光学谐振腔理论(方洪烈著)思维导图
光学谐振腔的图解分析与设计方法

图 1-2 传播圆:σ 圆与 π 圆
(2) π 圆
它们是通过侧焦点 Fl,同时与光轴相切的一些圆(见图 1-2)。切于光轴上 P 点处的 π 圆的直径 b 可用来确定该处的高斯光束的光斑尺寸 w,它可按下式计 算:
w = bλ π
(1-17)
通过作光轴上各点处的 π 圆,则可以确定光轴上各点处高斯光束的光斑尺寸。
⎧ exp⎨− i
⎩
2π λ
⎜⎜⎝⎛
z
+
x2 + y2 2R
⎟⎟⎠⎞⎭⎬⎫
(1-13)
在形式上是相同的(见图 1-1(a))。由此,我们可以将高斯光束等效于坐标原点 取在束腰处的旁轴复球面波(见图 1-1(b))。正是从这个意义上讲,高斯光束的 复参数 q 等效于复球面波的复半径。
以复半径表达的复球面波实际上是在有限空间内传播的电磁波场的一种基 本形式。由式(1-3)和式(1-8)不难证明,当 w 0 → 0 时,q→R,这时,式(1-12) 就过渡到式(1-13)。由此可知,以实半径表达的实球面波,仅仅是以复半径表 达的复球面波的一种特殊情况。它相当于 w0 = 0 的一种基本光学模。然而,w0 = 0 的基本光学模,从能量观点来看是没有实际意义的,因而实际上也是不存在的。 因此,以复半径表达的复球面波,即高斯光束,较之以实半径表达的实球面波更 具有普遍意义。
(1-10)
为束腰处的复参数。由式(1-8)、式(1-9)和式(1-10),我们不难导出式(1- 2) 和式(1-3)的关系。
将高斯光束的传播规律与通常发自点光源的球面波的传播规律进行比较,可 以看出其含义。我们知道,后者的传播规律可由如下式子描写:
R = R0 + z
(1-11)
第二章 光学谐振腔基本理论

第二章光学谐振腔基本概念 (1)2.1光学谐振腔 (1)2.2非稳定谐振腔及特点 (1)2.3光学谐振腔的损耗 (2)2.4减小无源稳定腔损耗的途径 (2)反射镜面的种类对损耗的影响 (2)腔的结构不同,损耗不同 (2)第二章光学谐振腔基本概念2.1光学谐振腔光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度,调节和选定激光的波长和方向的装置。
光线在两镜间来回不断反射的腔叫光学谐振腔。
由平面镜、凹面镜、凸面镜的任何两块镜的组合,构成各类型光学谐振腔。
光学谐振腔的分类方式很多。
按照工作物质的状态可分为有源腔和无源腔。
虽有工作物质,但未被激发从而无放大作用的谐振腔称之为无源谐振腔;而有源腔则是指经过激发有放大作用的谐振腔。
2.2非稳定谐振腔及特点非稳定谐振腔的反射镜可以由两个球面镜构成也可由一个球面镜和一个平面镜组合而成。
若R1和R2为两反射镜曲率半径,L为两镜间距离,对于非稳腔则g1,g2:满足g1*g2<O或g1*g2>l 非稳腔中光在谐振腔内经有限次往返后就会逸出腔外,也就是存在着固有的光能量可以横向逸出而损耗掉,所以腔的损耗很大。
在高功率激光器中,为了获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,稳定腔不能满足这些要求,而非稳腔是最合适的。
与稳定腔相比,非稳腔有如下几个突出优点:1.大的可控模体积在非稳腔中,基模在反射镜上的振幅分布式均匀的,它不仅充满反射镜,而且不可避免地要向外扩展。
非稳腔的损耗与镜的大小无关,这一点是重要的,因此,只要把反射镜扩大到所需的尺寸,总能使模大致充满激光工作物质。
这样即使在腔长很短时也可得到足够大的模体积,故特别适用于高功率激光器的腔型。
2.可控的衍射耦合输出一般稳定球面腔是用部分透射镜作为输出耦合镜使用的,但对非稳腔来说,以反射镜面边缘射出去的部分可作为有用损耗,即从腔中提取有用衍射输出。
3.容易鉴别和控制横模对于非稳腔系统,在几何光学近似下,腔内只存在一组球面波型或球面一平面波型,故可在腔的一端获得单一球面波型或单一平面波型(即基模),从而可提高输出光束的定向性和亮度。
第3章光学谐振腔理论

•
•
凹面向着腔内, R>0,相当于凸薄透镜 f>0;
凸面向着腔内时,R<0,相当于凹薄透镜 f<0。
2、对于同样的光线传播次序,往返矩阵T、Tn与初始坐 标(r0,0)无关;
3、当光线传播次序不同时,往返矩阵不同,但(A+D)/2 相同。
23
例:环形腔中的像散-对于“傍轴”光线 对于平行于x,z平面传输的光线(子午光线),其焦距
k0 2 L'
2
0
2 L' q 2
q为整数
(2.1.1)
0—真空中的波长;L’—腔的光学长度
0 q 2 L' q
L' q
0q
q
L' L
q q
c
c
2
0q
2L
c q 2 L
( 2.1.4)
为腔内介
质折射率
Lq
q
2
定义无源腔内,初始光强I0往返一次后光腔衰减为I1,则
I1 I 0e
2
I0
I1
9
1 I0 ln 2 I1
对于由多种因素引起的损耗,总的损耗因子可由各损耗因子相 加得到
i 1 2 3
损耗因子也可以用 来定义, 当损耗很小时,两种定义方式是一致的
20
A B 1 T 1 C D f 1
L A 1 f2
0 1 L 1 1 1 0 1 f2
L B L 2 f2 L D f1
0 1 L 1 0 1
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组
第2章 光学谐振腔理论

/
I (z) I I1 I
0
0
e
z
e
2 l
吸 l
2.2.2、光子在腔内的平均寿命 • 光在腔内通过单位距离后光强衰减的百分数
dI Idz I1 I 0 I0 2L
/
L
/
• 在谐振腔内
dI Idt
dz c dt
/
c
L
/
c
L
/
⑵衍射损耗
a
2
L
取决于腔的菲涅耳数、腔的几何参数和横模阶次
⑶输出腔镜的透射损耗
取决于输出镜的透过率
⑷非激活吸收、散射等其他损耗
描述 单程损耗因子 • 定义:光在腔内单程渡越时光强的平均衰减百分数
2 I 0 I1 I0
I 0 I1 2I0
指数定义形式
I1 I 0e
0
I 1 I 0 r1 r2
/
1 2
ln
I
0
I1
r
1 2
ln r1 r2
当 r 1=1,T <<1(r2= r ≈1)
r
1 2 ln r 1 2 (1 r ) T 2
四、吸收损耗
介质对光的吸收作用
通过单位长度介质后光强衰减的百分数
dI
I I dI Idz
2
D D
2L 1 2m
L
2D
二、衍射损耗
平腔内的往返传播,等效孔阑传输线中的单向传播 当光波穿过第一个圆孔向第2个圆孔传播时,由于衍 射的作用一部分光将偏离原来的传播方向,射到第2 个圆孔之外,造成光能的损失 假设中央亮斑内的光强是均匀的 孔外面积与中央亮斑总面积的比
第5章光学谐振腔的基本理论

B sin n
sin
D sin n sin (n 1)
sin
arccos
1 2
(A
D)
1、值是实数(-1<cos<1)时, Tn各元素有界谐
振腔为稳定腔。 2、值有虚部时(-1>cos或者cos>1),旁轴 光线往返有限次后便会逸出谐振腔,谐振腔为非
稳腔。
3、值等于0或者π(cos=±1),Tn各项元素的值
38
§3 谐振腔的衍射理论基础
激光器中所使用的谐振腔是一种开腔, 在这种没有侧面边界的区域内是否存在电磁 场的本征态,即不随时间而变化的稳态场分 布?如何求出这种场分布?这些问题需要用谐 振腔的衍射理论来解决。本节首先给出理想 开腔的模型——孔阑传输线,在此基础上引 入稳态场分布——自再现模的概念。
T
2 R1
10
1 0
L 1
1 2
R2
10
1 0
L 1
1 L 1 L
2 R1
1
2L R1
2 R2
1
2L R2
2L
1 R2
2 R1
2 R2
4L R1R2
2L2
2L R1
2L R2
(1 2L )(1 R1
2L R2
)
=
A C
B
D
15
A
1
2L R2
2(1
L R2
)
1
2g2
1
2L2
L
B 2L R2 2L(1 R2 ) 2Lg2
4L 2 2 2 L L 2L2
C
( )
R1R2 R1 R2
L R1 R2 R1R2
第9讲 光学谐振腔的基本概念

9.3 光学谐振腔的光波模式
驻波概念简要回顾
驻波,也称为稳态波,是由同频率、同振幅、传播方向 相反的两列波叠加而成的一种波形。 通常,一列波是另一列的反射波。
例如,
y1 y0 sin(kx t),
y2
y0
sin(kx
t),
9.3 光学谐振腔的光波模式
迭加后形成的驻波场为:
9.1 光学谐振腔的类型
平行平面腔 平凸腔
平凹腔 凹凸腔
双凹腔 双凸腔
9.1 光学谐振腔的类型
激光器的基本结构示意图
全反射镜
光学谐振腔 输出反射镜
工作物质
激光输出
泵浦
9.2 光学谐振腔的作用
光学谐振腔的作用
提供轴向正反馈; 通过谐振腔镜面的反射,光波可在腔内往返传播,多次 通过激活介质而使受激辐射不断放大,形成自激振荡。
9.3 光学谐振腔的光波模式
这种经过一次往返传播后能“自再现”的稳定场分布通常 称为自再现模,也称为横模。
自再现条件的公式表示
第9讲 光学谐振腔的基本概念
教学内容
9.1 光学谐振腔的类型 9.2 光学谐振腔的作用 9.3 光学谐振腔的光波模式
9.1 光学谐振腔的类型
光学谐振腔的基本结构
通常的谐振腔是由两块相对的球面或平面反射镜组成, 这两块反射镜光轴重合,这样的谐振腔称为共轴球面腔, 它是光学谐振腔的基本结构。
共轴球面腔的常见构型
控制振荡光束模式特性。 通过采用不同的结构参数,可实现对光波模式的控制。
9.3 光学谐振腔的光波模式
什么是腔模
根据麦克斯韦电磁理论,在具有一定边界条件的空腔内, 电磁场只能存在于一系列分立的本征状态中,场的每种本 征状态将具有一定的振荡频率和空间分布。通常将谐振腔 内可能存在的电磁场本征态称为腔的模式,简称腔模。 腔模可分为纵模(与振荡频率有关)和横模(与空间分布有关)。
第二章 第一节 开放光学谐振腔构成分解

ห้องสมุดไป่ตู้y sin
p l
z eim,n, pt
Ez
(x,
y,
z,
t)
E0
sin
m a
x cos n b
y sin
p l
z eim,n, pt
k kxex kyey kzez
kx m / a, ky n / b, kz p / l
m,n,p ck c m / a2 n / b2 p / l2
m,n,p ck c m / a2 n / b2 p / l2
波氏空间的模式表示
kx m / a, ky n / b, kz p / l
kz km,n,p
km-1,n-1,p-1 ky
kx
图2-2 波矢空间中的相邻两个模
(m,n,p) (一个模式) (波矢空间一个点)
模式密度
kx m / a, ky n / b, kz p / l
相邻两个模式波矢之间的间距:
第一节 光学谐振腔:小结
模式密度
8
c3
2
模式密度
4
c2
Fabry–Pérot 谐振腔
模式密度
4 c
问题讨论:激光谐振腔能够到多小?
Z
边界条件:平行于腔壁的电
l
场在壁上为0
a
b
X
图2-1 矩形三维理想金属腔
Ex
(
x,
y,
z,
t)
E0
sin
m a
xsin n b
y cos
p l
z eim,n, pt
kx
a
, ky
b
, kz
l
一个模式在波矢空间中占有体积:
光学谐振腔理论

目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。