九年级上册数学配方法解一元二次方程知识点讲解与经典例题答案与解析(人教版)
人教版九年级上册数学——一元二次方程知识点总结

21章 一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。
注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
二、 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
一元二次方程的解也叫一元二次方程的根。
一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
三种类型:(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。
2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
人教版初中九年级数学上册第二十一章《一元二次方程》知识点复习(含答案解析)(1)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+C解析:C【分析】 把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -,而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长B解析:B【分析】 根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,2224BD BC CD a =++∴24a a +, 解方程2240x ax +-=得2224164x a a a a -±+=±=-+ ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.8.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C 解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.9.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319A 解析:A【分析】 由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.15.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.17.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.18.已知关于x 的方程2x m =有两个相等的实数根,则m =________.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】解:∵关于x 的方程2x m =有两个相等的实数根,∴关于x 的方程20x m -=有两个相等的实数根,∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.19.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可;(3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可;(4)移项,利用直接开平方法即可求解.【详解】(13 3=+3 =;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(12.(2)解一元二次方程:x2﹣4x﹣5=0.解析:(1)2;(2)125, 1.x x==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
人教版初中九年级数学上册第二十一章《一元二次方程》知识点(含答案解析)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=C 解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D 解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0C 解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 5.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x = D .10x =,2x = 解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键.6.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B 解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.7.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A 解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.8.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).9.下列方程中是关于x 的一元二次方程的是( )A .210x x +=B .ax 2+bx +c =0C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)2C 解析:C【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、是分式方程.错误;B 、当a =0时不是一元二次方程,错误;C 、是,一元二次方程,正确;D 、3x 2+2=x 2+2(x ﹣1)2整理后为x=0,是一元一次方程,错误;故选:C .【点睛】考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.10.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5D解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题11.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 15.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.16.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.17.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 18.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a-是解题的关键. 19.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.20.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.三、解答题21.用配方法解方程:22510x x -+=解析:154x =+,254x = 【分析】依据配方法的基本步骤解方程即可.【详解】解:22510x x -+=,系数化为1得:251022x x -+=,配方得:2255251()024162x x -+--+=, 即:2517()416x -=,两边同时开平方得:54x -=,即154x =254x =-. 【点睛】本题考查配方法解一元二次方程.配方法的关键步骤在于配完全平方公式,此步需熟练掌握完全平方公式及各部分之间的关系.22.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.23.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 24.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.25.如图,利用22米长的墙为一边,用篱笆围成一个长方形仓库ABCD ,中间用篱笆分割出两个小长方形,在与墙平行的一边要开两扇1米宽的门,总共用去篱笆34米,为了使这个长方形ABCD 的面积为96平方米,求AB 和BC 的长.解析:AB=8米,BC=12米.【分析】设AB 为x 米,然后表示出BC 的长为(36-3x )米,利用矩形的面积计算方法列出方程求解即可.【详解】解:设AB 为x 米,则BC 为(36-3x )米,x (36-3x )=96,解得:x 1=4,x 2=8,当x=4时,36-3x=24>22(不合题意,舍去),当x=8时,36-3x=12.答:AB=8米,BC=12米.【点睛】本题考查了一元二次方程的应用,解题的关键是设出一边的长,并用未知数表示出另一边的长.26.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案解析:(1)1417x =,2417x =;(2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=417x -=±1417x =,2417x =(2)2(2)6(2)80x x ---+=[]2(2)31x --=51x =±,16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键. 27.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?解析:30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值. 28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为99x x x x+≥⋅ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】 解:(1)∵0x >,∴99x x x x+≥⋅又∵296=,∴96x x+≥ ∴9x x +的最小值为6;(2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥, ∵13=25,当且仅当x=6时,取等号, ∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。
人教版九年级数学上册解一元二次方程——配方法(教师版)

四、典例探究扫一扫,有惊喜哦!1.配方法解一元二次方程【例1】(2015•科左中旗校级一模)用配方法解下列方程时,配方有错误的是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2=D.3x2﹣4x﹣2=0化为(x﹣)2=总结:配方法解一元二次方程的一般步骤:(1)把二次项的系数化为1;(2)把常数项移到等号的右边;(3)等式两边同时加上一次项系数一半的平方.(4)用直接开平方法解这个方程.练1用配方法解方程:(1)x2﹣2x﹣24=0;(2)3x2+8x-3=0;(3)x(x+2)=120.2.用配方法求多项式的最值【例2】(2015春•龙泉驿区校级月考)当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.问题:(1)小华的求解过程正确吗?(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.8.(2014秋•安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.9.(2014春•乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.10.(2014秋•江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时a=﹣1.①当x=时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.②当x=时,代数式﹣x2+4x+3有最(填写大或小)值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?典例探究答案:【例1】【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴(x﹣1)2=100,故A选项正确.B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴(x+4)2=7,故B选项错误.C、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣t=2,∴t2﹣t+=2+,∴(t﹣)2=,故C选项正确.D、∵3x2﹣4x﹣2=0,∴3x2﹣4x=2,∴x2﹣x=,∴x2﹣x+=+,∴(x﹣)2=.故D选项正确.故选:B.点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.练1.【解析】(1)移项,得x2﹣2x=24,配方,得:x2﹣2x+1=24+1,即:(x﹣1)2=25,开方,得:x﹣1=±5,∴x1=6,x2=﹣4.(2)两边除以3,得:2810 3x x+-=,移项,得:2813x x+=,配方,得:222844()1()333x x++=+,即:2245 (x)()33+=,开方,得:4533x +=± ∴121,33x x ==- (3)整理,得:22120x x +=,配方,得:2211201x x ++=+, 即:2(1)121x +=, 开方,得:111x +=±∴1210,12x x ==-点评:本题考查了解一元二次方程﹣﹣配方法.【例2】【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4=(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0,∴x 2+4x+4y 2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.点评:本题考查配方法的应用;根据﹣4y ,4x 把所给代数式整理为两个完全平方式子的和是解决本题的关键.练2.【解析】将﹣8x 2+12x ﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a 2≥0这一性质即可证得.解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣,∵(x ﹣)2≥0,∴﹣8(x ﹣)2≤0,∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0.点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.练3.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;(2)将等式右边的项移至左边,然后配方即可.解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)∵a、b、c为△ABC三边的长,∴(a﹣c+b)>0,(a﹣c﹣b)<0,∴a2﹣b2+c2﹣2ac<0.(2)由a2+2b2+c2=2b(a+c)得:a2﹣2ab+b2+b2﹣2bc+c2=0配方得:(a﹣b)2+(b﹣c)2=0∴a=b=c∴△ABC为等边三角形.点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.课后小测答案:一、选择题1.【解析】二次项系数为1,则常数项是一次项系数的一半的平方.解:x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2.故选:B.点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.2.【解析】先移项,得x2﹣8x=1,然后在方程的左右两边同时加上16,即可得到完全平方的形式.解:移项,得x2﹣8x=1,配方,得x2﹣8x+16=1+16,即(x﹣4)2=17.故选A.点评:本题考查了用配方法解一元二次方程,对多项式进行配方,不仅应用于解一元二次方程,还可以应用于二次函数和判断代数式的符号等,应熟练掌握.二、填空题3.【解析】利用完全平方公式化简后,即可确定出a的值.解:∵(x﹣3)2=x2﹣6x+9,∴a=9;故答案为:9.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.【解析】根据题意列出方程,两边除以3变形后,再加上1配方后,开方即可求出解.解:根据题意得:3x2﹣6x=12,即x2﹣2x=4,配方得:x2﹣2x+1=5,即(x﹣1)2=5,开方得:x﹣1=±,解得:x=1±.故答案为:1±.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.三、解答题5.【解析】按照配方法的一般步骤计算:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:把方程x2﹣2x﹣4=0的常数项移到等号的右边,得到x2﹣2x=4,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4+1,配方得(x﹣1)2=5,∴x﹣1=±,∴x1=1﹣,x2=1+.点评:本题考查了用配方法解一元二次方程的步骤,解题的关键是牢记步骤,并能熟练运用,此题比较简单,易于掌握.6.【解析】原式利用完全平方公式变形,根据完全平方式恒大于等于0,即可求出最小值.解:原式=x2﹣2x+1+4y2+4y+1+3=(x﹣1)2+(2y+1)2+3≥3,当x=1,y=﹣时,x2+4y2﹣2x+4y+5有最小值是3.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.7.【解析】对于x2+4x﹣3和x2﹣3x+4都是同时加上且减去一次项系数一半的平方.配成一个完全平方式与常数的和,利用完全平方式为非负数的性质得到原代数式的最小值.解:(1)正确(2)能.过程如下:x2﹣3x+4=x2﹣3x+﹣+4=(x﹣)2+∵(x﹣)2≥0,所以x2﹣3x+4的最小值是.点评:此题考查配方法的运用,配方法是常用的数学思想方法.不仅用于解方程,还可利用它解决某些代数式的最值问题.它的一个重要环节就是要配上一次项系数一半的平方.同时要理解完全平方式的非负数的性质.8.【解析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥.则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5.点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.9.【解析】先将原式变形为x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5,由非负数的性质就可以求出最小值.解:x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5.∵代数式x2﹣2m﹣m2+5m﹣5的最小值是﹣23,∴﹣2m2+5m﹣5=﹣23解得m=﹣2或m=点评:本题考查了配方法的运用,非负数的性质,一个数的偶次幂为非负数的运用.解答时配成完全平方式是关键.10.【解析】①由完全平方式的最小值为0,得到x=1时,代数式的最大值为3;②将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;③设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.解:①∵(x﹣1)2≥0,∴当x=1时,(x﹣1)2的最小值为0,则当x=1时,代数式﹣2(x﹣1)2+3的最大值为3;②代数式﹣x2+4x+3=﹣(x2﹣4x+4)+7=﹣(x﹣2)2+7,则当x=2时,代数式﹣x2+4x+3的最大值为7;③设垂直于墙的一边为xm,则平行于墙的一边为(16﹣2x)m,∴花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x+16)+32=﹣2(x﹣4)2+32,则当边长为4米时,花园面积最大为32m2.故答案为:①1;大;3;②2;大;7点评:此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.。
人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

一元二次方程全章知识点专题复习【课标要点】1. 理解一元二次方程定义;2. 会解一元二次方程;3. 会根据根的判别式24b ac -判断一元二次方程的根的情况; 4. 会列一元二次方程解决实际问题.⎧⎪⎪⎪⎨⎪⎪⎪⎩解法根的判别式一元二次方程二次三项式的分解因式根与系数的关系实际应用问题第1讲 一元二次方程的概念【知识要点】1、一元二次方程的一般形式:200),,,ax bx c a a b c ++=≠(其中是常数. 2、在一般式中,当b =0时,则有220c 00ax c ax bx +=+=或当=时,则有,这两种情况都是一元二次方程.【典型例题】 例1判断下列关于x 的方程是不是一元二次方程.22222222213;(2)50;(3)235;(5)2(3)21;511(6)33;(7)2;(8)()10;(9)40:1(10)0.(0)x x x xy x x x x x x x x abx a b x x x x px qx m p =-=--==-=+++=-=+++=-+=+++=≠() 分析:一元二次方程,必须满足:(1)整式方程;(2)含有一个未知数,并且最高次数是2.解:方程(1)、(6)、(7)的左边是分式,不属于整式方程,方程(3)含有两个未知数,方程(4)的左边不是整式,方程(5)经整理候,得-6x =1,方程(8)中未确定ab≠0,因此,只有(2)、(9)、(10)是一元二次方程.例2方程25)(3)(3)50.m m m x m x ---+-+=((1) m 为何值时,此方程为一元二次方程? (2) m 为何值时,此方程为一元一次方程?分析:形如0nax bx c ++=的方程,当n =2且a≠0时为一元二次方程;当a =0时且b≠0时为一元二次方程.解:(1)当m -2=2时,m =4,这时5)(3)0.m m --≠(当m =4时,此方程为一元二次方程.(2)5)(3)0,20,2m 30m m m m --=->-≠当(为自然数,且-时,方程为一元一次方程.由5)(3)0m 5m 3m m m --=≠(得=或=,又因为3,∴当m =5时,此方程为一元一次方程.例3 为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用了新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2填,为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还应再增加多少米?(只需列出方程,并整理成一般一元二次方程形式.)分析:根据题意本题有两个关系式:一是计划每天加固的长度比原计划增加了20米,而是实际完成工程任务所需时间比原计划缩短2天,由时间关系列出方程.解:设现在计划每天加固河堤x 米,则原来计划每天加固河堤(x -20)米.根据题意德22402240220x x-=-,整理,得 22022400x x --=【知识运用】 一、选择题1.一元二次方程得一般形式是( )A.20x bx c ++= `B.20ax bx c ++=C. 20()ax bx c a o ++== D.以上都不对 2.下列方程为一元二次方程的有( )A.21102x x-+= B. 252ax bx c +=C.()219x -=D.x+y=03.关于x 的方程232232(m n m x mx m x nx px q +=+-+≠其中),经化简整理,化为200)ax bx c a ++=≠(的形式后,二次项系数、一次项系数及常数项分别是( )A.m -n ,p ,qB. m -n ,-p ,qC.m -n ,-p ,-qD.m -n ,p ,-q4.将一元二次方程21x 2x 302-+=-的二次项系数变为正整数,且使方程的根不变的是( )A. 2x 2x 30+=- B. 2x x 60+=-4C 2x x 60=-4-D 2x x 60-=+4二、填空题5.方程24x 0=是_____元______次方程,二次项系数是______,一次项系数是____,常数项是_______.6.当m__________时,方程2m-1)x 21)x 0m m -+=(-(不是关于x 的一元二次方程;当m___________时,上述方程才是关于x 的一元二次方程;7.若方程22x 3x 1k x +=+是一元二次方程,则k 的取值范围是_________; 三、解答题 8.若方程1(3)x230k k x --+-=是关于x 的一元二次方程,求k 的值.9.若关于x 的一元二次方程22(a-1)x +x+a 10-=的一个根是0,求a 的值.10.某大学改善校园环境,计划在一块长80米,宽60米的矩形场地中央建一矩形网球场,网球场占地面积为3500平方米,四周为宽度相等的步行道,求步行道的宽度,根据题意列出泛称,并将其化为一般形式.第2讲 配方法【知识要点】1、直接开平方法解一元二次方程:将方程化成()2b(0)x a b +=≥的形式,则x=0)a b -±≥.2、配方法解一元二次方程:利用公式222a 2()ab b a b ±+=±,把一元二次方程转化为2()(0)x a b b +=≥,再利用直接开平方法解方程.【典型例题】例1 用配方法解关于x 的一元二次方程: x 0px q ++=2分析:配方法解一元二次方程,关键要搞清配方的目的是什么,即配方要使方程能运用直接开平方法解决,该题是一种字母系数的一元二次方程,故可按上述步骤进行求解,先将其整理成一般形式,二次项系数化为1.因二次项系数为1,所以移项得2x x p q +=-,方程两边配方,然后利用完全平方公式,直接开平方法解出方程.解:22221212x ,x (),244qx ,244q p 400,4x (2)p 40x 23p 40px q p p px q p p p q x pq x q +=-++=-+--->>---<222222移项,得配方,得整理,得(+)=(1)当时,方程两边直接开平方,得当=时,==;()当时,原方程无实数解.例2 用配方法解方程(1)2x 6x 50+-=; (2)24x 7x 20-+=分析:方程经过移项,配方后变为形如2().ax b c +=的方程 解:(1)(2)移项,得24x 7x 2-=-化二次项系数为1,例3 试证:不论x 为何实数,多项式424224124x x x x ----的值总大于的值. 分析:比较两个代数式大小通常用做差的方法. 解:∴多项式424224124x x x x ----的值总大于的值. 【知识运用】 一、选择题1. 已知代数式2224x 228x 5x x +-+-的值为3,则代数式的值为( ) A.5B. -5C. 5或-5D.02.将二次三项式22x 4x 6-+进行配方,正确的结果是( )A.24-2(x-1) B.24+2(x-1)C.22-2(x-2)D. 22+2(x-2) 3.方程2(1)9x +=的解是( ) A.2x =B. 4x =-C. 122,4x x ==-D. 122,4x x =-=221265,6959,314333x x x x x x x +=++=+=∴+=∴=-+=--2移项,得配方,得即(x +)2222127717x ()()48287177x x 864877x x 88x x x -+=-+-∴-∴--∴得即()=,===4242424222224242(241)(24)23(21)2(1)2x (1)20(241)(24)0x x x x x x x x x x x x x x -----=-+=-++=-+-+>----->对于任何实数,总有即4.已知11120,19,21202020a xb xc x =+=+=+,则代数式222a b c ab bc ac ++---的值是( ) A.4 B.3C. 2D. 1二、填空题5.224___9(___3)x -+=-6.将二次三项式2x 2x 2--进行配方,其结果等于__________.7.已知m 是方程2x x 20--=的一个根,则代数式2m m -的值等于______. 三、解答题8.用配方法解下列方程2(1)2360;x x --= 221(2)20;33y y --=2(3)0.40.81;x x -= 2(4)1)0;y y ++=9.用配方法证明21074x x -+-的值恒小于0.10.来自信息产业部的统计数字显示,2019年1月至4月份我国手机产量为4000万台,相当于2018年全年手机产量的80%,预计到2020年年底收机产量将达到9800万台,试求这两年手机产量平均每年的增长率.第3讲公式法【知识要点】1.公式法:一般地,对于一元二次方程221200),b 4ac 0x ax bx c a ++=≠≥,(当-时, 2.2b 4ac 0≥V 当=-,方程可用公式法求解;当2b 4ac 0<V 当=-时,方程无解.【典型例题】例1 用公式法解下列方程21x 100-+=() 2(2)221x x +=(3)(1)(1)x x +-=分析:首先把每个方程化成一般式,确定a 、b 、c 的值,在2b 4ac 0≥-的前提下,代入求根公式求出方程的根.解:2221222212(2)2210,2,2,1,424?2?(1122(3)10,1,2,1,44?1?(2(4)x x a b c b ac x x x a b c b ac x x +-====--=-±∴=⨯-+-∴===--===-=--=-±∴==⨯∴==Q 移项,得-1)=12>0,-2x=22原方程可化为(-1)=12>0,-(x=222221210,1,1,1,414?1?(x x a b c b ac x x +-====--=-∴=∴===Q 将原方程可化为-1)=5>0,x例2 阅读下面一段材料,并解答问题.22(1)1,4,10,4(411080,(212x x a b c b ac x ==-=-=-⨯⨯>--∴===⨯∴=Q 1=2-=22220(0)40,4200(0,,,)ax bx c a x b ac b ac b x aa ax bx c a abc ++=≠=-≥--∆=≠∆≥++=≠ 我们知道由一元二次方程运用配方法得其求根公式由平方根的意义知:当时即负数,没有平方根,故代数式就决定了方程根的情况,称它为一元二次方程根的判别式,用记号“”表示,故公式符合条件且0,方可用于求实数根.此外,若均为整数应当222121242,(1)10,:4,?,,?:,b ac b a k x x k x k x x x x k ∆=-∆--+++==∆≥注意当是完全平方时,方程根为有理根;当是完全平方且(是的整数倍时方程的根为整数根. 根据上面得出的结论,请你解答下列问题: 已知关于的方程试求 ⑴为何值时方程有两个实数根 ⑵若方程的两个实数根满足则为何值 分析根据上面材料分析当0时方程有实数根,从而确定k 的取值,对[]1222121121212121.:(1),1)4(1)043230.2(2)0,,0,2k-3=0,35k=,0,240,010,10,,x x k k k k x x x x x x x x x x x k k x =∆≥+-+≥-≥∴≥=≥=∆===><-=+=∴+==-∆≥Q 1于⑵中需分类讨论 解方程有实数根故0,即-( 化简得时方程有两个实数根由①当时此时即符合要求.②当x 时即与相矛盾故舍去k=-13综上可知:当k=时有22x = 例3 某工厂拟建一座平面图形为矩形且面积为200平方米 的三级污水处理池(平面图如右图),由于地形限制,三级水库处理 池的长、宽都不能超过16米,如果池的外围墙建造单价为每米 400元,中间两条间隔墙单价为每米300元,池底建造单价为每平 方米80元.(池墙的厚度忽略不计)(1) 当三级污水处理池的总造价为47200元时,求池长x;(2) 如果规定总造价越低就越合算那么根据题目提供的信息以47200元为总造价来修建三级污水处理池是否最合算?请说明理由.分析:可根据三级污水处理池的总造价为47200元列方程.ADBC隔墙隔墙x21212400400:(1)400(2)3002008047200,4007008002008047200,393500,14,25,,14,25,2516(,)10014,16.7x x xx xx x x x x x ⨯++⨯+⨯=⨯++⨯=-+=====><∴ 解由题意得即有 化简得 解得经检验都是原方程的根但米米不符合题意舍去 当池长为米时池宽为米米符合题意 当三级污水处理池的总造价为47200(2)1612.5164007008001620080463004720016<⨯⨯++⨯=<∴元时,池长为14米.当以47200元为总造价修建三级污水处理池时,不是最合算. 当池长为米时,池宽为米米,故池长为16米符合题意,这时总造价为当以47200元为总造价修建三级污水处理池时,不是最合算.【知识应用】 一、选择题22222401)53200,0,0,x x k k m x x m m m n x mx n n m n --=-++-+=++=≠+1.方程2有两个相等的实数根,则的值为( )A.-1 B.-2 C.1 D.22.若一元二次方程(的常数项为则为( )A.1 B.2 C.1或2 D.53.若是方程的根则的值为( )1A. B.1 C.222235020,______.6.610_______.7.x x x mx m x x x --=++=--=1- D.-124.不解方程,判断方程2的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定二、填空题5.已知的一个根则方程的另一个根是_____,的值是方程3的两根之和是方程22230530______.x x x --=++=与方程2的公共解是三、解答题,28.已知直角三角形的一条直角边比另一条直角边长2cm,且面积为24cm 求直角三角形的周长.21)(4)240,10,.k x k x k k k +++-+=+≠9.已知方程(有零根其中求的值2210.2)0,a a x ax b x a --++=要使(是关于的一元二次方程求的取值范围.第4讲 分解因式法【知识要点】112212121212a xb a x b b b a a x x a a ++≠=-=- 1. 分解因式法:把一个一元一次方:程整理为:()()=0的(0)的形式,方程的解为:;;. 2.注意(1)方程一边一定化为0;(2)常用的方法:①提公因式法;②运用公式法③十字相乘法.【典型例题】260;x x -=例1 用因式分解法解下列方程. (1):(1),,(2),(5)(5),,.x x --分析方程的右边是零左边可以用提公因式法分解方程不要去掉括号更不要两边同时除以或要先移项使方程右边为零212212:60,(6)0,060,0, 6.(2)3(5)2(5)0,(5)[3(5)2]0,(5)(133)0,501330,135,.3x x x x x x x x x x x x x x x x x x -=-=∴=-=∴==---=---=--=∴-=-=∴==解(1)即或原方程可变形为 即或 2(2)3(5)2(5)x x -=-例2 用公式法因式分解式解下列方程.2222(4)(43)(2)49(3)16(6)x x x x -=--=+ (1)3221222(1)(2)(1)(4)(43)0[(4)(43)][(4)(43)]0(77)(1)0,770101, 1.(2)7(3)][4(6)]0,7(3)4(6)][7(3)4(x x x x x x x x x x x x x x x x x x ---=∴-+----=∴---=∴-=--=∴==---+=-++--分析:方程先移项再利用因式分解法来解,方程移项后也能因式分解.解:移项,得333或 原方程化为[ [126)]0,(113)(345)0,3,15.11x x x x +=+-=∴=-=化简为,1).x x x x +-例3 为解决新疆农牧民出行难的问题今年是新疆投资公路建设力度最大、最多的一年,某公路修筑队接受了改建农村公路96千米的任务,为了尽量减少施工带来的交通不便,实际施工时每天比计划多修1千米,结果提前16天完成任务,问原计划每天修多少千米?分析:如果把修路队原来计划每天修(千米),则实际每天修路是(千米,工作任务可根据工作时间=列方程工作效率解:设原计划每天修路千米,由题意得962129616160(3)(2)03(),2:x x x x x x x =++-=∴+-=∴=-= 化简整理得舍去答原计划每天修2千米.【知识运用】1212121212121200550505244552A. B.4C.,4D.,4225(1)(2)034,A B x x x x x x x x x x x x x x x x x x x x x x x x -======-==--======+-===-一、选择题1.一元二次方(5)=0的两个根为( )A.,B.,C.,D.,2.方程()=5()的根为( )3.方程的根是,则这个方程为( ).-1,2 .12C D 34,A.(3)(4)0B.(3)(4)0C.(3)(4)0D.(3)(4)0x x x x x x x x x x ==--+=+-=++=--=1,-2 .0,-1,2 .0,1,-24.已知一元二次方程的两根分别为,则这个方程为( )22225123,_____.4_____,.5147.235(23)201(21);(2)(5)59.,3,x x x x x x x x x x y x x x +-+=-=+-++++=-=-=2二、填空题:5.若与的值相等则6.当时代数式的值为零用分解因式法解方程:2()的解是_____.三、解答题8.用适当的方法解方程.1(1)2有一个直角三角形它的边长恰是个连续整数这个三角形的三边长是多少?10.有一个两位数,它的十位数字和个位数字的和是5,把这个两位数的十位数字和个位数字互换后得到另一个两位数,两个两位数的积为736,求原来的两位数.第5讲 一元二次方程【知识要点】 1、黄金分割:如,图若点C 把线段分成两条线段AB 和BC ,且满足AC BCAB AC=则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2、列方程解应用题的基本步骤可归纳为:审(审题);设(设未知数);列(列方程)解(解方程);答(答案).3、列方程解应用题的关键是找出存在的相等关系 【典型例题】例1 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到五月份营业额的平均增长率.分析:本题属于平均增长率问题,由已知可设月平均增长率为x ,那么3月份的营业额为400(1+10%)(1+x ),5月份营业额为400(1+10%)(1+x )2.解:设平均月增长率为x ,由题意得400(1+10%)(1+x )2=633.6 整理得:(1+x )2=633.61 1.2440x ∴+=± 0.2x ∴= 所以平均月增长率为20%.例2 一块矩形耕地大小尺寸如图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600米2,那么水渠应挖多宽?分析:这类问题的 特点是挖蕖所占用土地面积只与挖蕖的条数、渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把沿东西和南北方向挖的渠道移动到一起,那ABC么剩余可耕的长方形土地的长为(162-2x )米,宽为(64-4x )米.解:设水渠应挖x 米宽,以题意,得(162-2x )(64-4x )=9600化简,297960x x -+=解得11x =,296x =(舍去)答:水渠应挖1米宽. 【知识运用】 一、选择题1. 某商店十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率是( ) A .20% B ..12% C .22% D.10%2. 从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A. 9cm 2B.68cm 2C. 8cm 2D. 64cm 23.有一个两位数,它的数字和等于14,交换数字位置后,得到新的两位数比原来的两位数大18,则原来的两位数是( )A .68 B.86 C.-68 D.-864.随着通讯市场竞争日益激烈,某通讯公司的收集市话收费标准按原标准每分钟降低了a 院后,再次下降25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( ) A. 5(1)4b -元 B. 5()4b a +元 C. 3()4b a +元 D 4()3b a +元. 二、填空题5.三个连续偶数,较小的两个数的平方和等于较大的数的平方,则这三个数为________. 6.一个两位数,它的数字之和为9,如果十位数字为a ,那么这个两位数是________;b 把这个两位数的个位数字与十位数字对调组成一个新数,则这个数与原数的差为________. 7.某种手表的成本在两年内以100元降低到81元,那么平均每年降低成本的百分率是_____. 三、解答题8.某工厂计划用两个月把产量提高21%,如果每月比上个月提高的百分数相同,求这个百分数.9.某人将2000元人民币按一年定期存入银行,到期后支出1000元用来购物,剩下的1000元及应得利息又全部按一年定期存入银行.若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率.10.某商店如果将进货价为8元的商品按每件10元出售,每天可销售200件.现采用提高售价、减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.问售价定为多少时,才能使所赚利润最大,并求出最大利润.第1讲一、1.C 2.C 3.D 4.D 二、5.一、二,4,0,0 6.m=1,m ≠1 7.222a ab b --三、8.根据题意的1230k k ⎧-=⎪⎨-≠⎪⎩①②由①得k -1=-2解得k=3或k=-1,由②得k ≠3,所以k=-19.由于方程的解使方程的左右两边相等,故将方程的解代入原方程后得到关于a 得方程,求出a 得值,但是需要满足原一元二次方程的二次项系数不为零,故只取a=-1. 10.设步行道的宽度为x 米,根据题意得(80-2x ).(60-2x)=3500整理,得方程的一般形式为703250x -+=2x 第2讲一、1.A 2.B 3.C 4.B二、5.12x,2x ;6.2(1)3x --;7.22m m -=三、8.121233(1)(2)2,31342x y y y y ±±==-==-=--2()x=29.2711110)002040x --<原式配方得-( 2210740,10740x x x x +-=+-即-故-的值恒小于 10.设这两年手机产量平均每年的增长率为x ,根据题意得2124000212(1)980040%,8055x x x +====-解得%(舍去) 第3讲一、1.B 2..B 3.D 4.A 二、5.24-- 6.2 7.x=-1三、8.设直角三角形的较短的直角边长为xcm ,则较长的直角边长为(x+2)cm.根据题意得:2001)0(4)02402x x k k k k =∴=+⨯++⨯-+=∴=Q 方程有零根即将代入方程得,(2121(2)24248026,8()2810x x x x x x x +=∴+-===-∴+=∴∴解得不符合题意舍去较长直角边为直角三角形的周长为6+8+10=24(cm )9. 10.要使方程是x 的一元二次方程,则由一元二次方程的定义.有220,2,1a a a a x --≠∴≠≠-且时该方程时关于的一元二次方程第4讲一、1.C 2.A 3.C 4.C 二、5.- 1或4 6.x =-27.260,y y x +-==三、8.(1)y=12±(2)121x x 5==- 9. 3,4,5 10. 32,23第5讲一、1.C 2.A 3.B 4.D 二、5. 7,6,8 6.9a+9,81-18a 7.10%三、8.设每月提高的百分率为x,原产量为a ,以题意得a(1+x)2=a(1+21%)220(1) 1.210.110% 2.1(10a x x ≠∴+====-∴Q 1解得x 舍去)为%9.设此种存款的年利率为x ,由题意得: 【2000(1+x )-1000】(1+x)=1320 所以年利率为10%10.设此种商品的售价为x 元,商品所赚利润s 最大.2210.(20010)2040020(10)20000.5102000.x s x x x s x x s -=-⨯=-+∴=--+∴=当时,取最大值。
解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。
温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。
根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。
2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)
21.2.1 一元二次方程的解法(一)配方法瞄准目标,牢记要点夯实双基,稳中求进直接开方法解一元二次方程原理:题型一:直接开方法解一元二次方程原理:【例题1】下列方程不能用直接开平方法求解的是( ) A .240x -= B .2(1)90x --= C .230x x += D .22(1)(21)x x -=+【答案】C【分析】根据直接开方法求一元二次方程的解的类型客直接得出答案.【详解】能用直接开平方法求解的是:240x -=、2(1)90x --=和22(1)(21)x x -=+; 故选C .【点睛】此题考查了解一元二次方程-公式法,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0). 变式训练【变式1-1】关于x 的方程()2x a b +=能直接开平方求解的条件是( ) A .0,0a b ≥≥B .0,0a ≥≤知识点管理 归类探究 1 (1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义. 特别说明:用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥. 【详解】∵()20x a +≥,∵0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).形如关于x 的一元二次方程2x a ,可直接开平方求解题型二:形如关于x 的一元二次方程2x a ,可直接开平方求解【例题2】一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12=3,3x x =-【答案】C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 变式训练【变式2-1】方程280x -=的解为( ) A .14x =,24x =-B .122x =,222x =-2 若0a则x a =±;表示为1,2x a x a ==- 方程有两个不等实数根 若=0a 则x=O 表示为120x x == 方程有两个相等的实数根 若0a则方程无实数根特别说明:(1)先移项,再开方;(2)形如2x a =的方程不一定有解,需要分情况讨论.C .10x =,222x =D .22x =【答案】B【分析】移项得x 2=8,然后利用直接开平方法解方程即可.【详解】解:移项得28x =,两边开方的:22x =±,即1222,22x x ==-,故选:B . 【点睛】本题考查了一元二次方程的解法:直接开平方法,熟练掌握运算方法是解题的关键. 【变式2-2】方程x 2=0的解为( ) A .0x = B .120x x ==C .无解D .以上都不对【答案】B【分析】直接运用直接开平方法求解即可. 【详解】解:∵x 2=0,∵x 1=x 2=0.故选:B.【点睛】此题考查了解一元二次方程-直接开平方法,熟练掌握直接开平方的方法是解本题的关键. 【变式2-3】一元二次方程224x =-的解是( ) A .2x =- B .2x =C .无解D .12x =,22x =-【答案】C形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解题型三:形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解 【例题5】方程2(1)4x +=的解为( )A .121,1x x ==-B .121,3x x =-=C .122,2x x ==-D .121,3x x ==-【答案】D【分析】根据直接开平方法即可求解.3 形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解,两根是12,n m n mx x a a-+--==. 特别说明:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【详解】解2(1)4x +=x+1=±2∵x+1=2或x+1=-2 解得121,3x x ==- 故选D .【点睛】此题主要考查解一元二次方程,解题的关键是熟知直接开平方法的运用. 变式训练【变式5-1】2(31)9x -= 【答案】(1)x 1=43,x 2=23-;【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可; 【详解】解:(1)2(31)9x -=, 两边开方得:313x -=±, 解得:x 1=43,x 2=23-;【变式5-2】解方程:(1)22(2)180x +-= (2)229(2)4(25)x x -=+ (1)解:22(2)180x +-=, ∵22(2)18x +=, ∵2(2)9x +=, ∵23x +=或23x,解得:x 1=1,x 2=-5;(2)解:∵9(x -2)2=4 (2x +5)2.∵3(x -2)=2(2x +5)或3(x -2)=-2(2x +5), 解得x 1=-16,x 2=47-配方法解一元二次方程题型四:用配方法给方程变形【例题3】(2021·浙江杭州市·八年级期中)用配方法解方程241x x -=时,原方程应变形为( ) A .2(2)1x -= B .2(2)5x +=C .2(2)1x +=D .2(2)5x -=【答案】D【分析】移项,配方,变形后即可得出选项. 【详解】解:x 2-4x =1, x 2-4x +4=1+4, ∵(x -2)2=5,4 1.配方法的定义通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.2.用配方法解一元二次方程的一般步骤①通过去分母、去括号、移项、合并同类项等步骤,把原方程化为20(0)ax bx c a ++=≠的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数,形如;⑤一般地,如果一个一元二次方程通过配方转化成的形式,那么就有:(1)当p >0时,原方程有两个不相等的实数根;(2)当p =0时,原方程有两个相等的实数根;(3)当p <0时,因为对任意实数x ,都有,所以原方程无实数根. . 特别说明:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.2()x n p +=2()x n p +=12x n p x n p =--=-+,12x x n ==-2()0x n +≥故选:D .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 变式训练【变式4-1】(2021·浙江杭州市·八年级期中)方程26100x x --=变形时,下列变形正确的为( ) A .2(3)1x += B .2(3)1x -=C .2(3)19x +=D .2(3)19x -=【答案】D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】解:方程移项得:x 2-6x =10,配方得:x 2-6x +9=19,即(x -3)2=19,故选:D .【变式4-2】(2021·浙江杭州市·八年级期中)一元二次方程2660x x --=经配方可变形为( ) A .2(3)10x -= B .()2642x -=C .2(6)6x -=D .2(3)15x -=【答案】D【分析】把方程左边化为完全平方式的形式即可.【详解】解:原方程可化为x 2-6x +32-32=6,即(x -3)2=15.故选:D .【变式4-3】(2021·浙江杭州市·八年级期中)若方程280x x m -+=可通过配方写成2() =6x n -的形式,则285++=x x m 可配方成( ) A .2(5)1x n -+= B .2()1x n +=C .2(5)11x n -+=D .2()11x n +=【答案】D【分析】已知方程x 2-8x +m =0可以配方成(x -n )2=6的形式,把x 2-8x +m =0配方即可得到一个关于m 的方程,求得m 的值,再利用配方法即可确定x 2+8x +m =5配方后的形式. 【详解】解:∵x 2-8x +m =0, ∵x 2-8x =-m , ∵x 2-8x +16=-m +16,∵(x -4)2=-m +16, 依题意有n =4,-m +16=6, ∵n =4,m =10,∵x 2+8x +m =5是x 2+8x +5=0, ∵x 2+8x +16=-5+16, ∵(x +4)2=11, 即(x +n )2=11. 故选:D【点睛】本题考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 题型五:配方法解一元二次方程【例题5】(2019·湖北黄冈市·九年级期中)解方程:2x 2﹣4x ﹣1=0.【答案】x 1x 2 【分析】用配方法解一元二次方程即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x=1,则x 2﹣2x=12, ∵x 2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣∵x 1=22+x 2=22. 【点睛】此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确使用, 把左边配成完全平方式, 右边化为常数.变式训练【变式5-1】(2018·芜湖市繁昌区第三中学)解方程: 22310x x --=(用配方法)【答案】14x =,24x =;【分析】先两边同时除以2,再将原方程配方即可得出答案.【详解】解:231x 022x --= 2223331x 02442x ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭2317x 416⎛⎫-= ⎪⎝⎭∵1x =2x = 【变式5-2】(2018·全国九年级单元测试)x 2-4x +2=0(配方法);【答案】x 1=2x 2=2【分析】方程的常数项移到方程右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;【详解】解方程变形得: x 2-4x=-2 配方得: x 2-4x+4=2,即(x -2) 2=2,开方得:x -2=±解得:12x =22x =【变式5-3】(2019·江苏期中)解方程:x 2+6x ﹣2=0.【答案】x=﹣.【分析】利用配方法可求出一元二次方程的解. 【详解】∵x 2+6x ﹣2=0,∵x 2+6x=2,则x 2+6x+9=2+9,即(x+3)2=11, ∵x+3=±11, ∵x=﹣3±11.配方法的应用题型六:配方法用于比较大小【例题6】(2020·福建省永春第五中学九年级期中)已知7115P m =-,2815Q m m =-,(m 为任意实数),则P 、Q 的大小关系为( ) A .P >Q B .P=QC .P <QD .不能确定【答案】C【分析】由题意表示出,再根据化简后的代数式的特征即可作出判断.【详解】解:∵∵P Q <故选C.【点睛】用不等式比较代数式的大小是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 变式训练【变式6-1】(2020·四川遂宁市·八年级期中)已知22862M x y x =-+-,29413N x y =++,则M N-5 1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.的值 ( ) A .为正数 B .为负数C .为非正数D .不能确定【答案】B【分析】将M -N 整理成-(x -3)2-(y+2)2-2,从而说明M -N 的值为负数. 【详解】∵M -N=8x 2-y 2+6x -2-(9x 2+4y+13) =-x 2+6x -y 2-4y -15=-[(x 2-6x+9)+(y 2+4y+4)+2]=-(x -3)2-(y+2)2-2, ∵M -N 的值为负数,故选:B .【点睛】本题考查了配方法的应用、非负数的性质--偶次方.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.【变式6-2】(2019·浙江杭州市·九年级其他模拟)若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥ B .M N ≤C .M N >D .M N <【答案】C【解析】∵223824M x N x x =+=+,,∵222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∵M N >.故选C.【变式6-3】(2021·河北九年级专题练习)已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定【答案】A【详解】∵M =219a -,N =279a a -(a 为任意实数),∵N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∵N >M ,即M <N ,故选A . 题型七:配方法用于求待定字母的值【例题7】(2018·全国九年级单元测试)已知2a 4b 18-=-,2b 10c 7+=,2c 6a 27-=-.则a b c ++的值是( ) A .5-B .10C .0D .5【答案】C【分析】将已知三个式子相加后,配方即可得到a 、b 、c 的值,从而得出结论. 【详解】由a 2﹣4b =﹣18,b 2+10c =7,c 2﹣6a =﹣27得:a 2﹣4b +b 2+10c +c 2﹣6a +38=0,∵(a ﹣3)2+(b ﹣2)2+(c +5)2=0,∵a =3,b =2,c =﹣5,∵a +b +c =0. 故选C .【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值. 变式训练【变式7-1】(2020·江苏南通市·八年级期中)若x 2+y 2+4x ﹣6y+13=0,则式子x ﹣y 的值等于( ) A .﹣1 B .1C .﹣5D .5【答案】C【分析】把给出的式子进行配方,根据非负数的性质求出x ,y 的值,再代入要求的式子即可得出答案. 【详解】∵x 2+y 2+4x−6y +13=0, ∵x 2+4x +4+y 2−6y +9=0, ∵(x +2)2+(y−3)2=0,∵x =−2,y =3, ∵x−y =−2−3=−5; 故选C .【点睛】此题考查了配方法的应用,用到的知识点是非负数的性质,通过配方求出x ,y 的值是解题的关键. 【变式7-2】(2021·黑龙江大庆市·八年级期末)已知三角形三边长为a 、b 、c ,且满足247a b -=,246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【解析】∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∵a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∵a =3,b =2,c =2,∵此三角形为等腰三角形. 故选A .【变式7-3】若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,4,4n m ∴==.题型八:配方法用于求最值【例题8】(2020·湖南湘西土家族苗族自治州·八年级期末)阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0; ∵21030y y -+的最小值是5 依照上面解答过程,(1)求222020m m ++的最小值; (2)求242x x -+的最大值. 【答案】(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可; (2)利用完全平方公式把原式变形,利用非负数的性质解答即可; 【详解】(1)2222020212019m m m m ++=+++ ()212019m =++∵()210m +≥,∵()2120192019m ++≥,∵222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+,∵()210x -≥, ∵()210x --≤, ∵()2155x --+≤, ∵242x x -+的最大值是5.变式训练【变式8-1】(2019·辽宁大连市·八年级期末)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2C .4D .5【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案.【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭故245,4m += 解得: 2.m =± 故选B.【变式8-2】(2020·全国八年级课时练习)不论,a b 为任何实数,2261035a b a b +-++的值都是( ) A .非负数 B .正数 C .负数 D .非正数【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案. 【详解】2261035a b a b +-++22(3)(5)10a b =-+++>, ∵a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键. 【变式8-3】(2020·山东威海市·八年级期中)若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∵不论a 取何值,x ≤﹣3. 故选D .【真题1】(2016·湖北荆州市·中考真题)将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____. 【答案】(x +2)2+1 【详解】试题分析:原式=2x +4x+4+1=()221x ++ 故答案为:()221x ++【真题2】(2010·河北中考真题)已知实数的最大值为______.【答案】4【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++1链接中考2(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【真题3】(2010·江苏镇江市·中考真题)已知实数的最大值为______.【答案】4 【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++12(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【拓展1】(2020·全国九年级课时练习)解方程:2232mx x -=+()1m ≠【答案】当1m 时,原方程的解是x =1m <时,原方程无实数解【分析】先移项,再合并同类项可得()215m x -=,根据1m ≠求出251x m =-,再讨论10m -<时,10m ->,分别计算出方程的解.【详解】解:移项得:2223mx x -=+, 化简得:()215m x -=,1m ≠,251x m ∴=-, 当10m -<时,2501x m =<-, ∴原方程无实数解,当10m ->时,2501x m =>-, 满分冲刺1x ∴==2x ==∴当1m 时,原方程的解是x ==当1m <时,原方程无实数解.【点睛】此题考查解一元二次方程,根据每个方程的特点选择适合的解法是解题的关键.【拓展2】(2020·渠县崇德实验学校七年级期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值; (3)将两式相减,再配方即可作出判断. 【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0,∵(x﹣1)2+1>0,∵x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【拓展3】(2019·全国九年级单元测试)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∵(y+2)2+4≥4,∵y2+4y+8的最小值为4.仿照上面的解答过程,求x2-x+4的最小值和6-2x-x2的最大值.【答案】154;7.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.【详解】解:(1)x2-x+4=(x-12)2+154,∵(x-12)2≥0,∵(x-12)2+154≥154.则x2-x+4的最小值是154;(2)6-2x-x2=-(x+1)2+7,∵-(x+1)2≤0,∵-(x+1)2+7≤7,则6-2x-x2的最大值为7.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.配方法:先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。
2022-2023学年九年级上数学:配方法和公式法解一元二次方程(附答案解析)
2022-2023学年九年级上数学第21章一元二次方程21.2.1配方法和公式法解一元二次方程1.直接开方解一元二次方程直接开平方法:根据平方根的意义将一元二次方程“降次”为一元一次方程进行求解。
①解形如p x =2的方程:当0=p 时,方程有两个相等的实数根,即021==x x ;当0>p 时,方程有两个不相等的实数根,即p x p x -==21,;当0<p 时,方程没有实数根.2.配方法解一元二次方程用配方法解一元二次方程:ax 2+bx +c =0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x +a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法解一元二次方程用公式法求一元二次方程的一般步骤:求出判别式24b ac =-的值,判断根的情况:①240b ac ∆=->⇔方程有两个不相等的实数根;②240b ac ∆=-=⇔方程有两个相等的实数根.③042<ac b -=∆⇔方程没有实数根。
自学笔记:直接开平方法:形如()20x m n n +=≥()的方程,可直接开平方求解。
【精讲1】一元二次方程240x -=的解是()A .2-B .2C .D .2±【分析】这个式子先移项,变成24x =,从而把问题转化为求4的平方根.【答案】D【解析】解:移项得,24x =开方得,2x =±,故选:D .【精讲2】方程2(1)6x -=的解是.【分析】把方程两边开方得到1x -=,然后解一次方程即可.【答案】11x =21x =【解析】解:2(1)6x -= ,1x ∴-=,11x ∴=+21x =-.【练习1】方程2(1)9x +=的解为()A .12x =,24x =-B .12x =-,24x =C .14x =,22x =D .12x =-,24x =-【答案】A【解析】解:2(1)9x +=,13x +=±,所以12x =,24x =-.故选:A .【练习2】一元二次方程24810x -=的解是.【答案】1299,22x x ==-【解析】解:24810x -= ,2481x ∴=,2814x ∴=,∴1299,22x x ==-,故答案为:1299,22x x ==-.【精讲1】用配方法解方程2410x x +-=,变形正确的是()A .2(2)5x +=B .2(4)5x +=C .2(2)1x +=D .2(4)1x +=【分析】方程移项,两边加上一次项系数一半的平方,利用完全平方公式化简得到结果,即可作出判断.【答案】A【解析】解:方程2410x x +-=,移项得:241x x +=,配方得:2445x x ++=,则2(2)5x +=.故选:A .【精讲2】下列用配方法解方程21202x x --=的四个步骤中,出现错误的是()222212024215(1)512x x x x x x x x --=-=-+=-==+ ①②③④A .①B .②C .③D .④【分析】观察解方程步骤,找出出错的步骤即可.【答案】D【解析】解:用配方法解方程21202x x --=的四个步骤中,222212024215(1)512x x x x x x x x --=-=-+=-==+ ①②③④,出现错误的是④.故选:D .【练习1】一元二次方程2430x x -+=配方为2(2)x k -=,则k 的值是.【答案】1【解析】解:2430x x -+= ,243x x ∴-=-,24434x x ∴-+=-+,2(2)1x ∴-=,一元二次方程2430x x -+=配方为2(2)x k -=,1k ∴=,故答案为:1.【练习2】将一元二次方程2220x x --=用配方法化成2()x a b +=的形式为,此方程的根为.【答案】2(1)3x -=;11x =+21x =-【解析】解:2220x x --=,222x x -=,配方得:22121x x -+=+,2(1)3x -=,开方得:1x -=,11x =+21x =-故答案为:2(1)3x -=;11x =+21x =-【精讲1】已知关于x 的方程2(3)20x k x k ++++=,则下列说法正确的是()A .不存在k 的值,使得方程有两个相等的实数解B .至少存在一个k 的值,使得方程没有实数解C .无论k 为何值,方程总有一个固定不变的实数根D .无论k 为何值,方程有两个不相等的实数根【分析】先计算△的值,利用k 的值,可作判断.【答案】C【解析】解:关于x 的方程2(3)20x k x k ++++=,△222(3)41(2)21(1)0k k k k k =+-⨯⨯+=++=+ ,A 、当1k =-时,△0=,此时方程有两个相等的实数解,故此选项错误;B 、因为△0 ,所以不存在k 的值,使得使得方程没有实数解.故此选项错误;C 、解方程得:11x =-,22x k =--,所以无论k 为何值,方程总有一个固定不变的实数根1-,故此选项正确;D 、当1k ≠-时,方程有两个不相等的实数解,故此选项错误;故选:C .【精讲2】一元二次方程22710x x --=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定【分析】根据根的判别式公式,求该方程的判别式,根据结果的正负情况即可得到答案.【答案】A【解析】解:根据题意得:△2(7)42(1)=--⨯⨯-498=+57=0>,即该方程有两个不相等的实数根,故选:A .【精讲3】若关于x 的一元二次方程22(21)10k x k x -++=有两个实数根,则k 的取值范围为()A .14k >-B .14k - C .14k >-且0k ≠D .14k - 且0k ≠【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△240b ac =- .【答案】D【解析】解:根据题意列出方程组222[(21)]400k k k ⎧-+-⎨≠⎩,解得14k - 且0k ≠.故选:D .【练习1】若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是()A .1k >B .1k <C .1k <且0k ≠D .1k 【答案】B【解析】解:由题意知,△440k =->,解得:1k <.故选:B .【练习2】关于x 的一元二次方程240x x k ++=有实数解,则k 的取值范围是()A .4kB .4kC .4k >D .4k =【答案】B【解析】解: 关于x 的一元二次方程240x x k ++=有实数解,2244410b ac k ∴-=-⨯⨯ ,解得:4k ,故选:B .【练习3】关于x 的一元二次方程2(3)2(1)0x k x k -+++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .有两个实数根D .没有实数根【答案】C【解析】解:△22[(3)]42(1)(1)k k k =-+-⨯+=-,2(1)0k - ,即△0 ,∴方程有两个实数根.故选:C .自学笔记:公式法:一元二次方程20ax bx c ++=的求根公式为x =242b b aca-±-(b 2-4ac ≥0).命题方向:用公式法解一元二次方程.名师点拨:先化成一元二次方程的一般式,注意a ,b ,c 的符号.【精讲1】用公式法解方程22x x +=时,求根公式中的a ,b ,c 的值分别是()A .1a =,1b =,2c =B .1a =,1b =-,2c =-C .1a =,1b =,2c =-D .1a =,1b =-,2c =【分析】方程整理为一般形式,找出a ,b ,c 的值即可.【答案】C【解析】解:将方程整理得:220x x +-=,这里1a =,1b =,2c =-,故选:C .【精讲2】一元二次方程(23)(1)1x x +-=的解为.【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【答案】11334x -+=,21334x -=【解析】解:(23)(1)1x x +-=,化为一般形式得:2240x x +-=,△2142(4)33=-⨯⨯-=,13322x -±∴=⨯,11334x -+∴=,21334x -=,故答案为:11334x -+=,21334x -=.【练习1】方程(1)2x x -=的两根为()A .10x =,21x =B .10x =,21x =-C .11x =,22x =D .11x =-,22x =【答案】D【解析】解:方程移项并化简得220x x --=,1a =,1b =-,2c =-,△1890=+=>,192x ±∴=,解得11x =-,22x =.故选:D .【练习2】写出方程210x x +-=的一个正根.【解析】解:这里1a =,1b =,1c =-,△145=+=,x ∴=.。
用配方法求解一元二次方程解法(知识讲解)九年级数学上册基础知识讲与练
专题2.6 用配方法求解一元二次方程(知识讲解)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法在比较大小中二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解;1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。
知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同时对后期学习二次函数有着重要的作用,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1.用配方法解方程:2+-=.23220x x【答案】1x =2x =- 【分析】将原方程二次项系数化1,用配方法求解.2x ⎫=⎪⎭22x = 299288x +=+ 2258x ⎛= ⎝x =∴ 1x 2x =-【点拨】本题考查一元二次方程的解法,配方法是常用方法,掌握配方法解方程的步骤是解答此题的关键.举一反三:【变式1】 用配方法解方程:22310x x -+=. 【答案】112x =,21x =. 【分析】利用配方法得到(x ﹣34)2=116,然后利用直接开平方法解方程即可. 解:x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, (x ﹣34)2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点拨】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.【变式2】 用配方法解方程:2x 2-4x -1=0.【答案】x 11,x 2=1解:根据配方法解方程即可.移项得,2x 2-4x =1,将二次项系数化为1得,2122x x -=, 配方得,x 2-2x +1=12+1,2312x -=(),∴1x -=,∴1211x x =+= 类型二、配方法在代数中的应用2.我们在学习一元二次方程的解法时,了解到配方法.“配方法”是解决数学问题的一种重要方法.请利用以上提示解决下题:求证:()1不论m 取任何实数,代数式()24419m m -++的值总是正数()2当m 为何值时,此代数式的值最小,并求出这个最小值.【答案】(1)证明见分析;(2)4.【分析】(1)此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.(2)根据(1)4m 2-4(m+1)+9=(2m -1)2+4得出m 取12时代数式的值最小,最小值是4.解:(1)()24419m m -++ 24449m m =--+2445m m =-+2(21)4m =-+;∴不论m 取任何实数,代数式()24419m m -++的值总是正数.()2由(1)()224419(21)4m m m -++=-+得:12m =时,此代数式的值最小,这个最小值是:4. 【点拨】此题考查了配方法的应用,解题时要根据配方法的步骤进行解答,注意在变形的过程中不要改变式子的值.举一反三:【变式1】 我们可以用以下方法求代数式265x x ++的最小值.()22222652333534x x x x x ++=+⋅⋅+-+=+-∴()230x +≥∴()2443x -≥-+∴当3x =-时,265x x ++有最小值4-.请根据上述方法,解答下列问题:(1)求代数式242x x -+的最小值;(2)求代数式269x x -++的最大或最小值,并指出它取得最大值或最小值时x 的值;(3)求证:无论x 和y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数.【答案】(1)-2 (2)当3x =时,269x x -++有最大值18 (3)证明见分析【分析】(1)根据题中所给方法进行求解即可;(2)由题中所给方法可得()2269318x x x -++=--+,然后问题可求解;(3)由题意可得()()()22222210662113131x y xy x y x y x y +---+=-+-+-+,进而问题可求解.(1) 解:由题意得: ()22222422222222x x x x x -+=-⋅⋅+-+=--,∴()220x -≥∴()2222x --≥-∴当2x =时,242x x -+有最小值2-.(2) 由题意得:()2269318x x x -++=--+,∴()230x --≤∴()231818x --+≤∴当3x =时,269x x -++有最大值18.(3) 由题意得:2221066211x y xy x y +---+ =22222169169x y y x xy y x +-++++--+=()()()2223131x y x y -+-+-+;∴()()()22230,10,30x y x y -≥-≥-≥∴()()()22231311x y x y +-+--+≥,∴无论x 和y 取任何实数,代数式2221066211x y xy x y +---+的值都是正数.【点拨】本题主要考查配方法的应用及完全平方公式,熟练掌握配方法及完全平方公式是解题的关键.【变式2】 先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∴(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【答案】(1)154;(2)5;(3)当x=5m时,花园的面积最大,最大面积是50m2【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.解:(1)m2+m+4=(m+12)2+154,∴(m+12)2≥0,∴(m+12)2+154≥154,则m2+m+4的最小值是154;(2)4﹣x2+2x=﹣(x﹣1)2+5,∴﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∴﹣2x2+20x=﹣2(x﹣5)2+50∴﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.【点拨】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.类型三、配方法在几何中的应用3.如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是________;M m n落(2)若把点Q向右平移a个单位长度,向下平移a个单位长度后,得到的点(,)在第四象限,求a的取值范围;(3)在(2)条件下,当a取何值,代数式2+25m n+取得最小值.【答案】(1)Q(-3,1)(2)a>3(3)0【分析】(1)如图,作PA∴x轴于A,QB∴x轴于B,则∴PAO=∴OBQ=90°,证明∴OBQ∴∴PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;(2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;(3)由(2)得,m=-3+a,n=1-a,代入所求式子得225=-(),继而根据偶次方a++2m n4的非负性即可求得答案.解:(1)如图,作PM∴x轴于A,QN∴x轴于B,则∴PAO=∴OBQ=90°,∴∴P+∴POA=90°,由旋转的性质得:∴POQ=90°,OQ=OP,∴∴QOB+∴POA=90°,∴∴QOB=∴P,∴∴OBQ∴∴PAO(AAS),∴OB=PA,QB=OA,∴点P的坐标为(1,3),∴OB=PA=3,QB=OA=1,∴点Q的坐标为(-3,1);(2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,得到的点M的坐标为(-3+a,1-a),而M在第四象限,所以-30 10aa+>⎧⎨-<⎩,解得a>3,即a的范围为a>3;(3)由(2)得,m=-3+a,n=1-a,∴2225(3)2(1)5m n a a++=-+-+269225a a a=-++-+2816a a=-+24a=-(),∴240a-≥(),∴当a=4时,代数式225m n++的最小值为0.【点拨】本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.举一反三:【变式1】我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例:已知x可取任何实数,试求二次三项式x2+6x﹣1最小值.解:x2+6x﹣1=x2+2×3•x+32﹣32﹣1=(x+3)2﹣10∴无论x取何实数,总有(x+3)2≥0.∴(x+3)2﹣10≥﹣10,即x2+6x﹣1的最小值是﹣10.即无论x取何实数,x2+6x﹣1的值总是不小于﹣10的实数.问题:(1)已知:y =x 2﹣4x +7,求证:y 是正数.知识迁移:(2)如图,在Rt △ABC 中,∴C =90°,AC =6cm ,BC =4cm ,点P 在边AC 上,从点A 向点C 以2cm/s 的速度移动,点Q 在CB的速度从点C 向点B 移动.若点P ,Q 均以同时出发,且当一点移动到终点时,另一点也随之停止,设△PCQ 的面积为S cm 2,运动时间为t 秒,求S 的最大值.【答案】(1)见分析;(2)当t =32时,S 【分析】(1)根据例题中的配方求最值;(2)根据三角形的面积公式求出S 和t 的关系式,再利用配方求最值.解:(1)y =x 2﹣4x +7=x 2﹣4x +4+3=(x ﹣2)2+3.∴(x ﹣2)2≥0.∴y ≥0+3=3.∴y >0.∴y 是正数.(2)由题意:AP =2t ,CQ,PC =6﹣2t .(0≤t ∴S =12PC •CQ .=12(6﹣2t )2t 2﹣3t )t ﹣32)2 ∴(t ﹣32)2≥0.∴当t =32时,S 【点拨】本题考查利用配方求最值,正确配方是求解本题的关键.【变式2】 已知a 、b 是等腰∴ABC 的两边长,且满足a 2+b 2-8a -4b+20=0,求a 、b 的值.【答案】a=4,b=2.【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可解:a2+b2-8a-4b+20=0,a2-8a+16+b2-4b+4=0,(a-4)2+(b-2)2=0a-4=0,b-2=0,a=4,b=2.【点拨】本题考查的是配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.。
部编数学九年级上册专题03《配方法解一元二次方程》重难点题型分类(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题03 《配方法解一元二次方程》重难点题型分类专题简介:本份资料专攻《配方法解一元二次方程》中“用配方法解二次项系数为1的一元二次方程”、“用配方法解二次项系数不为1的一元二次方程”、“利用一元二次方程的配方求字母的值”、“利用一元二次方程的配方法解新定义问题”、“配方法的应用”、“一元二次方程的几何解法”、重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:用配方法解二次项系数为1的一元二次方程方法点拨:二次项系数为1时配方法的步骤:(1)找出一次项系数;(2)加一次项系数一半的平方,减一次项系数一半的平方,常数项不管(加了就要减,不改变原式的大小);(3)配方处理,合并常数项,写成完全平方的形式。