,且当1x =时取得最大值,那么( ) A .1T =,2πθ=B .1T =,θπ=C .2T =,θπ=D .2T =,2πθ=5.若sin()2x π-=2x ππ<<,则x 等于( )A .43π B .76π C .53π D .116π6.已知a 是实数,则函数()1sin f x a ax =+的图象不可能是( )A .B .C .D .7.为得到函数sin()6y x π=+的图象,可将函数sin y x =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数,则||m n -的最小值是( )A .3π B .23π C .π D .2π8.若tan 2θ=,则2sin cos sin 2cos θθθθ-+的值为( )A .0B .1C .34D .549.函数tan 1cos xy x=+的奇偶性是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .既不是奇函数,也不是偶函数10.函数()cos f x x =在(0,)+∞内( ) A .没有零点 B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点11.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()⎪⎭⎫⎝⎛≤6πf x f 对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是( ) A .[3k ππ-,]()6k k Z ππ+∈ B .[k π,]()2k k Z ππ+∈C .[6k ππ+,2]()3k k Z ππ+∈ D .[2k ππ-,]()k k Z π∈12.函数()3sin f x = (2)3x π- 的图象为C .①图象C 关于直线1112x π=对称; ②函数()f x 在区间(12π-,5)12π内是增函数; ③由3sin y = 2x 的图象向右平移3π个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0个B .1个C .2个D .3个二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卷相应位置上.13.已知2sin()sin()2παπα-=+,则tan()πα-的值是 .14.函数y =3cos x (0≤x ≤π)的图象与直线3y =-及y 轴围成的图形的面积为 . 15.已知函数f (x )=sin (ωx +φ)(ω>0,﹣π≤φ<π)的图象如图所示,则ϕ=16.给出下列命题:①函数2cos()32y x π=+是奇函数;②存在实数x ,使sin cos 2x x +=;③若α,β是第一象限角且αβ<,则tan tan αβ<;④8x π=是函数5sin(2)4y x π=+的一条对称轴; ⑤函数sin(2)3y x π=+的图象关于点(,0)12π成中心对称.其中正确命题的序号为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知sin α是方程25760x x --=的根,求333sin()sin()tan (2)22cos()cos()22αππαπαππαα-----+的值.18.(12分)已知函数()sin()(0f x A x A ωϕ=+>,0ω>,)x R ∈在一个周期内的图象如图所示,求直线y =()f x 图象的所有交点的坐标.19.(12分)已知3()sin(2)62f x x π=++,x R ∈(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调减区间;(3)函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样变换得到?20.(12分)已知函数sin()(0y A x A ωϕ=+>,0)ω>的图象过点(12P π,0),图象与P 点最近的一个最高点坐标为(3π,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x 的值; (3)求使y ≤0时,x 的取值范围.21.(12分)已知cos()2sin()22ππαα+=-.(1)求4sin 2cos 3sin 5cos αααα-+的值.(2)求22111sin sin cos cos 432αααα++的值.22.(12分)函数()sin()f x A x ωϕ=+的图象如图所示,且过点(0,1),其中0A >,0ω>,||2πϕ<.(1)求函数的解析式.(2)若函数()f x 的图象向左平移m 个单位所对应的函数()h x 是奇函数,求满足条件的最小正实数m .(3)设函数()()1g x f x a =++,[0x ∈,]2π,若函数()g x 恰有两个零点,求a 的范围.必修4《三角函数》单元测试卷一答题卡成绩:一、选择题(本题满分60分)二、填空题(本题满分20分)13 . 14.15.16.三、解答题(本题满分70分)班级 姓名 座号密 封 装 订 线必修4《三角函数》单元测试卷一答案解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求的.1.若点P(x,y)是330°角终边上异于原点的一点,则的值为()A.B.C.D.【分析】由三角函数的定义知=tan330°,计算即可.【答案】解:由题意知,=tan330°=﹣tan30°=﹣.故选:D.【点睛】本题考查了三角函数的定义与应用问题,是基础题.2.已知角α的终边经过点(3,﹣4),则cosα的值为()A.﹣B.C.﹣D.﹣【分析】由条件利用本任意角的三角函数的定义,求得cosα的值.【答案】解:∵角α的终边经过点(3,﹣4),∴x=3,y=﹣4,r=5,则cosα==,故选:B.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.若|cosθ|=cosθ,|tanθ|=﹣tanθ,则的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或x轴上D.第二、四象限或x轴上【分析】利用已知条件,判断θ所在象限,然后求解即可.【答案】解:|cosθ|=cosθ,∴θ是第一、四象限或x轴正半轴;|tanθ|=﹣tanθ,说明θ是二.四象限或x轴;所以θ是第四象限或x轴正半轴,∴k•360°+270°<θ≤k•360°+360°,k∈Z,则k•180°+135°<≤k•180°+180°,k∈Z,令k=2n,n∈Z有n•360°+135°<≤n•360°+180°,n∈Z;在二象限或x轴负半轴;k=2n+1,n∈z,有n•360°+315°<≤n•360°+360°,n∈Z;在四象限或x轴正半轴;故选:D.【点睛】本题考查三角函数的符号,象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.4.如果函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,且当x=1时取得最大值,那么()A.T=1,θ=B.T=1,θ=πC.T=2,θ=πD.T=2,θ=【分析】利用函数的周期公式求出T,通过当x=1时取得最大值求出θ判断即可.【答案】解:函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,可得T==1;当x=1时取得最大值,sin(2π+θ)=1,0<θ<2π,可得θ=.故选:A.【点睛】本题考查三角函数的周期以及三角函数的最值的求法,考查计算能力.5.若sin(﹣x)=且π<x<2π,则x等于()A.B.C.D.【分析】利用诱导公式求得cos x的值,结合角x的范围,以及特殊角的三角函数的值,求得x的值.【答案】解:sin(﹣x)==cos x,且π<x<2π,则x=,故选:D.【点睛】本题主要考查诱导公式,特殊角的三角函数的值,属于基础题.6.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()A.B.C.D.【分析】根据当a=0时,y=1,可判断图象哪个符合,当a≠0时,f(x)周期为,振幅a,分类讨论a>1时,T<2π;0<a≤1,T≥2π利用所给图象判断即可得出正确答案.【答案】解:∵函数f(x)=1+a sin ax(1)当a=0时,y=1,函数图象为:C故C正确(2)当a≠0时,f(x)=1+a sin ax周期为T=,振幅为a若a>1时,振幅为a>1,T<2π,当0<a≤1,T≥2π.∵D选项的图象,振幅与周期的范围矛盾故D错误,故选:D.【点睛】本题考察了三角函数的图象和性质,分类讨论的思想,属于中档题,关键是确定分类的标准,和函数图象的对应.7.为得到函数y=sin(x+)的图象,可将函数y=sin x的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数,则|m﹣n|的最小值是()A.B.C.πD.2π【分析】根据函数左右平移关系,求出m,n的表达式,然后根据绝对值的意义进行求解即可.【答案】解:y=sin x的图象向左平移+2kπ个单位长度,即可得到函数y=sin(x+)的图象,此时m=+2kπ,k∈Z,y=sin x的图象向右平移+2mπ个单位长度,即可得到函数y=sin(x+)的图象,此时n=+2mπ,m∈Z,即|m﹣n|=|+2kπ﹣﹣2mπ|=|2(k﹣m)π﹣|,∴当k﹣m=1时,|m﹣n|取得最小值为2π﹣=,故选:A.【点睛】本题考查函数y=A sin(ωx+φ)的图象变换,利用函数平移关系是解决本题的关键.8.若tanθ=2,则的值为()A.0 B.1 C.D.【分析】将所求分子分母同除cosθ,利用同角三角函数基本关系式化简,代入tanθ=2,即可得到选项.【答案】解:∵tanθ=2,∴===.故选:C.【点睛】本题是基础题,考查同角三角函数基本关系式的应用,已知函数值求表达式的其它函数值,考查计算能力,常考题型.9.函数的奇偶性是()A.奇函数B.偶函数C.既是奇函数,又是偶函数D.既不是奇函数,也不是偶函数【分析】先考虑函数的定义域关于原点对称,其次判定f(x)与f(﹣x)的关系即可.【答案】解:先考虑函数的定义域关于原点对称,其次,故选:A.【点睛】定义域关于原点对称是函数具有奇偶性的必要(但不充分)条件.判定函数奇偶性常见步骤:1、判定其定义域是否关于原点对称;2、判定f(x)与f(﹣x)的关系.10.函数f(x)=在(0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【分析】作函数y=与y=cos x的图象,从而利用数形结合的思想判断.【答案】解:作函数y=与y=cos x的图象如下,∵函数y=与y=cos x的图象有且只有一个交点,∴函数f(x)=在(0,+∞)内有且仅有一个零点,故选:B.【点睛】本题考查了数形结合的思想应用及函数的零点与函数的图象的关系应用.11.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.[kπ﹣,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ﹣,kπ](k∈Z)【分析】由题意求得φ的值,利用正弦函数的性质,求得f(x)的单调递增区间.【答案】解:若f(x)≤|f()|对x∈R恒成立,则f()为函数的函数的最大值或最小值,即2×+φ=kπ+,k∈Z,则φ=kπ+,k∈Z,又f()>f(π),sin(π+φ)=﹣sinφ>sin(2π+φ)=sinφ,sinφ<0.令k=﹣1,此时φ=﹣,满足条件sinφ<0,令2x﹣∈[2kπ﹣,2kπ+],k∈Z,解得:x∈[kπ+,kπ+](k∈Z).则f(x)的单调递增区间是[kπ+,kπ+](k∈Z).故选:C.【点睛】本题考查的知识点是函数y=A sin(ωx+φ)的图象变换、三角函数的单调性,属于基础题.12.函数f(x)=3sin (2x﹣)的图象为C.①图象C关于直线x=π对称;②函数f(x)在区间(﹣,)内是增函数;③由y=3sin 2x的图象向右平移个单位长度可以得到图象C.以上三个论断中,正确论断的个数是()A.0个B.1个C.2个D.3个【分析】①②由三角函数图象的对称性和单调性判断即可;③根据图象的平移可得.【答案】解:函数f(x)=3sin (2x﹣)的图象为C.①f(π)=﹣3,故x=π是函数的一条称对称轴,故正确;②函数f(x)的增区间为[kπ﹣,kπ+],故在区间(﹣,)内是增函数,故正确;③由y=3sin 2x的图象向右平移个单位长度可以得到图象y=3sin2(x﹣)的图象,故错误.故选:C.【点睛】考查了三角函数图象的对称性,单调性和函数图象的平移.属于基础题型,应熟练掌握.二.填空题(共4小题,满分20分,每小题5分)13.已知,则tan(π﹣α)的值是﹣2 .【分析】由已知利用诱导公式可得﹣2cosα=﹣sinα,根据同角三角函数基本关系式可求tanα的值,利用诱导公式化简所求即可得解.【答案】解:∵,∴﹣2cosα=﹣sinα,可得tanα=2,∴tan(π﹣α)=﹣tanα=﹣2.故答案为:﹣2.【点睛】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.14.函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形的面积为3π.【分析】由题意画出图形,利用定积分表示曲边梯形的面积,然后计算求值.【答案】解:函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形如图:面积为=(3sin x+3x)=3π;故答案为:3π.【点睛】本题考查了定积分的应用;关键是利用定积分表示出所围成的图形面积.15.已知函数f(x)=sin(ωx+φ)(ω>0,﹣π≤φ<π)的图象如图所示,则φ=﹣【分析】根据三角函数图象和性质,求出函数的周期,即可求出ω和φ的值.【答案】解:由图象得==,则T==,即ω=,即f(x)=sin(x+φ),∵f()=sin(×+φ)=1,∴×+φ=+2kπ,即φ=﹣+2kπ,∵﹣π≤φ<π,∴当k=0时,φ=﹣,故答案为:﹣.【点睛】本题主要考查三角函数的图象和性质,根据条件求出ω和φ的值是解决本题的关键.16.给出下列命题:①函数是奇函数;②存在实数x,使sin x+cos x=2;③若α,β是第一象限角且α<β,则tanα<tanβ;④是函数的一条对称轴;⑤函数的图象关于点成中心对称.其中正确命题的序号为①④.【分析】利用诱导公式、正弦函数和余弦函数性质以及图象特征,逐一判断各个选项是否正确,从而得出结论.【答案】解:①函数=﹣sin x,而y=﹣sin x是奇函数,故函数是奇函数,故①正确;②因为sin x,cos x不能同时取最大值1,所以不存在实数x使sin x+cos x=2成立,故②错误.③令α=,β=,则tanα=,tanβ=tan=tan=,tanα>tanβ,故③不成立.④把x=代入函数y=sin(2x+),得y=﹣1,为函数的最小值,故是函数的一条对称轴,故④正确;⑤因为y=sin(2x+)图象的对称中心在图象上,而点不在图象上,所以⑤不成立.故答案为:①④.【点睛】本题主要考查诱导公式、正弦函数和余弦函数性质以及图象特征,属于基础题.三.解答题(共6小题,满分70分)17.(10分)已知sinα是方程5x2﹣7x﹣6=0的根,求的值.【分析】由已知求得sinα,然后利用三角函数的诱导公式化简求值.【答案】解:由sinα是方程5x2﹣7x﹣6=0的根,可得sinα=或sinα=2(舍),∴===﹣tanα.由sinα=﹣可知α是第三象限或者第四象限角.∴tanα=或﹣.即所求式子的值为.【点睛】本题考查一元二次方程根的求法,考查利用诱导公式化简求值,考查计算能力,是基础题.18.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,x∈R)在一个周期内的图象如图所示,求直线y=与函数f(x)图象的所有交点的坐标.【分析】根据函数的最大值,得到A=2.由函数的周期为4,算出ω=,再根据当x=时,函数f(x)有最大值为2,解出φ=.因此得到f(x)=2sin(x+),然后解方程2sin(x+)=,结合正弦函数的图象可得x=+4kπ或+4kπ(k∈Z),由此即可得到直线y=与函数f(x)图象的所有交点的坐标.【答案】解:根据题意,得A=2,T==4π,可得ω=∵当x=时,函数f(x)有最大值为2∴ω×+φ=×+φ=+2kπ(k∈Z),解之得φ=+2kπ(k∈Z),取k=0得φ=因此,函数表达式为f(x)=2sin(x+)当f(x)=时,即2sin(x+)=,可得sin(x+)=∴x+=+2kπ或x+=+2kπ(k∈Z),可得x=+4kπ或+4kπ(k∈Z)由此可得,直线y=与函数f(x)图象的所有交点的坐标为(+4kπ,)或(+4kπ,)(k∈Z).【点睛】本题给出函数y=A sin(ωx+φ)的部分图象,要我们确定其解析式并求函数图象与y=的交点坐标,着重考查了三角恒等变换和三角函数的图象与性质等知识点,属于基础题.19.(12分)已知f(x)=sin(2x+)+,x∈R(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到?【分析】由条件利用正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:(1)对于f(x)=sin(2x+)+,x∈R,它的周期为T==π.(2)由2kπ+≤2x+≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,所以所求的单调减区间为[kπ+,kπ+],k∈Z.(3)把y=sin2x的图象上所有点向左平移个单位,可得y=sin(2x+)的图象;再向上平移个单位,即得函数f(x)=sin(2x+)+的图象.【点睛】本题主要考查正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,属于基础题.20.(12分)已知函数y=A sin(ωx+φ)(A>0,ω>0)的图象过点P(,0),图象与P点最近的一个最高点坐标为(,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x的值;(3)求使y≤0时,x的取值范围.【分析】(1)由函数的最大值求A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)利用正弦函数取最大值的条件以及函数的最大值,得出结论.(3)由5sin(2x﹣)≤0,可得2kπ﹣π≤2x﹣≤2kπ(k∈Z),由此求得x的取值范围.【答案】解:(1)由题意知=﹣=,∴T=π.∴ω==2,由ω•+φ=0,得φ=﹣,又A=5,∴y=5sin(2x﹣).(2)函数的最大值为5,此时,2x﹣=2kπ+(k∈Z).∴x=kπ+(k∈Z).(3)∵5sin(2x﹣)≤0,∴2kπ﹣π≤2x﹣≤2kπ(k∈Z).∴x的取值范围是{x|kπ﹣≤x≤kπ+,(k∈Z)}.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,正弦函数的值域,解三角不等式,属于基础题.21.(12分)已知cos(+α)=2sin(α﹣).(1)求的值.(2)求sin2α+sinαcosα+cos2α的值.【分析】(1)直接利用诱导公式化简已知条件,化简所求表达式为正切函数的形式,求解即可.(2)所求表达式的分母通过平方关系式代换,然后化简所求表达式为正切函数的形式,求解即可.【答案】解:cos(+α)=2sin(α﹣).可得﹣sinα=﹣2cosα,∴tanα=2(1)===.(2)sin2α+sinαcosα+cos2α====.【点睛】本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.22.(12分)函数f(x)=A sin(ωx+φ)的图象如图所示,且过点(0,1),其中A>0,ω>0,|φ|<.(1)求函数的解析式.(2)若函数f(x)的图象向左平移m个单位所对应的函数h(x)是奇函数,求满足条件的最小正实数m.(3)设函数g(x)=f(x)+a+1,x∈[0,],若函数g(x)恰有两个零点,求a的范围.【分析】(1)由函数的图象可得T=(+)解得ω,图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ,图象经过(0,1),1=A sin(2×0+),可得A,从而可求函数的解析式.(2)由条件根据函数y=A sin(ωx+φ)的图象变换规律,可得y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,由此求得m的最小值.(3)根据正弦函数的单调性,得到当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,即2t+a+1=0,t∈[,1),由此建立关于a的不等式,解之即可得到实数a的取值范围.【答案】解:(1)由函数的图象可得T=(+)=π,T=,解得ω=2.图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ=,图象经过(0,1),1=A sin(2×0+),可解得A=2,故f(x)的解析式为y=2sin(2x+).(2)把函数f(x)的图象向左平移m个单位所对应的函数的解析式为:y=sin[2(x+m)+]=sin(2x+2m+),再根据y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,故m的最小值为.(3)g(x)=f(x)+a+1=2sin(2x+)+a+1,∵当x∈[0,]时,且x≠时,存在两个自变量x对应同一个sin x(2x+),即当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,∵g(x)=f(x)+a+1在x∈[0,]上有两个零点,即2t+a+1=0,t∈[,1),∴t =∈[,1),解之得a∈(﹣3,﹣2].【点睛】本题主要考查方程根的存在性以及个数判断,正弦函数的图象和性质,函数y=A sin(ωx+φ)的图象变换规律,体现了数形结合、转化的数学思想,属于中档题.21。
高二必修四第一章《三角函数》单元测试卷答案
水富县第一中学高二必修四第一章《三角函数》单元测试题参考答案及评分标准一、选择题,(共12题,每题5分,共60分)。
1.解:由角α与角β的终边相同,得α=k ·360°+β,k ∈Z ,所以,α-β=k ·360°,k ∈Z ,所以,α-β的终边在x 轴的非负半轴上. 答案:A2.解:因为点P (tan α,cos α)在第三象限,所以tan α<0且cos α<0.由tan α<0得α在第二或第四象限;由cos α<0得α在第二或第三象限以及x 轴的负半轴,所以α为第二象限角.答案:B3.解法一:通过对k 取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π·(2k ±1),k ∈Z },而2k ±1为奇数,∴M N . 答案:A4.解:787°=2×360°+67°,-957°=-3×360°+123°,-289°=-1×360°+71°,1711°=4×360°+271°,∴在第一象限的角是①③. 答案:C 5.解:r =22a a +=2|a |,∴sin α=r a =||2αa=⎪⎪⎩⎪⎪⎨⎧-)0(22)0(22a a ,∴sin α的值为±22. 答案:C6.解:∵cos(π+α)=-21,∴cos α=21.又∵23π<α<2π,∴sin α=-23. 故sin(2π-α)=-sin α=23. 答案:B7.解法一:∵α是第四象限角,∴2k π-2π<α<2k π(k ∈Z ). ∴-2k π<-α<-2k π+2π(k ∈Z ). ∴-2k π+π<π-α<-2k π+23π(k ∈Z ).∴π-α是第三象限角.故选C.解法二:∵角α与角-α的终边关于x 轴对称,角α的终边在第四象限,∴角-α的终边在第一象限.又角-α与π-α的终边关于原点对称,∴角π-α的终边在第三象限.故选C.解法三:特殊值法.令α=-6π,则π-α=67π是第三象限角.故选C. 答案:C8.解:∵sin αcos α=81, ∴(cos α-sin α) 2=cos α2+sin α2-2sin αcos α=1-2×81=43. 又∵4π<α<2π,∴cos α<sin α.∴cos α-sin α=-23.答案:B9.解:∵22215cos sin 1sin sin sin 24y x x x x x ⎛⎫=-=--=-++ ⎪⎝⎭且[]sin 11x ∈-, ∴()max min 5114y y f ===-, 10.解:由已知得:5()(2)()()sin 33333f f f f ππππππ=-=-===11.解:2112sin sin 1cos 22tan 21sin 22sin cos cos 2222x x x x y T x x x x ππ⎛⎫-- ⎪-⎝⎭====⇒== 12.解:∵)(x f =sin(2x +θ)2cos(2)3x x πθθ+=++是奇函数,∴f(x)=0知A 、C 错误;又∵)(x f 在[0,4π]上是减函数 ∴当23πθ=时f(x)=-sin2x 成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修4《三角函数》单元测试(1)
一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48
分)
1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A ∩C
B .B ∪C=C
C .A C
D .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是
( )
A .
3
π B .-
3
π C .
6
π D .-6
π 3、已知sin 2cos 5,tan 3sin 5cos ααααα
-=-+那么的值为
( )
A .-2
B .2
C .
23
16 D .-
23
16
4、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上
C .在y 轴上
D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )
A .2
-
B .
2
C .
12
D . 12
-
6、要得到)4
2sin(3π
+=x y 的图象只需将y=3sin2x 的图象
( )
A .向左平移
4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8
π
个单位 7、如图,曲线对应的函数是 ( )
A .y=|sin x |
B .y=sin|x |
C .y=-sin|x |
D .y=-|sin x |
8 ( )
A .cos160︒
B .cos160-︒
C .cos160±︒
D .cos160±︒
9、A 为三角形ABC 的一个内角,若12
sin cos 25
A A +=
,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)3
2sin(2π
+
=x y 的图象
( )
A .关于原点对称
B .关于点(-6π,0)对称
C .关于y 轴对称
D .关于直线x=6
π
对称 11、函数sin(),2
y x x R π
=+∈是 ( )
A .[,]22
ππ
-
上是增函数 B .[0,]π上是减函数
C .[,0]π-上是减函数
D .[,]ππ-上是减函数
12、函数y = ( )
A .2,2()33k k k Z π
πππ-
+
∈⎡⎤⎢⎥⎣
⎦ B .2,2()66k k k Z ππππ-+∈⎡
⎤⎢⎥⎣⎦
C .22,2()3
3k k k Z π
πππ+
+
∈⎡
⎤⎢⎥⎣
⎦
D .222,2()3
3k k k Z ππππ-
+
∈⎡
⎤
⎢⎥⎣
⎦
二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知απ
βαππβαπ2,3
,34则-<-<-<
+<的取值范围是 . 14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .
15、函数])32
,6[)(8cos(πππ
∈-
=x x y 的最小值是 . 16、已知,2
4,81cos sin π
απαα<<=⋅且则=-ααsin cos .
三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值2
2
sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒
18、(8分)已知3
tan 2
απαπ=<<,求sin cos αα-的值.
19、(8分)绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按
逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm?
20、(10分)已知α是第三角限的角,化简α
α
ααsin 1sin 1sin 1sin 1+--
-+
21、(10分)求函数21()tan 2tan 5f t x a x =++在[
,]42
x ππ
∈时的值域(其中a 为常数)
22、(8分)给出下列6种图像变换方法:
①图像上所有点的纵坐标不变,横坐标缩短到原来的
2
1; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;
③图像向右平移
3π
个单位; ④图像向左平移3π
个单位;
⑤图像向右平移32π
个单位;
⑥图像向左平移3
2π
个单位。
请用上述变换将函数y = sinx 的图像变换到函数y = sin (2x +3
π
)的图像.
第一章《三角函数单元测试》 (1)参考答案
1. B
2. C
3. D
4. A
5. A
6.C
7.C
8.B
9.B 10. B 11.D 12.D 13. ),0(π 14.x x cos 2sin - 15.
21 16.2
3- 17
.原式221112=-+-+1
2
= 18
.3tan 2
απαπ=
<< 且
sin 0,cos 0αα∴<<
,由22
sin sin cos 1αααα⎧=⎪⎨+=⎪⎩
得sin 21
cos 2
αα⎧=-⎪⎪⎨⎪=-⎪
⎩1sin cos 2αα-∴-= 19.设需x 秒上升100cm .则π
π15
,100502460=∴=⨯⨯⨯x x (秒) 20。
–2τανα
21.2
tan 2tan 5y x a x =++2
2
(tan )5x a a =+-+
[,]42
x ππ
∈ tan [1,]x ∴∈+∞∴当1a ≤-时,25y a ≥-+,此时tan x a =-
∴当1
a>-时,25
x=
y a
≥+,此时tan1 22.④②或②⑥。