河北省承德市高一数学9月月考试卷
2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=02.已知集合A={x|−3≤x≤1},B={x||x|≤2},则A∩B=( )A. {x|−2≤x≤1}B. {x|0≤x≤1}C. {x|−3≤x≤2}D. {x|1≤x≤2}3.下列命题为真命题的是( )A. ∀a>b>0,当m>0时,a+mb+m >abB. 集合A={x|y=x2+1}与集合B={y|y=x2+1}是相同的集合.C. 若b<a<0,m<0,则ma >mbD. 所有的素数都是奇数4.已知−1<a<5,−3<b<1,则以下错误的是( )A. −15<ab<5B. −4<a+b<6C. −2<a−b<8D. −53<ab<55.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:A={x|0<Δx<2},B={x|−3≤x≤5},C={x|0<x<23},然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x∈B是x∈A的必要不充分条件;丙:x∈C是x∈A的充分不必要条件.则“Δ”表示的数字是( )A. 3或4B. 2或3C. 1或2D. 1或36.已知不等式ax2+bx+c<0的解集为{x|x<−1或x>3},则下列结论正确的是( )A. a>0B. c<0C. a+b+c<0D. cx2−bx+a<0的解集为{x|−13<x<1}7.已知m<8,则m+4m−8的最大值为( )A. 4B. 6C. 8D. 108.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.则下列说法错误的是( )A. 赞成A的不赞成B的有9人B. 赞成B的不赞成A的有11人C. 对A,B都赞成的有21人D. 对A,B都不赞成的有8人二、多选题:本题共3小题,共18分。
河北省承德第一中学2022-2023高一物理9月月考试题(含解析)

D.-1.25m与计算结果不相符;故D项错误.
10.汽车关闭油门后做匀减速直线运动,最后停下来。在此过程中,最后连续三段相等的时间间隔内的平均速度之比为
A.1:1:1B.5:3:1C.9:4:1D.3:2:1
【答案】B
【解析】
试题分析:初速度为零 匀加速直线运动,在相等时间内的位移之比为1:3:5:7:…根据逆向思维,知最后三段连续相等的时间间隔内位移之比为5:3:1,故选B.
A.10mB.零C.-5mD.-1.25m
【答案】B
【解析】
【详解】对竖直上抛运动的全过程,由
,
解得
对全过程由:
得:前2s的位移为:x2=15×2-5×4=10m;
第1s内的位移为:x1=15×1-5×1=10m;
所以第2s内的位移为:10-10m=0m.
A10m与计算结果不相符;故A项错误.
B.零与计算结果相符;故B项正确.
【详解】(1)据题意有:s2-s1=8m,s1:s2=1:2
解得: ,
物体做初速度为零的匀加速直线运动,在最初的4s内,
其中
解得:
(2)由速度公式可得4s末的速度:
(3)根据平均速度的定义,可得最后4s
(4)设物体从斜面顶端滑到底端时间为t2,则有:
最后4s的位移为:
代入数据解得:
18.一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以a=3m/s2的加速度开始行驶,恰在这时一辆自行车以v=6 m/s的速度匀速驶来,从后边超过汽车,试问:
(1)设电火花计时器的周期为T,计算 的公式为 =____;
(2)根据(1)中得到 数据,以A点对应的时刻为t=0,试在图中所示坐标系中合理地选择标度,作出v-t图象____;
2021年高一上学期9月月考数学试题含答案

2021年高一上学期9月月考数学试题含答案 一、选择题(每小题5分,共50分)1.下列四个集合中,空集是( )A .{x ∈R|x 2+2=0}B .{0}C .{x|x >8或x <4}D .{∅}2.已知集合A ={x|-1≤x<1},B ={-1,0,1},则A ∩B =( ) A .{0,1} B .{-1,0} C .{0} D .{-1,1}3.设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则C U (M ∩N) = ( )A .{1,2}B .{2,3}C .{2,4}D .{1,4}4.下列函数中,在区间(0, 1)上是增函数的是( )A .y=|x |B .y=3-xC . y=D .y=-x 2+4 5.定义在R 上的偶函数f(x)在上的偶函数,则f(x)的值域是( )A .B .C .D .与a ,b 有关,不能确定7.设全集U=R ,集合A={x | |x|≤2},B={x|>0},则(C U A)∩B=( )A .B .(2,+∞)C .(1,2]D .(-∞,-2)8.函数y=-x 的图象只可能是( )9.若函数f(x)= 是奇函数,则实数a 的值是( )A .-10B .10C .-5D .5 10. 已知函数y=f(x)+x 是偶函数,且f(2)=1,则f(-2)=( )x 2 -5x , x ≥0,-x 2+ax , x <0A.-1 B.1 C.-5 D.5第II卷(非选择题)二、填空题(每小题5分,共25分)11.已知全集U={1,2,3,4, 5},集合A={1, 3, 5},B=={3, 4, 5} 则集合C U(A∪B) = .12.已知集合A={1,2,3, 4},集合B={x|x≤a, a∈R},若A∪B=(-∞,5],则a的值是.13.已知f(x-1)=x2+2,则f(3)= .14.设A={1,2,3,4,5,6},B={4,5,6,7},则满足S⊆A且S∩B=∅的集合S的个数是.15.函数f(x)=的定义域是.三、解答题(16至19题每题12分,20题13分,21题14分)16.设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},求A∩B,A∪B,(C U A)∩(C U B).17.设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0},(1)若m=4,求A∪B;(2)若B ⊆A,求实数m的取值范围.18.已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=x(2-x).(1)在给定的图示中画出函数f(x)的图象(不需列表);(2)求函数f(x)的解析式;(3)讨论方程f (x)-k=0的根的情况。
高一上数学第一次月考试卷

高一上数学月考试卷一、选择题)1. 已知全集U ={1,2,3,4,5},A ={1,3},则∁U A =( ) A.⌀ B.{1,3} C.{2,4,5} D.{1,2,3,4,5}2. 已知命题P :∀x ,y ∈(0,3) ,x +y <6,则命题P 的否定为( ) A.∀x ,y ∈(0,3),x +y ≥6 B.∀x ,y ∉(0,3),x +y ≥6 C.∃x 0,y 0∉(0,3),x 0+y 0≥6 D .∃x 0,y 0∈(0,3),x 0+y 0≥63. 设a >0,则“b >a ”是“b 2>a 2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4. 若A =a 2+3ab ,B =4ab −b 2,则A ,B 的大小关系是( ) A.A ≤B B.A ≥B C.A <B 或A >B D.A >B5. 一元二次不等式ax 2+bx +c <0的解集是全体实数的条件是( ) A.{a >0,Δ>0B.{a >0,Δ<0C.{a <0,Δ>0D.{a <0,Δ<06. 设集合A ={x|2a <x <a +2} ,B ={x|x 2−2x −15>0},若A ∩B =⌀,则实数a 的取值范围为( ) A.{a|a ≥−32} B.{a|a >−32} C.{a|−32≤a ≤3}D.{a|−32<a <3}7. 定义集合A 与B 的运算: A ⊙B ={x|x ∈A 或x ∈B ,且x ∉A ∩B},已知集合A ={1,2,3,4},B ={3,4,5,6,7},则(A ⊙B )⊙B 为( ) A.{1,2,3,4,5,6,7} B.{1,2,3,4} C.{1,2} D.{3,4,5,6,7} 8. 已知a >0,b >0,若不等式4a +1b ≥ma+4b 恒成立,则m 的最大值为( ) A.9 B.12 C.16 D.10 二、多选题)9. 已知全集U =R ,集合A ,B 满足A ⫋B ,则下列选项正确的有( ) A.A ∩B =B B.A ∪B =B C.(∁U A)∩B =⌀ D.A ∩(∁U B)=⌀ 10. 在下列命题中,真命题有( ) A.∃x ∈R ,x 2+x +3=0B.∀x ∈Q ,13x 2+12x +1是有理数C.∃x ,y ∈Z ,使3x −2y =10D.∀x ∈R ,x 2>|x| 11. 对任意实数a ,b ,c ,下列命题中正确的是( ) A.“a =b ”是“ac =bc ”的充要条件B.“a +5是无理数”是“a 是无理数”的充要条件C.“a <5”是“a <3”的必要条件D.“a >b ”是“ac 2>bc 2”的必要条件12. 若a ,b ,c 为实数,则下列结论正确的是( ) A.若 a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2 C.若a <b <0,则1a <1bD.若a <b <0,则b a <ab三、填空题13. 满足关系式{2, 3}⊆A ⊆{1, 2, 3, 4}的集合A 的个数是________.14. 已知p :4x −m <0,q:1≤3−x ≤4,若p 是q 的一个必要不充分条件,则实数m 的取值范围为________.15. 当x >32时,函数y =x +82x−3的最小值是________.16. 若命题“ ∃x ∈R ,x 2+2mx +m +2<0”为假命题,则m 的取值范围是________. 四、解答题)17. 已知不等式x 2+x −6<0的解集为A ,不等式x 2−2x −3<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+bx +3<0的解集.18. 已知集合A ={x|a −1≤x ≤2a +3},B ={x|−2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A)∩B ;(2)若A ∩B =A ,求实数a 的取值范围.19. 已知a >0,b >0且2a +b =ab . (1)求ab 的最小值;(2)求a +b 的最小值.20. 已知p:关于x的方程4x2−2ax+2a+5=0的解集至多有两个子集,q:1−m≤a≤1+m,m>0.(1)若命题p为真命题,求实数a的取值范围;(2)若q是p的必要不充分条件,求实数m的取值范围.21. 已知关于x的一元二次不等式x2+2mx+m+2≥0的解集为R.(1)求实数m的取值范围;(2)求函数y=m+3m+2的最小值;(3)解关于x的一元二次不等式x2+(m−3)x−3m>0.22. 绿水青山就是金山银山.近年来为美化贾汪面貌、提升居住品质,在城市改造中,将城区多个街头空地改造成家门口的“口袋公园”,成为了市民休闲娱乐的好去处.如图,某社区拟在小区的闲置地中规划一个面积为200平方米的矩形区域(如图所示),按规划要求:在矩形内的四周安排2米宽的绿化,绿化造价为200元/平方米,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/平方米.设矩形的长为x米.(1)试将总造价y(元)表示为长度x的函数;(2)当x取何值时,总造价最低,并求出最低总造价.参考答案与试题解析高一上数学月考试卷一、选择题1.【答案】C【考点】补集及其运算【解析】此题暂无解析【解答】解:∵全集U={1,2,3,4,5},A={1,3},∴∁U A={2,4,5}.故选C.2.【答案】D【考点】全称命题与特称命题命题的否定【解析】由全称命题的否定为特称命题即可判断.【解答】解:全称命题的否定为特称命题,可知命题P的否定为:∃x0,y0∈(0,3),x0+y0≥6.故选D.3.【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】a>0,则“b>a”⇒“b2>a2”,反之不成立.⊙O【解答】解:若a>0,则“b>a”⇒“b2>a2”,反之不成立,例如b=−3,a=2.故选A.4.【答案】B【考点】不等式比较两数大小【解析】利用“作差法”和实数的性质即可得出.【解答】解:∵A−B=a2+3ab−(4ab−b2)=a2−ab+b2=(a−b2)2+34b2≥0,∴A≥B.故选B.5.【答案】D【考点】不等式恒成立问题一元二次不等式与二次函数【解析】一元二次不等式ax2+bx+c<0的解集是全体实数,可以将其转化为ax2+bx+c<0在R上恒成立,从而求解.【解答】解:∵一元二次不等式ax2+bx+c<0的解集是全体实数,∴不等式ax2+bx+c<0在R上恒成立.令f(x)=ax2+bx+c,则函数f(x)<0恒成立,根据二次函数的图象可知,抛物线开口向下,且与x轴没有交点,即{a<0,Δ<0.故选D.6.【答案】A【考点】集合关系中的参数取值问题交集及其运算【解析】先求出集合B,分A=⌀和A≠⌀两种情况分析求解即可.【解答】解:由题意可得A={x|2a<x<a+2},B={x|x2−2x−15>0}={x|x>5或x<−3}.当2a≥a+2,即a≥2时,A=⌀,此时满足A∩B=⌀成立;当A≠⌀,要使A∩B=⌀成立,则{a+2>2a,2a≥−3,a+2≤5,解得−32≤a<2.综上所述:a≥−32.故选A.7.【答案】B【考点】集合新定义问题交集及其运算并集及其运算【解析】根据题意我们知道定义的A⊙B是求A与B的并集中,A与B交集的补集,由新定义先求出A⊙B,再求(A⊙B)⊙B即可.【解答】解:由题意可得:A∪B={1,2,3,4,5,6,7},A∩B={3,4},根据新定义可得A⊙B={1,2,5,6,7}.又∵(A⊙B)∪B={1,2,3,4,5,6,7},(A⊙B)∩B={5,6,7},∴(A⊙B)⊙B={1,2,3,4}.故选B.8.【答案】C【考点】基本不等式在最值问题中的应用基本不等式【解析】由已知将a>0,b>0,不等式4a +1b≥ma+4b恒成立,转化成求利用基本不等式求最小值问题.【解答】解:∵当a>0,b>0时,不等式4a +1b≥ma+4b恒成立,∴m≤(4a +1b)(a+4b)恒成立.∵y=(4a +1b)(a+4b)=8+16ba+ab≥8+2√16ba×ab=16,当且仅当16ba =ab时等号成立,∴y=(4a +1b)(a+4b)的最小值16,∴m≤16,即m的最大值为16.故选C.二、多选题9.【答案】B,D【考点】交、并、补集的混合运算集合的包含关系判断及应用【解析】利用A⫋B的关系即可判断.【解答】解:∵A⫋B,∴A∩B=A,A∪B=B,故A错误,B正确;(∁U A)∩B≠⌀,A∩(∁U B)=⌀,故C错误,D正确.故选BD.10.【答案】B,C【考点】全称命题与特称命题命题的真假判断与应用【解析】将各个命题进行逐一分析求解即可.【解答】解:A,x2+x+3=(x+12)2+114>0,故A是假命题;B,当x∈Q时,13x2+12x+1一定是有理数,故B是真命题;C,当x=4,y=1时,3x−2y=10成立,故C是真命题;D,当x=0时,x2=x=0,故D为假命题.故选BC.11.【答案】B,C,D【考点】复合命题及其真假判断必要条件、充分条件与充要条件的判断不等式的概念与应用【解析】利用充分与必要条件的定义,判定各选项中的充分性与必要性是否成立,从而选出正确答案.【解答】解:A,当a=b成立时,ac=bc一定成立;反之,当ac=bc时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错误;B,当a+5是无理数,a一定是无理数;反之也成立,所以“a+5是无理数”是“a是无理数”的充要条件,故B正确;C,由a<5成立,不能得到a<3成立;反之,由a<3成立,一定能得到a<5成立,所以“a<5”是“a<3”的必要不充分条件,故C正确;D,由a>b成立不能得到ac2>bc2成立;反之,由ac2>bc2成立,则一定可以得到a>b成立,所以“a>b”是“ac2>bc2”的必要不充分条件,故D正确.故选BCD.12.【答案】B,D【考点】不等式的基本性质不等式比较两数大小【解析】利用不等式性质将各个选项进行逐一分析求解即可.【解答】解:A,当a>b时,若c=0,则ac2=bc2,故A错误;B,由a<0,a<b可得a2>ab;由b<0,a<b可得ab>b2,则a2>ab>b2成立,故B正确;C,若a<b<0,则1a −1b=b−aab>0,则1a>1b,故C错误;D,若a<b<0,则ba −ab=(b−a)(b+a)ab<0,则ba<ab成立,故D正确.故选BD.三、填空题13.【答案】4【考点】子集与真子集的个数问题集合的包含关系判断及应用【解析】由题意一一列举出集合A的情况即可.【解答】解:由题意知,满足关系式{2, 3}⊆A⊆{1, 2, 3, 4}的集合A有:{2, 3},{2, 3, 1},{2, 3, 4},{2, 3, 1, 4},故共有4个.故答案为:4.14.【答案】(8,+∞)【考点】根据充分必要条件求参数取值问题【解析】先求出p,q成立的等价条件,利用充分条件和必要条件的定义建立条件关系即可判断.【解答】解:由4x−m<0,得x<m4,即p:x<m4;由1≤3−x≤4,得−1≤x≤2,即q:−1≤x≤2.∵p是q的一个必要不充分条件,∴{x|−1≤x≤2}⊂≠{x|x<m4},即m4>2,解得m>8. 故答案为:(8,+∞).15.【答案】112【考点】基本不等式在最值问题中的应用基本不等式【解析】根据题意,将函数的解析式变形可得y=x+82x−3=12(2x−3)+82x−3+32,由基本不等式的性质分析可得当x>32时,12(2x−3)+82x−3+32≥4+32=112,进而分析可得函数的最小值,即可得答案.【解答】解:因为x>32,故2x−3>0,又y=x+82x−3=12(2x−3)+82x−3+32≥4+32=112,当且仅当12(2x−3)=82x−3,即x=72时,y=x+82x−3取得最小值112.故答案为:112.16.【答案】[−1,2]【考点】全称命题与特称命题命题的否定【解析】由于命题:“∃x∈R,使得x2+2mx+m+2<0”为假命题,可得命题的否定是:“∀x∈R,x2+2mx+m+ 2≥0”为真命题,因此Δ≤0,解出即可.【解答】解:∵命题:“∃x∈R,使得x2+2mx+m+2<0”为假命题,∴命题的否定是:“∀x∈R,x2+2mx+m+2≥0”为真命题,∴Δ≤0,即4m2−4(m+2)≤0,解得−1≤m≤2,∴实数m的取值范围是[−1,2].故答案为:[−1,2].四、解答题17.【答案】解:(1)不等式x2+x−6<0可化为(x+3)(x−2)<0,解得−3<x<2,所以不等式的解集为A:{x|−3<x<2};不等式x2−2x−3<0可化为(x+1)(x−3)<0,解得−1<x<3,所以不等式的解集为B:{x|−1<x<3},所以A∩B={x|−1<x<2}.(2)因为不等式x 2+ax +b <0的解集为A ∩B ={x|−1<x <2}, 所以方程x 2+ax +b =0的解为−1和2, 由根与系数的关系知{−a =−1+2,b =−1×2,解得a =−1,b =−2.所以不等式ax 2+bx +3<0可化为−x 2−2x +3<0, 即x 2+2x −3>0, 解得x <−3或x >1,故不等式的解集为(−∞, −3)∪(1, +∞). 【考点】根与系数的关系一元二次不等式的应用 一元二次不等式的解法 交集及其运算 【解析】(1)求出不等式x 2+x −6<0的解集A 和不等式x 2−2x −3<0的解集B ,再求A ∩B .(2)由不等式x 2+ax +b <0的解集求出a 、b 的值,代入不等式ax 2+bx +3<0,求出解集即可. 先利用跟与系数的关系求出a ,b ,再代入不等式即可求出不等式的解集. 【解答】解:(1)不等式x 2+x −6<0可化为(x +3)(x −2)<0, 解得−3<x <2,所以不等式的解集为A :{x|−3<x <2};不等式x 2−2x −3<0可化为(x +1)(x −3)<0, 解得−1<x <3,所以不等式的解集为B :{x|−1<x <3}, 所以A ∩B ={x|−1<x <2}.(2)因为不等式x 2+ax +b <0的解集为A ∩B ={x|−1<x <2}, 所以方程x 2+ax +b =0的解为−1和2, 由根与系数的关系知{−a =−1+2,b =−1×2,解得a =−1,b =−2.所以不等式ax 2+bx +3<0可化为−x 2−2x +3<0, 即x 2+2x −3>0, 解得x <−3或x >1,故不等式的解集为(−∞, −3)∪(1, +∞). 18.【答案】解:(1)当a =2时,A ={x|1≤x ≤7}, 则A ∪B ={x|−2≤x ≤7}.∁R A ={x|x <1或x >7}; (∁R A)∩B ={x|−2≤x <1}. (2)∵ A ∩B =A , ∴ A ⊆B .①若A =⌀,则a −1>2a +3,解得a <−4,符合题意;②若A ≠⌀,由A ⊆B ,得到{a −1≤2a +3,a −1≥−2,2a +3≤4,解得:−1≤a ≤12.综上:a 的取值范围是(−∞, −4)∪[−1, 12].【考点】集合关系中的参数取值问题 交、并、补集的混合运算 【解析】(1)把a =2代入A 确定出A ,求出A ∪B 和(∁R A)∩B 即可;(2)由A 与B 的交集为A ,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可. 【解答】解:(1)当a =2时,A ={x|1≤x ≤7}, 则A ∪B ={x|−2≤x ≤7}.∁R A ={x|x <1或x >7}; (∁R A)∩B ={x|−2≤x <1}. (2)∵ A ∩B =A , ∴ A ⊆B .①若A =⌀,则a −1>2a +3,解得a <−4,符合题意; ②若A ≠⌀,由A ⊆B ,得到{a −1≤2a +3,a −1≥−2,2a +3≤4,解得:−1≤a ≤12.综上:a 的取值范围是(−∞, −4)∪[−1, 12]. 19.【答案】解:(1)因为a >0,b >0且1a +2b =1, 所以1a +2b ≥2√1a ⋅2b =2√2ab , 则2√2ab ≤1,即ab ≥8, 当且仅当{1a+2b =1,1a =2b,即{a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a >0,b >0且1a +2b =1, 所以a +b =(1a +2b )(a +b )=3+ba +2a b≥3+2√b a ⋅2a b=3+2√2,当且仅当{1a+2b =1,b a=2a b ,即{a =1+√2,b =2+√2时取等号,所以a +b 的最小值是3+2√2.【考点】基本不等式及其应用基本不等式在最值问题中的应用 基本不等式 【解析】(1)先化简含有ab 的等式,再根据基本不等式成立的条件求参数. (2)构造不等式并进行计算. 【解答】解:(1)因为a >0,b >0且1a +2b =1, 所以1a+2b≥2√1a⋅2b=2√2ab,则2√2ab ≤1,即ab ≥8, 当且仅当{1a +2b=1,1a=2b , 即{a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a >0,b >0且1a +2b =1, 所以a +b =(1a +2b )(a +b )=3+ba+2a b≥3+2√b a⋅2a b=3+2√2,当且仅当{1a+2b =1,b a =2a b ,即{a =1+√2,b =2+√2时取等号,所以a +b 的最小值是3+2√2.20.【答案】解:(1)∵ 命题p 为真命题,∴ 方程4x 2−2ax +2a +5=0有两个相等的实数根或无实数根, ∴ Δ=(−2a )2−4×4×(2a +5)≤0, 解得:−2≤a ≤10.∴ 实数a 的取值范围是[−2,10].(2)设P ={a|−2≤a ≤10},Q ={a|1−m ≤a ≤1+m,m >0}. 由题意得P ⫋Q ,所以{m >0,1−m <−2,1+m ≥10或{m >0,1−m ≤−2,1+m >10,解得m ≥9.∴ 实数m 的取值范围是[9,+∞). 【考点】根据充分必要条件求参数取值问题 命题的真假判断与应用一元二次方程的根的分布与系数的关系 【解析】由于命题p :关于х的方程4x 2−2ax +2a +5=0的解集至多有两个子集,因此方程至多有两个相等的实数根或无实数根,即可解除a 的取值范围.根据给出的命题写出集合之间的关系,并求出m 的范围. 【解答】解:(1)∵ 命题p 为真命题,∴ 方程4x 2−2ax +2a +5=0有两个相等的实数根或无实数根, ∴ Δ=(−2a )2−4×4×(2a +5)≤0, 解得:−2≤a ≤10.∴ 实数a 的取值范围是[−2,10]. (2)设P ={a|−2≤a ≤10},Q ={a|1−m ≤a ≤1+m,m >0}. 由题意得P ⫋Q ,所以{m >0,1−m <−2,1+m ≥10或{m >0,1−m ≤−2,1+m >10,解得m ≥9.∴ 实数m 的取值范围是[9,+∞). 21.【答案】解:(1)∵ x 2+2mx +m +2≥0的解集为R , ∴ Δ=4m 2−4(m +2)≤0, 解得:−1≤m ≤2.∴ 实数m 的取值范围:[−1, 2]. (2)由(1)得−1≤m ≤2, ∴ m +2>0,∴ y =m +3m+2=m +2+3m+2−2 ≥2√(m +2)3(m+2)−2=2√3−2. 当且仅当m =√3−2时取等号, ∴ 函数y =m +3m+2的最小值为2√3−2.(3)x 2+(m −3)x −3m >0.可化为(x +m)(x −3)>0. ∵ −1≤m ≤2,∴ −2≤−m ≤1<3,∴ 不等式的解集为(−∞, −m)∪(3, +∞). 【考点】一元二次不等式的解法 基本不等式基本不等式在最值问题中的应用 【解析】(1)不等式恒成立,需△≤0,解出即可,(2)求出m +2的范围,利用基本不等式即可求出最小值,(3)x 2+(m −3)x −3m >0.可化为(x +m)(x −3)>0,比价−m 和3的大小,即可得到不等式的解集. 【解答】解:(1)∵ x 2+2mx +m +2≥0的解集为R , ∴ Δ=4m 2−4(m +2)≤0, 解得:−1≤m ≤2.∴ 实数m 的取值范围:[−1, 2]. (2)由(1)得−1≤m ≤2, ∴ m +2>0, ∴ y =m +3m+2=m +2+3m+2−2≥2√(m +2)3(m+2)−2=2√3−2.当且仅当m =√3−2时取等号, ∴ 函数y =m +3m+2的最小值为2√3−2.(3)x 2+(m −3)x −3m >0.可化为(x +m)(x −3)>0. ∵ −1≤m ≤2,∴ −2≤−m ≤1<3,∴ 不等式的解集为(−∞, −m)∪(3, +∞). 22.【答案】解:(1)由矩形的长为x 米,则宽为200x米,则中间区域的长为(x −4)米,宽为(200x−4)米,x ∈(4,50),故y =100×[(x −4)×(200x−4)]+200×[200−(x −4)(200x−4)],x ∈(4,50),整理得y =18400+400(x +200x),x ∈(4,50).(2)因为y =18400+400(x +200x)≥18400+400×2√x ⋅200x=18400+8000√2,当且仅当x =200x,即x =10√2∈(4,50)时,等号成立.所以当x =10√2时,总造价最低为18400+8000√2元. 【考点】基本不等式在最值问题中的应用 函数模型的选择与应用 根据实际问题选择函数类型 【解析】(1)由矩形的长为x 米,则宽为200x米,然后列出函数的解析式. 利用基本不等式x +200x≥2√x ⋅200x,求解函数的最值即可.【解答】解:(1)由矩形的长为x 米,则宽为200x米,则中间区域的长为(x −4)米,宽为(200x−4)米,x ∈(4,50),故y =100⋅(x −4)⋅(200x−4)+200⋅[200−(x −4)(200x−4)],x ∈(4,50),整理得y =18400+400(x +200x),x ∈(4,50).(2)因为y =18400+400(x +200x)≥18400+400×2√x ⋅200x=18400+8000√2,当且仅当x =200x,即x =10√2∈(4,50)时,等号成立.所以当x =10√2时,总造价最低为18400+8000√2元.。
2024年北师大版高一数学上册月考试卷433

2024年北师大版高一数学上册月考试卷433考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、已知函数f(x)=3x2-5x+2,则的值为()A.B. 0C.D. 42、【题文】已知集合则( )A.B.C.D.3、【题文】若函数在上单增,则的取值范围为()A.B.C.D.4、【题文】用与球心O距离为1的截面去截球,所得截面的面积为9p,则球的表面积为(▲)A. 4pB. 10pC. 20pD. 40p5、【题文】已知函数在内是减函数, 则()6、一个正方体的体积是8则这个正方体的内切球的表面积是()A. 8πB. 6πC. 4πD. π评卷人得分二、填空题(共5题,共10分)7、如图,直角梯形OABC位于直线x=t(0≤t≤5)右侧的图形面积为f(t),则函数f(t)=____.8、若函数f(x)=x2+(a+3)x﹣1在[1,+∞)上是增函数,则a的取值范围是____.9、已知函数f(x)=(α-2)xα是幂函数,则函数f(x)的奇偶性是 ______ .10、过点(2,1)且斜率为-2的直线方程为 ______ .11、两平行直线x+3y-5=0与x+3y-10=0的距离是 ______ .评卷人得分三、证明题(共9题,共18分)12、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.13、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.(1)求证:E为的中点;(2)若CF=3,DE•EF=,求EF的长.14、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.15、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.16、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.17、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:(1)EC:CB的值;(2)cosC的值;(3)tan的值.18、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.19、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.20、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.评卷人得分四、作图题(共2题,共14分)21、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.22、作出下列函数图象:y=评卷人得分五、解答题(共2题,共8分)23、函数是奇函数,且(1)求f(x)的解析式;(2)证明:f(x)在(-1;1)上是增函数.24、在程序语言中,下列符号分别表示什么运算*;∧;SQR;ABS?参考答案一、选择题(共6题,共12分)1、C【分析】∵f(x)=3x2-5x+2,∴=6+5+2=8+5故选C.【解析】【答案】把x= 代入解析式进行求解即可.2、B【分析】【解析】试题分析:因为,所以,=故选考点:集合的运算,简单不等式解法.【解析】【答案】B3、A【分析】【解析】解:因为函数在上单增,则导数=0中判别式小于等于零可知到参数a的范围选A【解析】【答案】A4、D【分析】【解析】分析:求出截面圆的半径;利用勾股定理求球的半径,然后求出球的表面积.解:球的截面圆的半径为:9π=πr2,r=3球的半径为:R=所以球的表面积:4πR2=4π×()2=40π故选D.点评:本题考查球的体积和表面积,考查计算能力,逻辑思维能力,是基础题【解析】【答案】D5、B【分析】【解析】由正弦函数的可知,在内是增函数。
河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题

河北省衡水市第二次调研考试2024-2025学年高三上学期9月月考数学试题一、单选题1.已知数列{}n a 满足112n na a +=-,则11a =-,则4a =( ) A .3B .53C .75D .152.已知α是第四象限角且3sin ,2sin cos 05αββ=--=,则tan()αβ-的值为( )A .1B .1-C .2-D .2113.函数()15f x x =的图象在点()()0,0f 处的切线的倾斜角为( )A .π6B .π4C .π3D .π24.如图,平行四边形ABCD 中,2AE EB =,DF FC =,若C B m =u u u r r ,CE n =u u ur r ,则AF =u u u r ( )A .1322m n +r rB .3122m n -r rC .1322m n -+r r D .1322m n -r r5.已知等差数列{}n a 的公差小于0,前n 项和为n S ,若727131a a a +=-,844S =,则n S 的最大值为( ) A .45B .52C .60D .906.设ABC V 内角A ,B ,C 所对应的边分别为a ,b ,c ,已知2sin sin sin ABC S A B C =△,若ABC V 的周长为1.则sin sin sin A B C ++=( ) A .1B .12C .34D .27.设函数()()3ππ40,0,3πππ4tan ,4k x f x k k x x ωωωω⎧+⎪=⎪⎪=>∈⎨⎪+⎛⎫⎪--≠ ⎪⎪⎝⎭⎩Z ,若函数()f x 在区间π3π,88⎛⎫- ⎪⎝⎭上有且仅有1个零点,则ω的取值范围为( ) A .2,23⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .210,33⎡⎤⎢⎥⎣⎦D .(]0,28.已知11e e ,12()1x xax x f x x --⎧--≤⎪⎪=⎨>,()a ∈R 在R 上单调递增,则a 的取值范围是( )A .[]2,1-B .[]2,1--C .(],1-∞D .[)2,-+∞二、多选题9.以下正确的选项是( ) A .若a b >,c d <,则a c b d ->- B .若a b >,c d <,则a bc d > C .若22ac bc >,则33a b >D .若a b >,0m >,则b m ba m a+>+ 10.设正项等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,则下列选项正确的是( )A .4945S S q S =+B .若20252020T T =,则20231a =C .若194a a =,则当2246a a +取得最小值时,1a D .若21()n n n a T +>,则11a < 11.以下不等式成立的是( )A .当x ∈ 0,1 时,1e ln 2x x x x+>-+B .当x ∈ 1,+∞ 时,1e ln 2x x x x+>-+C .当π0,2x ⎛⎫∈ ⎪⎝⎭时,e sin x x x >D .当π,π2x ⎛⎫∈ ⎪⎝⎭时,e sin x x x >三、填空题12.已知平面向量a =r 2b =r ,4a b ⋅=r r ,R λ∈,则2a b λ+r r 的最小值为.13.已知函数()()2sin πcos (0)f x x x x ωωωω=->的最小正周期为π,则()f x 在区间[]2024π,2024π-上所有零点之和为.14.若定义在()(),00,-∞+∞U 上的函数() f x 满足:对任意的()(),,00,x y ∈-∞+∞U ,都有:()1x f f x f y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,当,0x y >时,还满足:()110x y f f x y ⎛⎫⎛⎫⎛⎫--> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则不等式()1f x x ≤-的解集为.四、解答题15.已知函数()()2e 1xf x x x =-+.(1)求函数()f x 的单调区间;(2)函数()f x a ≤在[]2,1-上恒成立,求最小的整数a .16.已知数列{}n a 的前n 项和为n S ,113a =,18,3,n n n a n a a n +-⎧=⎨⎩为奇数为偶数.(1)证明:数列{}2112n a --为等比数列; (2)若21161469n S n +=+,求n 的值.17.凸函数是数学中一个值得研究的分支,它包括数学中大多数重要的函数,如2x ,e x 等.记()f x ''为()y f x '=的导数.现有如下定理:在区间I 上()f x 为凸函数的充要条件为()()0f x x I ''≥∈. (1)证明:函数()31f x x x=-为()1,+∞上的凸函数; (2)已知函数()2()2ln ln g x ax x x x a =--∈R .①若()g x 为[)1,+∞上的凸函数,求a 的最小值;②在①的条件下,当a 取最小值时,证明:()()31()223231x xx g x x -+≥+-+,在[)1,+∞上恒成立.18.如图,在平面直角坐标系中,质点A 与B 沿单位圆周运动,点A 与B 初始位置如图所示,A 点坐标为()1,0,π4AOB ∠=,现质点A 与B 分别以πrad /s 4,πrad /s 12的速度运动,点A 逆时针运动,点B 顺时针运动,问:(1)ls 后,扇形AOB 的面积及sin AOB ∠的值.(2)质点A 与质点B 的每一次相遇的位置记为点n P ,连接一系列点1P ,2P ,3P⋅⋅⋅构成一个封闭多边形,求该多边形的面积.19.已知函数()e xf x mx =-,()g x(1)讨论()f x 的单调性;(2)当0x ≥时,()()f x g x ≥恒成立,求m 的取值范围;(3)当0x ≥时,若()()f x ng x -的最小值是0,求m +的最大值.。
河北省2022-2023学年高一上学期月考(12月)数学试卷含解析

河北省2022-2023学年高一上学期月考(12月)数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题(本大题共10小题,共50.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={x|x2−x−2>0},则∁R A=( )A. {x|−1<x<2}B. {x|−1≤x≤2}C. {x|x<−1}∪{x|x>2}D. {x|x≤−1}∪{x|x≥2}2. 设a=3x2−x+1,b=2x2+x,则( )A. a>bB. a<bC. a≥bD. a≤b3. 下列函数f(x)中,满足“对任意的x1,x2∈(0,+∞)时,均有(x1−x2)[f(x1)−f(x2)]>0”的是( )B. f(x)=x2−4x+4A. f(x)=12(x)C. f(x)=2xD. f(x)=log124. 函数y=ln(2x−x2)的单调递增区间是( )A. (0,1)B. (1,2)C. (−∞,1)D. (1,+∞)5. 对于某个与正整数n有关的命题P,若n=k(k∈N∗)时命题P成立可以推得n=k+1时命题P成立,则下列命题中必为真命题的是( )A. 若n=m+2(m∈N∗)时命题P不成立,则n=2m时命题P不成立B. 若n=2m(m∈N∗)时命题P不成立,则n=m+2时命题P不成立C. 若n =2m (m ∈N ∗)时命题P 不成立,则n =2m 时命题P 不成立D. 若n =2m(m ∈N ∗)时命题P 不成立,则n =2m 时命题P 不成立 6. 若方程2x +ln 1x−1=0的解为x 0,则x 0所在的大致区间是( ) A. (1,2)B. (2,3)C. (3,4)D. (5,6)7. 计算(log 32+log 23)2−log 32log 23−log 23log 32的值为( ) A. log 26B. log 36C. 2D. 18. 已知f(x)是定义域为(−1,1)的奇函数,而且f(x)是减函数,如果f(m −2)+f(2m −3)>0,那么实数m 的取值范围是( )A. (1,53)B. (−∞,53)C. (1,3)D. (53,+∞)9. 已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A. f(x)=2xln|x|B. f(x)=2|x|ln|x|C. f(x)=1x 2−1D. f(x)=1|x|−1|x|10. 如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t(0≤t ≤a)经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y =f(t)的大致图象如图,那么平面图形的形状不可能是( )A. B. C. D.二、多选题(本大题共2小题,共10.0分。
高一数学第一次月考试题与答案

2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省承德市高一数学9月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2018高一上·杭州期中) 已知集合, 0,, 0,1,,则
A .
B .
C .
D . 0,1,
2. (2分) (2018高一上·浙江期中) 的值是
A .
B . 2
C .
D .
3. (2分) (2018高一上·重庆期中) 已知幂函数的图像经过点,则的值为()
A . 1
B . 2
C . 3
D . 4
4. (2分) (2018高二下·衡阳期末) 函数的图像与函数的图像的交点个数为()
A . 0
B . 1
C . 2
D . 3
5. (2分)已知集合,且,则a等于
A . 1
B . 0
C . -2
D . -3
6. (2分)已知函数的值域是,则实数的取值范围是()
A .
B .
C .
D .
7. (2分) (2017高一下·宜春期末) 不等式<x的解集是()
A . (1,+∞)
B . (﹣∞,﹣1)∪(1,+∞)
C . (﹣1,0)∪(1,+∞)
D . (﹣∞,﹣1)∪(0,1)
8. (2分)已知集合A={x|x2﹣5x<0},B={x|﹣1<x<3.x∈N},则集合A∩B的子集个数为()
A . 8
B . 4
C . 3
D . 2
9. (2分) (2017高一上·钦州港月考) 若是一个完全平方式,则等于()
A .
B .
C .
D .
10. (2分)已知f(x)是R上的偶函数,且在区间上是增函数,若,那么实数a的取值范围是()
A . (-1,0)
B . (-∞,0)∪(3,+∞)
C . (3,+∞)
D . (0,3)
11. (2分) (2016高三上·厦门期中) 若函数f(x)=x2+ex﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()
A . (﹣)
B . ()
C . ()
D . ()
12. (2分) (2015高一下·万全期中) 已知x,y都是正数,且 =1,则x+y的最小值等于()
A . 6
B . 4
C . 3+2
D . 4+2
二、填空题 (共4题;共4分)
13. (1分)(2017·房山模拟) 《中华人民共和国个人所得税法》规定:2011年9月1 日开始个人所得税起征点由原来的2000元提高到3500元.也就是说原来月收人超过2000元的部分需要纳税,2011年9月1日开始超过3500元的部分需要纳税,若税法修改前后超过部分的税率相同.按如表分段计税
级数全月应纳税所得额税率(%)
1不超过1500元的部分3
2超过1500不超过4500元的部分10
3超过4500不超过9000元的部分20
某职工2011年5月交纳个人所得税295元,在收人不变的情况下,2011年10月该职工需交纳个人所得税________元.
14. (1分)如图,阴影部分所表示的集合为________.
15. (1分)设定义域为[0,1]的函数f(x)同时满足以下三个条件时称f(x)为“友谊函数”:
⑴对任意的x∈[0,1],总有f(x)≥0;
⑵f(1)=1;
⑶若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立.
则下列判断正确的序号为________.
①f(x)为“友谊函数”,则f(0)=0;
②函数g(x)=x在区间[0,1]上是“友谊函数”;
③若f(x)为“友谊函数”,且0≤x1<x2≤1,则f(x1)≤f(x2).
16. (1分) (2016高一上·苏州期中) 已知函数f(x)= 满足f(0)=1且f(0)+2f (﹣1)=0,那么函数g(x)=f(x)+x有________个零点.
三、解答题 (共6题;共65分)
17. (10分) (2019高一上·杭州期中) 设全集,集合 , .
(1)求;
(2)设集合 ,若 ,求实数m的取值范围.
18. (10分) (2019高一上·四川期中) 已知函数的定义域为,且满足条件:①
,② ,③当时, .
(1)求证:函数为偶函数;
(2)讨论函数的单调性;
(3)求不等式的解集
19. (15分) (2019高一上·包头月考) 求下列函数的值域:
(1);
(2) .
20. (10分)若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)写出函数f(x)(x∈R)的解析式.
(2)若函数g(x)=f(x)﹣4x+2(x∈[1,2]),求函数g(x)的最小值.
21. (15分) (2016高一上·重庆期中) 已知函数f(x)=ln(x+ ),
(1)判断并证明函数y=f(x)的奇偶性;
(2)判断并证明函数y=f(x)在R上的单调性;
(3)当x∈[1,2]时,不等式f(a•4x)+f(2x+1)>0恒成立,求实数a的取值范围.
22. (5分)(2018·中山模拟) 如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥1),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共65分) 17-1、
17-2、
18-1、
18-2、
18-3、19-1、19-2、
20-1、
21-1、21-2、
21-3、
22-1、
22-2、
第11 页共11 页。