C++迷宫问题

合集下载

c语言迷宫问题课程设计

c语言迷宫问题课程设计

c语言迷宫问题课程设计一、课程目标知识目标:1. 学生能理解并掌握C语言中的基本控制结构,包括顺序结构、选择结构和循环结构。

2. 学生能运用数组的概念,实现迷宫的二维表示。

3. 学生能理解并实现递归算法,解决迷宫路径搜索问题。

技能目标:1. 学生能够设计并编写C语言程序,实现迷宫的创建和路径的寻找。

2. 学生通过迷宫问题,培养逻辑思维和问题解决能力,能够将复杂问题分解为小问题逐一解决。

3. 学生能够运用调试工具,对程序进行调试和优化,提高代码的执行效率。

情感态度价值观目标:1. 学生在探索迷宫问题的过程中,培养对编程的兴趣,增强学习信息技术的信心和热情。

2. 学生通过团队协作解决问题,培养沟通协作能力和集体荣誉感。

3. 学生能够体会到编程解决问题的成就感,激发继续深入学习计算机科学的兴趣。

课程性质:本课程为高年级信息技术课程,以项目式学习方式展开,强调理论与实践相结合。

学生特点:学生具备基本的C语言知识,具有一定的逻辑思维和问题解决能力。

教学要求:教师需引导学生主动探索,鼓励学生提出问题、分析问题并解决问题,注重培养学生的实际操作能力和团队协作能力。

通过本课程的学习,使学生将所学知识应用于实际问题的解决中,提高综合运用能力。

二、教学内容本课程以C语言迷宫问题为载体,结合以下教学内容,确保学生能够达成课程目标:1. C语言基础知识回顾:包括变量、数据类型、运算符、控制结构(顺序、选择、循环)。

2. 二维数组:数组的概念、二维数组的定义和使用,以及如何用二维数组表示迷宫。

3. 递归算法:递归的定义、递归调用的执行过程,以及如何利用递归求解迷宫路径。

4. 程序调试与优化:介绍调试工具的使用,指导学生如何查找并修正程序中的错误,提高代码执行效率。

教学内容安排:第一课时:C语言基础知识回顾,导入迷宫问题,讨论迷宫问题的解决思路。

第二课时:学习二维数组,学生尝试使用二维数组创建迷宫。

第三课时:介绍递归算法,分析迷宫问题中递归的应用。

c语言实现迷宫问题

c语言实现迷宫问题

数据结构试验迷宫问题(一)基本问题1•问题描述这是心理学中的一个经典问题。

心理学家把一只老鼠从一个无顶盖的大盒子的入口处放入,让老鼠自行找到出口出来。

迷宫中设置很多障碍阻止老鼠前行,迷宫唯一的出口处放有一块奶酪,吸引老鼠找到出口。

简而言之,迷宫问题是解决从布置了许多障碍的通道中寻找出路的问题。

本题设置的迷宫如图1所示。

入口迷宫四周设为墙;无填充处,为可通处。

设每个点有四个可通方向,分别为东、南、西、北(为了清晰,以下称"上下左右”)。

左上角为入口。

右下角为出口。

迷宫有一个入口,一个出口。

设计程序求解迷宫的一条通路。

2.数据结构设计以一个n的数组mg表示迷宫,每个元素表示一个方块状态,数组元素0 和1分别表示迷宫中的通路和障碍。

迷宫四周为墙,对应的迷宫数组的边界元素均为1。

根据题目中的数据,设置一个数组mg如下int mg[M+2][N+2]={{1,1,1,1,1,1,1,1},{1,0,0,1,0,0,0,1},{1,1,0,0,0,1,1,1},{1,0,0,1,0,0,0,1},{1,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1}};在算法中用到的栈采用顺序存储结构,将栈定义为Struct{ int i; // 当前方块的行号int j; // 当前方块的列号int di; //di 是下一个相邻的可走的方位号}st[MaxSize];〃定义栈int top=-1 // 初始化栈3设计运算算法要寻找一条通过迷宫的路径,就必须进行试探性搜索,只要有路可走就前进一步,无路可进,换一个方向进行尝试;当所有方向均不可走时,则沿原路退回一步(称为回溯),重新选择未走过可走的路,如此继续,直至到达出口或返回入口(没有通路)。

在探索前进路径时,需要将搜索的踪迹记录下来,以便走不通时,可沿原路返回到前一个点换一个方向再进行新的探索。

后退的尝试路径与前进路径正好相反,因此可以借用一个栈来记录前进路径。

用C语言解决迷宫问题

用C语言解决迷宫问题

⽤C语⾔解决迷宫问题#include <stdio.h>#include <stdlib.h>#define ROW 10#define COL 10/*迷宫中位置信息*/typedef struct position{int x;int y;}position;/*在迷宫中的当前位置的信息,也是⼊栈的基本元素*/typedef struct SElem{int di;position seat;}SElem;/*链式栈中节点的定义*/typedef struct position_stack{SElem p;struct position_stack *next;}*Stack_pNode,Stack_Node;void InitStack(Stack_pNode *Link){*Link = NULL;}void push(Stack_pNode *Link,SElem e){Stack_pNode new_SElem = (Stack_pNode)calloc(1,sizeof(Stack_Node));new_SElem->p = e;new_SElem->next = NULL;if (*Link == NULL)*Link = new_SElem;else{new_SElem->next = *Link;*Link = new_SElem;}}int pop(Stack_pNode *Link,SElem *e){if (*Link == NULL)return 0;*e = (*Link)->p;Stack_pNode q = *Link;*Link = (*Link)->next;free(q);return 1;}int top(Stack_pNode Link, SElem *e){if (Link == NULL)return 0;*e = Link->p;return 1;}int empty(Stack_pNode Link){if (Link == NULL)return 1;elsereturn 0;}int reverse(Stack_pNode *Link){Stack_pNode p, q, r;if (*Link == NULL || (*Link)->next == NULL)return 0;r = *Link;p = (*Link)->next;q = NULL;while (p){r->next = q;q = r;r = p;p = p->next;}r->next = q;*Link = r;}void print(Stack_pNode Link){Stack_pNode r = Link;while (r){printf("(%d,%d) -> ",r->p.seat.x,r->p.seat.y);r = r->next;}printf("exit\n");}int curstep = 1;/*纪录当前的⾜迹,填写在探索前进的每⼀步正确的路上*//*迷宫地图。

C语言递归实现迷宫寻路问题

C语言递归实现迷宫寻路问题

C语⾔递归实现迷宫寻路问题迷宫问题采⽤递归和⾮递归两种⽅法,暂时完成递归⽅法,后续会补上⾮递归⽅法#include<stdio.h>#include<stdbool.h>bool findPath(int a[][8],int i,int j){//递归找出⼝if(i==6&&j==6)//如果找到了⽬标a[6][6]则返回truereturn true;if(a[i][j]==0)//若当前路径未被找到,则继续{a[i][j]=2;//当前⾛的路径置为2,表⽰⾛过if(findPath(a,i+1,j)||findPath(a,i,j+1)||findPath(a,i-1, j)||findPath(a,i-1,j))//每个⽅向都判断,依次展开递归,寻找最佳路径return true;//若选择的路径可以⾛,则返回trueelse{//若当前选择的路径不能⾛a[i][j]=0;//弹栈并恢复路径,回退到上⼀次的位置return false;}}else//未能找到最终点return false;}void print(int a[][8])//打印当前的⼆维数组表{for(int i=0;i<8;i++){for(int j=0;j<8;j++){printf("%d ",a[i][j]);}printf("\n");}}int main(){int a[8][8]={0};for(int i=0;i<8;i++)//设置围墙和障碍物{a[0][i]=1;a[i][0]=1;a[7][i]=1;a[i][7]=1;}a[3][1]=1;a[3][2]=1;print(a);printf("-----------after find path-----------\n");findPath(a, 1, 1);print(a);}。

C语言实验:迷宫问题(搜索,C语言实现栈、队列)

C语言实验:迷宫问题(搜索,C语言实现栈、队列)

C语⾔实验:迷宫问题(搜索,C语⾔实现栈、队列)Description给定迷宫起点和终点,寻找⼀条从起点到终点的路径。

(0,1)(2,0)起点(1,1)(1,2)(1,3)(1,4)(2,0)(2,1)(2,4)(3,0)(3,1)(3,2)终点(3,4)(4,1)上图中黄⾊代表墙,⽩⾊代表通路,起点为(1,1),终点为(3,4)。

要求搜寻策略是从起点开始按照“上、下、左、右”四个⽅向寻找终点,到下⼀个点继续按照“上、下、左、右”四个⽅⾯寻找,当该结点四个⽅向都搜寻完,但还没到终点时,退回到上⼀个点,直到找到终点或者没有路径。

⽐如上图从(1,1)开始,向上(0,1)不通,向下到(2,1);到了(2,1)后继续按“上、下、左、右”四个⽅⾯寻找,上已经⾛过,向下到(3,1);到(3,1)后上已经⾛过,下和左不通,向右到(3,2);到(3,2)四个⽅⾯都不通,回到(3,1)四个⽅向都不通,再回到(2,1),(1,1);到达(1,1)后下已经⾛过,左不通,继续向右⾛,重复这个过程最后到达(3,4)。

Input第⼀⾏两个数m和n表⽰迷宫的⾏数和列数。

迷宫⼤⼩不超过100×100第⼆⾏四个数x1,y1,x2,y2分别表⽰起点和终点的坐标。

接下来是m⾏n列的数,⽤来表⽰迷宫,1表⽰墙,0表⽰通路。

Output从起点到终点所经过的路径的坐标。

如果不存在这样的路径则输出“No Path!”。

Sample Input5 61 1 3 41 1 1 1 1 11 0 0 0 0 11 0 1 1 0 11 0 0 1 0 11 1 1 1 1 1Sample Output(1 1)(1 2)(1 3)(1 4)(2 4)(3 4)1.思路:(1)若当前点是终点,dfs函数返回1;(2)若不是终点,将此点标记为1,对该点4个⽅向进⾏搜索,实现⽅式为定义int dir[4][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; 通过⼀个⼩循环: for(int i = 0; i < 4; i++) {  position nextp; nextp.x = dir[i][0] + now.x;nextp.y = dir[i][1] + now.y;...... } 进⾏搜索;若该点的下⼀个点nextp不是墙,未⾛,并且没有超界则将nextp压⼊栈中,递归调⽤dfs,若此过程经过(1)判断返回了1,说明最终找到了通往终点的路,便可以返回1,结束函数,此时栈中已储存了通往终点的路径,若没有通路,则弹出栈顶元素,根据递归原理该路径上的所有点都会弹出并标记未⾛,回溯到之前的点,继续向其他⽅向搜索,直到找到终点或遍历完整个图。

c迷宫问题课程设计

c迷宫问题课程设计

c 迷宫问题课程设计一、教学目标本课程旨在通过C语言迷宫问题的学习,让学生掌握以下知识目标:1.理解C语言的基本语法和数据结构;2.掌握迷宫问题的算法设计和逻辑思考;3.学会使用C语言编写简单的迷宫求解程序。

学生通过本课程的学习,应具备以下技能目标:1.能够运用C语言进行简单的程序设计;2.能够独立思考并解决迷宫问题;3.能够通过编程实践,提高问题解决能力。

在情感态度价值观方面,学生应:1.培养对计算机编程的兴趣和好奇心;2.培养克服困难的决心和毅力;3.培养团队协作和分享成果的意识。

二、教学内容本课程的教学内容以C语言迷宫问题为主线,主要包括以下几个部分:1.C语言基础知识:C语言的基本语法、数据类型、运算符、控制语句等;2.数据结构:数组、链表、栈和队列等;3.迷宫问题算法:深度优先搜索、广度优先搜索等算法;4.迷宫求解程序设计:根据算法设计相应的程序,实现迷宫的求解。

三、教学方法为了提高教学效果,本课程将采用以下教学方法:1.讲授法:通过讲解C语言的基本语法和数据结构,使学生掌握相关知识;2.案例分析法:分析典型的迷宫问题案例,引导学生思考和探索;3.实验法:让学生动手编写迷宫求解程序,提高其实践能力;4.小组讨论法:分组进行讨论和实践,培养学生的团队协作能力。

四、教学资源为了支持教学内容的实施,我们将准备以下教学资源:1.教材:《C语言程序设计教程》;2.参考书:《C语言编程思想》、《数据结构与算法》;3.多媒体资料:课件、教学视频等;4.实验设备:计算机、网络环境等。

通过以上教学资源的支持,我们将帮助学生更好地学习C语言迷宫问题,提高其编程能力和问题解决能力。

五、教学评估本课程的教学评估将采取多元化评价方式,全面客观地评价学生的学习成果。

评估方式包括:1.平时表现:通过课堂参与、提问、讨论等环节,评价学生的学习态度和积极性;2.作业:布置与迷宫问题相关的编程作业,评估学生的编程能力和问题解决能力;3.考试成绩:通过期末考试,检验学生对C语言迷宫问题的掌握程度。

求解迷宫问题 (c语言

求迷宫问题就是求出从入口到出口的路径。

在求解时,通常用的是“穷举求解”的方法,即从入口出发,顺某一方向向前试探,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续试探,直至所有可能的通路都试探完为止。

为了保证在任何位置上都能沿原路退回(称为回溯),需要用一个后进先出的栈来保存从入口到当前位置的路径。

首先用如图3.3所示的方块图表示迷宫。

对于图中的每个方块,用空白表示通道,用阴影表示墙。

所求路径必须是简单路径,即在求得的路径上不能重复出现同一通道块。

为了表示迷宫,设置一个数组mg,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙,如图3.3所示的迷宫,对应的迷宫数组mg如下:int mg[M+1][N+1]={ /*M=10,N=10*/{1,1,1,1,1,1,1,1,1,1},{1,0,0,1,0,0,0,1,0,1},{1,0,0,1,0,0,0,1,0,1},/ 1{1,0,0,0,0,1,1,0,0,1}, {1,0,1,1,1,0,0,0,0,1}, {1,0,0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,1,0,0,1}, {1,0,1,1,1,0,1,1,0,1}, {1,1,0,0,0,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1,1} }; 伪代码:c语言描述如下:6/ 2void mgpath() /*路径为:(1,1)->(M-2,N-2)*/{int i,j,di,find,k;top++; /*初始方块进栈*/Stack[top].i=1;Stack[top].j=1;Stack[top].di=-1;mg[1][1]=-1;while (top>-1) /*栈不空时循环*/{i=Stack[top].i;j=Stack[top].j;di=Stack[top].di;if (i==M-2 && j==N-2) /*找到了出口,输出路径*/ {瀠楲瑮?迷宫路径如下:\n);for (k=0;k<=top;k++){printf(\ (%d,%d),Stack[k].i,Stack[k].j); if ((k+1)%5==0) printf(\);}6/ 3printf(\);return;}find=0;while (di<4 && find==0) /*找下一个可走方块*/ { di++;switch(di){case 0:i=Stack[top].i-1;j=Stack[top].j;break;case 1:i=Stack[top].i;j=Stack[top].j+1;break;case 2:i=Stack[top].i+1;j=Stack[top].j;break;case 3:i=Stack[top].i;j=Stack[top].j-1;break;}6/ 4if (mg[i][j]==0) find=1;}if (find==1) /*找到了下一个可走方块*/{Stack[top].di=di; /*修改原栈顶元素的di值*/ top++; /*下一个可走方块进栈*/Stack[top].i=i;Stack[top].j=j;Stack[top].di=-1;mg[i][j]=-1; /*避免重复走到该方块*/}else /*没有路径可走,则退栈*/{ mg[Stack[top].i][Stack[top].j]=0;/*让该位置变为其他路径可走方块*/top--;}}牰湩晴尨没有可走路径!\n);}6/ 5(范文素材和资料部分来自网络,供参考。

求解迷宫问题(c语言,很详细哦)

求迷宫问题就是求出从入口到出口的路径。

在求解时,通常用的是“穷举求解”的方法,即从入口出发,顺某一方向向前试探,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续试探,直至所有可能的通路都试探完为止。

为了保证在任何位置上都能沿原路退回(称为回溯),需要用一个后进先出的栈来保存从入口到当前位置的路径。

首先用如图所示的方块图表示迷宫。

对于图中的每个方块,用空白表示通道,用阴影表示墙。

所求路径必须是简单路径,即在求得的路径上不能重复出现同一通道块。

为了表示迷宫,设置一个数组mg,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙,如图所示的迷宫,对应的迷宫数组mg如下:int mg[M+1][N+1]={ /*M=10,N=10*/{1,1,1,1,1,1,1,1,1,1},{1,0,0,1,0,0,0,1,0,1}, {1,0,0,1,0,0,0,1,0,1}, {1,0,0,0,0,1,1,0,0,1}, {1,0,1,1,1,0,0,0,0,1}, {1,0,0,0,1,0,0,0,0,1}, {1,0,1,0,0,0,1,0,0,1}, {1,0,1,1,1,0,1,1,0,1}, {1,1,0,0,0,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1,1} }; 伪代码:c语言描述如下:void mgpath() /*路径为:(1,1)->(M-2,N-2)*/ {int i,j,di,find,k;top++; /*初始方块进栈*/Stack[top].i=1;Stack[top].j=1;Stack[top].di=-1;mg[1][1]=-1;while (top>-1) /*栈不空时循环*/{i=Stack[top].i;j=Stack[top].j;di=Stack[top].di;if (i==M-2 && j==N-2) /*找到了出口,输出路径*/{printf("迷宫路径如下:\n");for (k=0;k<=top;k++){printf("\t(%d,%d)",Stack[k].i,Stack[ k].j);if ((k+1)%5==0) printf("\n");}printf("\n");return;}find=0;while (di<4 && find==0) /*找下一个可走方块*/{ di++;switch(di){case 0:i=Stack[top].i-1;j=Stack[top].j ;break;case 1:i=Stack[top].i;j=Stack[top].j +1;break;case 2:i=Stack[top].i+1;j=Stack[top].j ;break;case 3:i=Stack[top].i;j=Stack[top] .j-1;break;}if (mg[i][j]==0) find=1;}if (find==1) /*找到了下一个可走方块*/{Stack[top].di=di; /*修改原栈顶元素的di值*/top++; /*下一个可走方块进栈*/Stack[top].i=i ;Stack[top].j=j ;Stack[top].di= -1;mg[i][j]=-1; /*避免重复走到该方块*/ }else /*没有路径可走,则退栈*/{ mg[Stack[top].i][Stack[top].j]=0;/*让该位置变为其他路径可走方块*/top--;}}printf("没有可走路径!\n");}。

c语言迷宫问题代码实现

}SEAT;
structStackList
{
SEAT stack[MAXSIZE];
inttop;
}*Stack;
intEmptyStack(StackList*Stack)//判断是否为空栈
{
if(Stack->top==0)
return 0;
else
return 1;
}
intMove[4][2]={{0,1},{1,0},{0,-1},{-1,0}};//分别表示向东、西、南、北需要加上的坐标
CurSeat=temp;
find =1;
}
}
}
}
}while(EmptyStack(Stack));
return false;
}
voidPrintStack(StackList*Stack)//输出路线
{
if(Stack->top==0)
printf("There is no route can be out of the maze\n");
Mark(CurSeat);
if(CurSeat.x==end.x+1&&CurSeat.y==end.y+1)//如果找到出口,返回
{
return true;
}
else
{
intfind=0;
while(CurSeat.di<3&&find==0)//找下一个结点的方向
{
CurSeat.di++;
SEAT temp;
scanf("%d",&n);
printf("Please enter the labyrinth of the coordinates of the wall unit(0<=row,column):\n");

c课程设计报告迷宫

c 课程设计报告迷宫一、教学目标本课程的教学目标是让学生掌握迷宫问题的基本概念、算法和编程技巧。

通过本课程的学习,学生应能理解迷宫问题的数学模型,掌握常用的迷宫算法,并能够运用编程语言实现迷宫的求解。

此外,学生还应培养解决问题的能力和创新思维,提高对计算机科学和编程的兴趣。

具体来说,知识目标包括:1.了解迷宫问题的背景和应用场景。

2.掌握迷宫问题的数学模型和基本概念。

3.熟悉常用的迷宫算法及其特点。

4.理解编程语言在解决迷宫问题中的应用。

技能目标包括:1.能够运用迷宫算法求解简单迷宫问题。

2.能够运用编程语言实现迷宫算法的求解。

3.能够对迷宫算法进行优化和改进。

情感态度价值观目标包括:1.培养学生对计算机科学和编程的兴趣。

2.培养学生解决问题的能力和创新思维。

3.培养学生的团队合作意识和沟通能力。

二、教学内容本课程的教学内容主要包括迷宫问题的基本概念、算法和编程技巧。

具体内容包括:1.迷宫问题的背景和应用场景。

2.迷宫问题的数学模型和基本概念。

3.常用的迷宫算法及其特点。

4.编程语言在解决迷宫问题中的应用。

教学大纲安排如下:第一课时:介绍迷宫问题的背景和应用场景,引入迷宫问题的数学模型和基本概念。

第二课时:介绍常用的迷宫算法及其特点,引导学生理解编程语言在解决迷宫问题中的应用。

第三课时:通过案例分析,让学生运用迷宫算法求解简单迷宫问题,培养学生的编程能力。

第四课时:引导学生对迷宫算法进行优化和改进,提高学生的解决问题的能力。

第五课时:进行课程总结和回顾,让学生展示自己的迷宫求解成果,进行交流和评价。

三、教学方法本课程的教学方法采用讲授法、讨论法和实验法相结合的方式。

通过讲授法,向学生传授迷宫问题的基本概念、算法和编程技巧;通过讨论法,引导学生进行思考和交流,培养学生的创新思维;通过实验法,让学生动手实践,培养学生的编程能力和解决问题的能力。

在教学过程中,教师应根据学生的实际情况,灵活运用不同的教学方法,以激发学生的学习兴趣和主动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#pragma warning (disable:4786)#include <stack>#include <string>#include <iostream>using namespace std;int move[8][2]={{0,1},{1,0},{-1,0},{0,-1},{1,1},{-1,1},{1,-1}, //行走方向是右,下,上,左,右下,右上,左下,左上{-1,-1}};int fxdd[8]={1,2,3,4,5,6,7,8};class pote{public:pote(int r,int c){row=r;col=c;}pote(){row=0;col=0;}int row,col;};class Maze{public:void cmaze();bool seekpath();void presspath();void pathmaze();void pressmaze();private:int rows,cols;int x,y; //当前位置int maze[20][20];stack<pote> path;stack<pote> fxiang;bool flag;};void Maze::cmaze(){ //建立一个迷宫数组int s;int i=1,j=1,w;cout<<"enter a maze\nrows:";cin>>rows;cout<<"columns:";cin>>cols;cout<<"\n6-entry\n8-exit\n1-wall\n0-passage\nend with 9\n";for(w=0;w<cols+2;w++){maze[0][w]=1; //第0行和最后一行均为1maze[rows+1][w]=1;}for(w=0;w<rows+2;w++){ //第0列和最后一列均为1 maze[w][0]=1;maze[w][cols+1]=1;}while(cin>>s){if(s==9) break;if(s==6) { x=i; y=j;}maze[i][j]=s;if(j==cols){j=1;i++;}elsej++;}flag=false;}bool Maze::seekpath(){ //寻找路径int row,col,d,mark=0;pote t,p;/* cout<<x<<" "<<y<<endl;for(d=0;d<8;d++){cout<<move[d][0]<<" "<<move[d][1]<<" "<<endl;}*/path.push(pote(x,y));//起始位置入栈do{for(d=0;d<8;d++){row=x+move[d][0]; //当前位置由X,Y表示col=y+move[d][1];if(maze[row][col]==0){ //走这一步为通路,将该位置入栈,退出循环,不再寻找方向path.push(pote(row,col));fxiang.push(pote(move[d][0],move[d][1]));//将“走这一步的方向”入栈mark=1; //标记mark=1,表示通路if(maze[row][col]!=8)maze[row][col]=-1; //记该位置为-1,表示走过了break;}// if(maze[row][col]==0){if(maze[row][col]==8){path.push(pote(row,col));fxiang.push(pote(move[d][0],move[d][1]));return true;}}// for(d=0;d<8;d++){if(mark==0&&!path.empty()){ //若该位置八面都不通,出栈p=path.top();path.pop();fxiang.pop();x=p.row; //标记当前位置y=p.col;}else{ //若找出一个通路x=row; //标记为当前位置y=col;mark=0;}}while(!path.empty()); //若退到初始点或到达终点则退出do-while循环/* do{ //输出出栈路径t=path.top();path.pop();ii=t.row;jj=t.col;cout<<"maze["<<ii<<']'<<'['<<jj<<']'<<",";}while(!path.empty());*/// if(maze[row][col]==8)// return true;//true 表示找到出路// elsereturn false;}void Maze::presspath(){ //输出路径pote t,fx;int xx,yy,k,u=1;int dd[40];stack<pote> tem;stack<pote> path11;dd[0]=0;if(seekpath()){while(!fxiang.empty()){ //将方向栈用一维数组dd表示fx=fxiang.top();for(k=0;k<8;k++){if(fx.row==move[k][0]&&fx.col==move[k][1]){dd[u]=fxdd[k];break;}}u++;fxiang.pop();}//while(!fxiang.empty()){path11=path;flag=true;while(!path11.empty()){tem.push(path11.top());//"出路"栈倒入tem栈path11.pop();}cout<<"路径以(i,j,d)形式表示,(i,j)指示迷宫中的坐标,d表示走到下一坐标的方向"<<endl;cout<<"0-8分别表示“无方向0,右1,下2,上3,左4,右下5,右上6,左下7,左上8”"<<endl;cout<<"\nPath: \n";while(!tem.empty()){ //输出出栈路径t=tem.top();tem.pop();xx=t.row;yy=t.col;u--;cout<<"("<<xx<<','<<yy<<','<<dd[u]<<')'<<" ";}cout<<"\n"<<endl;}elsecout<<"No path!\n";}void Maze::pathmaze(){pote k;int i,j;stack<pote> path1;path1=path;if(flag){while(!path1.empty()){k=path1.top();path1.pop ();maze[k.row][k.col]=3; //将路径位置标志为3 }for(i=1;i<=rows;i++){for(j=1;j<=cols;j++){if(maze[i][j]==-1)maze[i][j]=0;if(maze[i][j]==3)cout<<'x'<<" ";elsecout<<maze[i][j]<<" ";}cout<<endl;}}elsecout<<"No path!\n";}void Maze::pressmaze(){int i,j;cout<<endl;for(i=0;i<=rows+1;i++){for(j=0;j<=cols+1;j++){cout<<maze[i][j]<<" ";}cout<<endl;}}int main(){Maze m;m.cmaze();m.pressmaze();m.presspath();m.pathmaze();return 0;}。

相关文档
最新文档