2017年秋季班数学课程-函数与方程

合集下载

高中数学_函数与方程教学设计学情分析教材分析课后反思

高中数学_函数与方程教学设计学情分析教材分析课后反思

第2讲《基本初等函数、函数与方程》教材分析《基本初等函数、函数与方程》是在学生复习了《函数的图像与性质》的基础上,学生具备了运用函数图像与性质的能力后复习的,并为《导数与函数的单调性、极值、最值问题》奠定了知识与方法的基础,起着承上启下的作用。

本节课在本模块乃至整个数学学习中都具有十分重要的地位。

学情分析学生已经复习了函数的图像与性质,而且作函数的图像已经很熟,本节课是在此基础上进一步提高学生运用函数图像的能力,充分利用数形结合思想,体会方程的工具作用。

考虑到我教的这个班是英语加强班,平时就有课前预习导学案的习惯,课堂上有分组讨论、交流合作的习惯,因此我利用目标明确、问题导学的方式,让学生自主探究,合作交流、分析、观察、归纳总结出函数的零点所考查的题型与其对应的解题方法。

并在及时反馈、问题辨析中,突出重点、突破难点。

对于例题和变式通过小组讨论、交流、学生板书、学生补充、学生总结方法和规律,近一步强化本节的重点,通过合作体验成功的喜悦。

知识技能目标1.掌握二次函数、分段函数、幂函数、指数函数、对数函数的图象性质;2.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理;3.能利用函数解决简单的实际问题。

过程与方法目标(1)本节课采用高考引领、合作交流、归纳总结、教师点拨、及时反馈、例题分析、变式训练,巩固提高发挥学生学习的主动性,提高学生学习的积极性。

(2)探索函数的零点与方程的关系,体会数和形的统一,理解数形结合思想。

(3)通过观察、分析、合作探究、分组讨论、学生总结培养学生大胆创新,勇于探索、互相合作的精神,提高学生语言表达的能力、培养学生的自信心。

(4)通过学生板书、学生查错、学生总结,培养学生解题的策略与能力。

情感与态度目标(1)培养学生层层深入、一丝不苟研究事物的科学精神,提高学生分析问题、解决问题的能力。

(2)体会数学中的数与形的关系。

(3)感受图像在研究函数性质中的一般性和有效性,培养学生大胆创新、勇于探索、互相合作的精神。

17.5.2 实践与探索(第2课时)函数与方程、不等式(华东师大版)(共20张PPT)

17.5.2 实践与探索(第2课时)函数与方程、不等式(华东师大版)(共20张PPT)
八年级(下)
华师大版第17章 函数及其图象
温故知新
1.一次函数与二元一次方程的关系:
一次函数
y kx b
二元一次方程
每对函数值都是方程的一组解
2.一次函数与二元一次方程(组)的关系:
y k1 x b1 y k2 x b2
y y
k1 x k2x
b1 b2
探究发现
问题:在直角坐标系内画出函数 y 2x 4图象。
y
A
CO
x
B
选做题
3.如图,Rt△ABD的顶点A是双曲线 y k 与直线 y x k 1 在第二象
限的交点,AB⊥x轴于点B,且
S ABO
3 2
x .
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积。
y
A
D
BO
x
C
一个人一天也不能没有理想,凭侥幸、 怕吃苦、没有真才实学,再好的理想也 不能实现不了。
y x5
(2)求直线CE: y 2x 4与直线AB及y轴围成图形的面积; 27
2
(3)根据图象,直接写出关于x的不等式kx b 2x 4的解集。x 3
y
B
D
4
C
A
F -1 O
x
E
数学活动室
1.一次函数y=3x+b和y=ax-3的图象如图所示,交点为P(-2,-5),
则不等式3x+b>ax-3的解集为( C )
学以致用
例 1 直线 y kx b的图象如图所示,则不等式 kx b 0 的解集是 x 3.
y
y
2
2
O3 x
-3 O
x

学而思初三数学秋季班第2讲.方程与函数思想.目标班.学生版

学而思初三数学秋季班第2讲.方程与函数思想.目标班.学生版

15初三秋季·第2讲·目标班·学生版中考内容中考要求A BC二次函数能结合实际问题情境了解二次函数的意义;会用描点法画出二次函数的图象 能通过分析实际问题的情境确定二次函数的表达式;能从图象上认识二次函数的性质;会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识结合的有关问题中考内容与要求满分晋级阶梯2方程与函数思想函数18级 期末复习之 二次函数与几何综合函数17级 二次函数的应用 函数16级 方程与函数思想16 初三秋季·第2讲·目标班·学生版二次函数在北京中考中属于必考考点,并且都以压轴题形式出现,是中考的难点,也是同学们失分最高的一部分。

这部分内容要求学生们⑴能用数形结合、归纳等数学思想,根据二次函数的表达式确定二次函数的开口方向、对称轴和顶点坐标;⑵综合运用方程、几何、函数等知识解决实际问题。

年份 2011年 2012年 2013年 题号 7,8,23 8,23 10,23 分值11分11分9分考点抛物线顶点坐标;函数图象;二次函数和一次函数解析式(函数图象与坐标轴交点、函数图象交点坐标),二次函数与一元二次方程(判别式、求根)函数图象;二次函数的对称性;二次函数和一次函数解析式(函数图象与坐标轴交点、函数图象交点坐标);二次函数图象平移,利用函数图象求取值范围二次函数函数图象的性质;二次函数和一次函数解析式(函数图象与坐标轴交点、函数图象交点坐标),二次函数图像的对称性知识互联网中考考点分析17初三秋季·第2讲·目标班·学生版抛物线()20y ax bx c a =++≠与y 轴的交点抛物线与y 轴必有一个交点()0c ,.抛物线()20y ax bx c a =++≠与x 轴的交点当240b ac ∆=->时,抛物线与x 轴有两个不同的交点. 当240b ac ∆=-=时,抛物线与x 轴有一个交点. 当240b ac ∆=-<时,抛物线与x 轴没有交点.直线()0y kx b k =+≠(或直线y m =或直线x n =)与抛物线()20y ax bx c a =++≠的交点问题,可运用方程思想联立方程2y kx b y ax bx c =+⎧⎨=++⎩(或2y my ax bx c=⎧⎨=++⎩或2x n y ax bx c =⎧⎨=++⎩)求出方程组的解,从而得到交点坐标. 比如抛物线()20y ax bx c a =++≠与x 轴的交点联立方程组为2y y ax bx c =⎧⎨=++⎩,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根,则抛物线与x 轴交于两点()()1200A x B x ,,,.【引例】 已知关于x 的二次函数()222134y x m x m m =--+++.探究二次函数y 的图象与x 轴的交点的个数,并写出相应的m 的取值范围.【解析】 令0y =时,得:()2221340x m x m m --+++=()()22214341615m m m m ∆=--++=--,以下分三种情况讨论:①当0∆>时,方程有两个不相等的实数根,即16150m -->∴1516m <-,此时,y 的图象与x 轴有两个交点②当0∆=时,方程有两个相等的实数根,即16150m --=∴1516m =-,此时,y 的图象与x 轴只有一个交点③当0∆<时,方程没有实数根,即16150m --<例题精讲思路导航题型一:方程思想18 初三秋季·第2讲·目标班·学生版∴1516m >-,此时,y 的图象与x 轴没有交点 综上所述:当1516m <-时,y 的图象与x 轴有两个交点;当1516m =-时,y 的图象与x 轴只有一个交点;当1516m >-时,y 的图象与x 轴没有交点.【例1】 1. 抛物线与x 轴的交点.⑴二次函数2y ax bx c =++与x 轴的两个交点坐标为()10-,、()50,,则一元二次方程20ax bx c ++=的两根为 .⑵二次函数n x x y +-=62的部分图象如图所示,若关于x 的一元二次方程062=+-n x x 的一个解为11=x ,则另一个解=2x .⑶二次函数2134y x x n =++-的图象与x 轴只有一个交点;另一个二 次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交于两点,这两个交点的横坐标都是整数,且m 是小于5的整数. 求:① n 的值;② 二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交点的坐标.2. 抛物线与直线y m =的交点.典题精练xy1O19初三秋季·第2讲·目标班·学生版图中抛物线的解析式为2y ax bx c =++,根据图象判断下列方程根的情况. ⑴ 方程20ax bx c ++=的两根分别为 . ⑵ 方程230ax bx c ++-=的两根分别为 . ⑶ 方程22ax bx c ++=的根的情况是 . ⑷ 方程24ax bx c ++=的根的情况是 .3. 抛物线与直线()0y kx b k =+≠的交点⑴直线6y ax =-与抛物线243y x x =++只有一个交点,则a = .⑵当m 取何值时,抛物线2y x =与直线y x m =+:① 有公共点;② 没有公共点.【例2】 在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A的坐标为(2,0)-. (1) 求B 点坐标;20 初三秋季·第2讲·目标班·学生版(2) 直线n m x y ++=421经过点B . ① 求直线和抛物线的解析式;② 点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线n m x y ++=421只有两个公共点时,d 的取值范围是 .21初三秋季·第2讲·目标班·学生版【例3】 在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A的坐标为(2,0)-. (1)求B 点坐标; (2)直线y =12x +4m +n 经过点B . ①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是 .22 初三秋季·第2讲·目标班·学生版【例4】 已知关于m 的一元二次方程221x mx +-=0.(1) 判定方程根的情况;(2) 设m 为整数,方程的两个根都大于1-且小于32,当方程的两个根均为有理数时, 求m 的值.抛物线()20y ax bx c a =++≠的重要结论0<Δx当0a >时,图象落在x 轴的上方, 无论x 为任何实数,都有0y >.思路导航题型二:函数思想23初三秋季·第2讲·目标班·学生版x当0a <时,图象落在x 轴的下方, 无论x 为任何实数,都有0y <.0=Δmx当0a >,x m =时,则0y =;当x m ≠时,则0y >.mx当0a <,x m =时,则0y =;当x m ≠时,则0y <.0>Δnmx当0a >, x m <或x n >时,则0y >;当x m =或x n =时,则0y =;当m x n <<时,则0y <.nmx当0a <,x m <或x n >时,则0y <;当x m =或x n =时,则0y =;当m x n <<时,则0y >.【引例】1. 如图,函数2y ax bx c =++的图象如图所示:⑴ 当x 时, 0y =; ⑵ 当x 时, 0y >; ⑶ 当x 时, 0y <.2. 如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于点()10A -,、点()30B ,和点()03C -,次函数的图象与抛物线交于B 、C 两点.⑴ 二次函数的解析式为 .⑵ 当自变量 时,两函数的函数值都随x 增大而增大. ⑶ 当自变量 时,一次函数值大于二次函数值. ⑷ 当自变量 时,两函数的函数值的积小于0.【解析】 1. ⑴ 1x =或3x =;⑵ 3x >或1x <; ⑶ 13x <<.2. ⑴ 223y x x =--;⑵ 1x >;⑶ 03x <<;⑷ 1x <-.例题精讲典题精练yxO -331-1CB A yx31O24 初三秋季·第2讲·目标班·学生版【例5】 ⑴下列命题:①若0a b c ++=,则240b ac -<;②若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若240b ac ->,则二次函数2y ax bx c =++的图象与坐标轴的公共点的个数是2或3.④若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根.正确的是( )A .②④B .①③C .②③D .③④⑵若m 、n (m n <)是关于x 的方程()()10x a x b ---=的两根,且a b <,则a 、b 、m 、n 的大小关系是( )A .m a b n <<<B .a m n b <<<C .a m b n <<<D .m a n b <<<⑶方程2310x x +-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,那么用此方法可推断出方程3210x x +-=的实根0x 所在的范围是( ) A .010x -<<B .001x <<C .012x <<D .023x <<【例6】 已知:关于x 的方程()2240x ax a ++-=①有两个实数根是1x 、2x (12x x <),若关于x的另一个方程220x ax k ++=②的两个实数根都在1x 和2x 之间.试比较:代数式4k +、a 、24a +之间的大小关系.【例7】 在平面直角坐标系xOy 中,抛物线()2220y mx mx m =--≠与初三秋季·第2y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线 l 的解析式;(3)若该抛物线在21x -<<-这一段位于直线l 的上方,并且 在23x <<这一段位于直线AB 的下方,求该抛物线的解析式.训练1. 二次函数()20y ax bx c a =++≠的部分图象如图所示,根据图象解答下列问题:⑴写出x 为何值时,y 的值大于0;思维拓展训练(选讲)26 初三秋季·第2讲·目标班·学生版⑵写出x 为何值时,y 随x 的增大而增大;⑶若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.训练2. 已知二次函数22(21)y x m x m m =--+-(m 是常数,且0m ≠).⑴证明:不论m 取何值时,方程22(21)0x m x m m --+-=总有两个不相等的实数根;⑵设二次函数与x 轴两个交点的横坐标分别为1x ,2x (其中1x >2x ),当m的取值满足什么条件时2112xx -≤.训练3. 已知函数()20y x bx c x =++≥,满足当1x =时,1y =-,且当0x =与4x =时的函数值相等.⑴求函数()20y x bx c x =++≥的解析式并画出它的图象(不要求列表);⑵若()f x 表示自变量x 相对应的函数值,且2 (0),() 2 (0),x bx c x f x x ⎧++=⎨-<⎩≥ 又已知关于x 的方程()f x x k =+有三个不相等的实数根,请利用图象直接写出实数k 的取值范围.27初三秋季·第2讲·目标班·学生版训练4. 设二次方程()22120x a x a +-+-=有一根比1大,另一根比1-小,试确定实数a 的范28 初三秋季·第2讲·目标班·学生版题型一 方程思想 巩固练习【练习1】 已知二次函数2y x bx c =-++的图象如图所示,解决下列问题:⑴关于x 的一元二次方程20x bx c -++= 的解为 ; ⑵x 取何值时,函数值2y ≤?【练习2】 已知:关于x 的二次函数2(1)(1)2y a x a x =--++.⑴当a 取何值时,方程2(1)(1)20a x a x --++=有两个不相等的实数根; ⑵整数a 取何值时,二次函数与x 轴的交点都是正整数.复习巩固yx31O29初三秋季·第2讲·目标班·学生版【练习3】 如图是二次函数2()y x m k =++的图象,其顶点坐标为()14M -,.⑴ 求出图象与x 轴的交点A ,B 的坐标;⑵ 在二次函数的图象上是否存在点P ,使54PAB MAB S S =△△,若存在,求出P 点的坐标;若不存在,请说明理由;⑶ 将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线(1)y x b b =+<与此图象有两个公共点时,b 的取值范围.题型二 函数思想 巩固练习【练习4】 ⑴不论x 为何值时,2y ax bx c =++永远是正值的条件是( )A .0a >,0∆<B .0a >,0∆≥C .0a >,0∆>D .0a <,0∆< ⑵若抛物线()2123y m x mx m =-+++位于x 轴上方,则m 的取值范围是( )A .1m >B .32m >C .32m ≥D .312m << ⑶二次函数2y ax bx c =++对于x 的任何值都恒为负值的条件是( ) A .0a >,0∆> B .0a >,0∆< C .0a <,0∆> D .0a <,0∆<【练习5】 已知关于x 的一元二次方程20ax bx c ++=,如果0a >,a c b +<,那么方程20ax bx c ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .必有一个根为0初三秋季·第2讲·目标班·学生版巴雷尼与诺贝尔奖巴雷尼小时候因病成了残疾,母亲的心就像刀绞一样,但她还是强忍住自己的悲痛。

函数与方程 ppt课件

函数与方程 ppt课件

1
0.5
课 时

0.25



0.125
[1.375,1.4375]
0.0625
菜单
一轮复习·B ·数学(理)[安徽专用]
利用二分法函求方数程与实方数解程的过程


主 落
选定初始区间


实 ·
1.初始区间是一个两端
固 函数值符号相反的区间

取区间的中点
验 · 明 考

2.“M”的意思是

取新区间,其中 一个端点是原区
落 实
Δ>0
Δ=0
Δ<0
体 验
·
·



二次函数


y=ax2+bx+c

(a>0)的图像

与x轴的交点 (x1,0),(x2,0)
(x1,0)
无交点
例 探
零点的个数
2
1
0



·







菜单
一轮复习·B ·数学(理)[安徽专用]
{ 自
主 落 实
变式 2A3.3若..定 .函(函2没数0义 数1有零1R y·零= 点 在 陕上 点存 f西(x的 在)高在性考闭奇 定)区函理f间 函 (数x[a)数 f,,(xb当 )]=上x的B≥x.0图-时 有像c,o且是sf(x仅连x在有)续=[一 0曲,l1线个o-+g,|12x零(∞并 -x3点+)|且,1内x)∈ 在,x(∈ [区1,[+间0∞,1))端),,
高 考 体 验
· 固 基 础

数学北师大版高中必修1《方程与函数》说课稿

数学北师大版高中必修1《方程与函数》说课稿

《方程与函数》说课稿一.说教材函数与方程是中学数学的重要内容.本节是在学习了前两章函数的性质的基础上,结合函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与方程的根的关系以及掌握函数在某个区间上存在零点的判定方法;为下节“二分法求方程的近似解”和后续学习的算法提供了基础.因此本节内容具有承前启后的作用,地位重要.二.说目标(一)认知目标:1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的根的联系.2.理解并会用函数在某个区间上存在零点的判定方法.(二)能力目标:培养学生自主发现、探究实践的能力.(三)情感目标:在函数与方程的联系中体验数学转化思想的意义和价值.三.说重点、难点教学重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件教学难点:探究发现函数零点的存在性.四.说教法、学法“将课堂还给学生,让课堂焕发出生命的活力”是我进行教学的指导思想,充分发挥教师的主导作用和学生的主体作用.采用“启发—探究—讨论”式教学模式.五.说过程(一)创设问题情境。

问题1 求下列方程的根.(1);(2);(3);(4).设计意图:由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲.思考:一元二次方程的根与二次函数的图象有什么关系?问题2 观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,图象与有利于培养学生思维的完整性,也为学生归纳方程与函数的关系打下基础.问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程根的情况及相应的二次函数的图象与图象与把具体的结论推广到一般情况,向学生渗透“从最简单、最熟悉的问题入手解决较复杂问题”的思维方法,培养学生的归纳能力.(二)启发引导,形成概念1.函数零点的概念:把函数的图像与横轴的交点的横坐标称为这个函数的零点.辨析练习:判断下列说法的正误.函数的零点是:⑴(-1,0),(3,0);()⑵ x=-1和x=3;()⑷ -1和3.()2.等价关系:方程有实数根函数的图象与轴有交点函数有零点.设计意图:利用辨析练习,来加深学生对概念的理解.目的要学生明确零点是一个实数,不是一个点.引导学生得出三个重要的等价关系,体现了“化归”和“数形结合”的数学思想,这也是解题的关键.(三)初步应用例1 求函数的零点.变式练习:求下列函数的零点.(1);(2).设计意图:巩固函数零点的求法,渗透二次函数以外的函数零点情况.进一步体会方程与函数的关系.(四) 讨论探究,揭示定理问题4:函数y=f(x)在某个区间上是否一定有零点?怎样的条件下,函数y=f(x)一定有零点?探究: 观察二次函数的图象,如下图.计算和的乘积;猜想:若函数在区间[a,b]上图象是连续的,如果有成立,那么函数在区间(a,b)上有零点.设计意图:通过小组讨论完成探究,教师恰当辅导,引导学生大胆猜想出函数零点存在性的判定方法.这样设计既符合学生的认知特点,也让学生经历从特殊到一般过程.1.零点存在定理:如果函数 y=f(x)在区间[a, b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0, 那么, 在区间(a, b)内函数y=f(x)至少有一个零点,即相应的方程f(x) = 0在区间(a, b)至少有一个实数解.2.概念辨析:3.说明:若函数y=f(x) 在区间(a, b)内有零点,不一定能得出f(a)·f(b)<0的结论,就是说上述定理不可逆.4.判定零点存在性的方法:(1)利用定理;(2)利用图象.反馈练习:函数必有一个零点的区间是().A.(-5, -4) B.(-4,3) C.(-1, 0) D.(0,2)设计意图:过反馈练习,使学生初步运用定理来解决“找出函数零点所在区间”这一类问题.引导学生观察图象的单调性以及在每一个单调区间的零点情况,得出相应的结论,为后面的例题学习作好铺垫.(五)例题解析例2 判断方程有两个相异的实根,且一个大于5,一个小于2.设计意图:引导学生思考如何应用零点存在定理来解决相关的具体问题,接着让学生利用函数单调性判断零点的个数,并借助函数图象对整个解题思路有一个直观的认识.(六)知识应用1.判断方程在内的实数解的存在性,并说明理由。

北师大版高中数学必修一-4.1.1函数与方程课件

北师大版高中数学必修一-4.1.1函数与方程课件

解:因为 f ( 1) 3 1 ( 1)2
2 0, f (0) 30 02 1 0 ,函数
3
f (x) 3x x2 的图像是连续曲线,
所以 f (x) 在区间[-1,0]内有零点,即 f (x) 0 在区间[-1, 0]内有实数解。
例 2: 判断方程 4x3 + x -15 = 0, 在区间[1,2]内 实数解地存在性,并说明理由。
方程 根
2.两种思想:函数方程思想;数形结合思想. 3.函数零点存在性判别的三种方法:
(1)解方程 (2)画图像 (3)用定理判定
本节知识可以概括为:
函数方程本一家, 数学王国它当家; 方程实根存在性, 函数符号来确定。
2
在 区 间 (-2,0) 上 有 零 点 _-_1_ ;
-2
-1
1 0
12
345 x
-1
f (2) __5__, f (0) _-_3_;
-2 -3
f (2) · f (0) __<__0(<或>).
-4
在区间(2,4)上有零点__3__;
f (2) · f (4) _<___0 (<或>).
10
f(x) = 2∙x 3
5
5
A = 1.5
10
15
交点的坐标有什么关系?
2
4
6
8
1.定义
函数的零点
函数的零点 :我们把函数y=f(x)的图像与横轴的交点的
横坐标称为这个函数的零点.
零点是实数 而不是点
等价关系
方程f(x)=0有实数根
函数y=f(x)的图像与x轴 有交点



函数y=f(x)有零点

函数与方程课件

函数与方程课件

06
函数与方程的未来发展
函数与方程在其他学科中的应用
数学建模
函数与方程在数学建模中扮演着 重要的角色,通过建立数学模型 ,可以描述现实世界中的各种现 象,如物理、化学、生物等学科
中的问题。
计算机科学
在计算机科学中,函数与方程被 广泛应用于算法设计、数据结构 、离散概率论等领域,为计算机 科学的发展提供了重要的理论支
函数与方程ppt课件
• 函数的概念与性质 • 方程的种类与解法 • 函数与方程的关系 • 函数的应用 • 方程的应用 • 函数与方程的未来发展
01
函数的概念与性质
函数的定义
函数是数学上的一个概念,它描述了两个集合之间的对应关系。具体来说,对于 给定的集合X中的每一个元素x,按照某种规则,总有集合Y中的唯一一个元素y与 之对应。这种关系通常用符号f表示,即f: X→Y。
03
函数与方程的关系
函数图像与方程解的关系
函数图像是方程解在坐标系中的 表现形式,通过观察函数图像可 以直观地了解方程的解的情况。
函数图像的交点表示方程的根, 函数图像的极值点也可能对应方
程的根。
通过函数图像的变化可以推测方 程解的变化趋势。
函数的最值与方程根的关系
函数的最值点可能是方程的根,因为函数在极值点附近的导数会发生变化,导致函 数值发生突变。
如果函数在某区间内单调递增或递减,那么该区间内函数的最大值或最小值可能对 应方程的一元一次根。
对于多元函数,最值问题可能转化为方程组问题,需要利用方程组的解来判断最值 的存在性和性质。
函数图像的变换与方程解的变换
函数图像的平移、伸缩、旋转 等变换会影响函数的值,从而 影响方程的解。
通过对方程进行变量替换或参 数调整,可以改变方程的形式 和结构,从而影响方程的解。

《函数与方程》章节精品说课课件

《函数与方程》章节精品说课课件

2 X
❖“傻瓜不是瓜”、 零点亦非点!
§3.1.1 方程的根与函数的零点
二、 “零点的存在性定理”教学 问题串2: 问题1:判断函数y x2 2x 1零点的个数,并说明理由。
问题2:函数 y x2 2x 1 在区间 (2,3)上存在零点吗? 问题3:判断函数y 10 x2 42 x 39 在区间(1,1)上是否有 零点?
❖问题4:请同学们思考为什么上述命题对此类函数不成
立,而对二次函数则是成立的?
❖问题5:你能够补上合适的条件,使上述命题对任意的
函数都成立吗?
Y
对定理的反思:
①、该定理有哪些关键词?
a c0
bX
②、“不间断”这个条件能够去掉吗?
③、在这些条件下的函数零点唯一吗?
④、反之,若函数有零点就一定能够得出 f (a) f (b) 0?
应值表:x
1
2
3
4
5
6
7
f(x) 23 9 –7 11 –5 –12 –26
那么函数在区间[1,6]上的零点至少有( )个
A.5个
B.4个
C.3个
D.2个
2、函数 f (x) x(x2 16)的零点为(
A.(0,0), (4,0) B.(4,0), (0,0), (4,0)
)
C.0,4
D. 4,0,4
四、教学设想:
§3.1.1 方程的根与函数的零点 ❖一、“函数的零点”概念的教学
❖二、 “零点的存在性定理”教学
§3.1.2 用二分法求方程的近似解 ❖一、“中央电视台购物街栏目---猜价格游戏” ❖二、“二分法”教学
§3.1.1 方程的根与函数的零点
❖一、“函数的零点”概念的教学 ❖引言:古诗云:横看成岭侧成峰,远近高低各不
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年秋季班数学课程函数与方程突破点(一) 函数的零点问题1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系(x 0),(x 0)(x 0) 无判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上. (2)定理法:利用零点存在性定理进行判断.本节主要包括2个知识点: 1.函数的零点问题; 2.函数零点的应用问题.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.[例1] (1)(2016·赣中南五校联考)在下列区间中,函数f (x )=x 2-3x -18有零点的区间是( )A .[0,1]B .[1,8]C .[-2,-1]D .[-1,0](2)(2017·长沙模拟)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)[易错提醒]函数的零点存在性定理只能判断函数在某个区间上的变号零点,不能判断不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,不是必要条件,所以在判断一个函数在某个区间上不存在零点时,不能完全依赖函数的零点存在性定理,要综合函数性质进行分析判断.函数零点个数的判断直接法直接求零点:令f (x )=0,如果能求出解,则有几个不同的解就有几个零点 定理法零点存在性定理:利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法利用图象交点的个数:画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数性质法利用函数性质:若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数[例2] (1)函数f (x )=⎩⎪⎨⎪⎧x +x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0(2)设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x +x -3,则f (x )的零点个数为( )A .1B .2C .3D .4[易错提醒](1)图象法求函数零点个数的关键是正确画出函数的图象.在画函数的图象时,常利用函数的性质,如周期性、对称性等,同时还要注意函数定义域的限制.(2)对于一般函数零点个数的判断问题,不仅要判断区间[a ,b ]上是否有f (a )·f (b )<0,还需考虑函数的单调性.能力练通抓应用体验的“得”与“失”1.[考点一]用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为( )A .(0,0.5),f (0.125)B .(0.5,1),f (0.875)C .(0.5,1),f (0.75)D .(0,0.5),f (0.25)2.[考点一]设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)3.[考点二]设f (x )是区间[-1,1]上的增函数,且f ⎝⎛⎭⎫-12·f ⎝⎛⎭⎫12<0,则方程f (x )=0在区间[-1,1]内( )A .可能有3个实数根B .可能有2个实数根C .有唯一的实数根D .没有实数根4.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧-2,x >0,-x 2+bx +c ,x ≤0,若f (0)=-2,f (-1)=1,则函数g (x )=f (x )+x 的零点个数为______.突破点(二) 函数零点的应用问题由于函数y =f (x )的零点就是方程f (x )=0的根,所以在研究方程的有关问题时,如比较方程根的大小、确定方程根的分布、证明根的存在性等,都可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.考点贯通抓高考命题的“形”与“神”由函数零点存在情况或个数求参数的范围[例1] (1)(2017·昆明模拟)若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是( )A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞ C.⎝⎛⎭⎫-1,15D .(-∞,-1) (2)(2017·南昌十校联考)若函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x .若在区间(-1,1]内,g (x )=f (x )-mx -2m 有两个零点,则实数m 的取值范围是( )A.⎝⎛⎭⎫0,13B.⎝⎛⎦⎤0,13 C.⎝⎛⎭⎫13,1 D.⎝⎛⎦⎤13,1[方法技巧]已知函数零点求参数的范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.利用函数零点比较大小[例2] 已知函数f (x )=2x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .a >b >cD .c >a >b能力练通抓应用体验的“得”与“失”1.[考点一]若函数f (x )=ax +1在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,1)C .(-∞,-1)∪(1,+∞)D .(-1,1) 2.[考点一]函数f (x )=2a log 2x +a ·4x +3在区间⎝⎛⎭⎫12,1上有零点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,-12B.⎝⎛⎭⎫-∞,-32C.⎝⎛⎭⎫-∞,-34D.⎝⎛⎭⎫-32,-123.[考点二]已知x 0是f (x )=⎝⎛⎭⎫12x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)>0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>04.[考点一](2017·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >1,9x (1-x )2,x ≤1.若函数g (x )=f (x )-k 仅有一个零点,则k 的取值范围是( )A.⎝⎛⎦⎤43,2 B .(-∞,0)∪⎝⎛⎭⎫43,+∞ C .(-∞,0)D .(-∞,0)∪⎝⎛⎭⎫43,25.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x <1,log 12x ,x ≥1,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是________.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.已知函数f (x )=6x -log 2x ,在下列区间中,包含 f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) 2.函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .33.若f (x )是奇函数,且x 0是y =f (x )+e x 的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x -1B .y =f (x )e -x +1C .y =e x f (x )-1D .y =e x f (x )+14.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.(2016·天津六校联考)已知函数y =f (x )的图象是连续的曲线,且对应值如表:则函数y[练常考题点——检验高考能力]一、选择题1.设a 是方程2ln x -3=-x 的解,则a 在下列哪个区间内( ) A .(0,1) B .(3,4) C .(2,3)D .(1,2)2.已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定3.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个4.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .55.(2016·山西四校联考)函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f (x +1),x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)6.(2017·湖南衡阳模拟)函数f (x )的定义域为[-1,1],图象如图1所示,函数g (x )的定义域为[-2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m +n =( )A .14B .12C .10D .8二、填空题7.若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.8.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为________.9.(2016·湖北优质高中联考)函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.10.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧a x,x ≥0,kx +1,x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________.三、解答题11.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围.12.已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.(1)写出函数y=f(x)的解析式;(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.2017年秋季班数学课程函数与方程突破点(一) 函数的零点问题1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系(x 0),(x 0)(x 0) 无判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.本节主要包括2个知识点: 1.函数的零点问题; 2.函数零点的应用问题.(2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.[例1] (1)(2016·赣中南五校联考)在下列区间中,函数f (x )=x 2-3x -18有零点的区间是( )A .[0,1]B .[1,8]C .[-2,-1]D .[-1,0](2)(2017·长沙模拟)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)[解析] (1)法一:∵f (1)=12-3×1-18=-20<0, f (8)=82-3×8-18=22>0,∴f (1)·f (8)<0, 又f (x )=x 2-3x -18在区间[1,8]的图象是连续的, 故f (x )=x 2-3x -18在区间[1,8]上存在零点. 法二:令f (x )=0,得x 2-3x -18=0, ∴(x -6)(x +3)=0,得x =6∈[1,8], ∴f (x )=x 2-3x -18在区间[1,8]上存在零点.(2)∵f (x )=ln x -⎝⎛⎭⎫12x -2在(0,+∞)上是增函数,又f (1)=ln 1-⎝⎛⎭⎫12-1=ln 1-2<0,f (2)=ln 2-⎝⎛⎭⎫120<0,f (3)=ln 3-⎝⎛⎭⎫121>0,∴x 0∈(2,3),故选C. [答案] (1)B (2)C [易错提醒]函数的零点存在性定理只能判断函数在某个区间上的变号零点,不能判断不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,不是必要条件,所以在判断一个函数在某个区间上不存在零点时,不能完全依赖函数的零点存在性定理,要综合函数性质进行分析判断.函数零点个数的判断直接法 直接求零点:令f (x )=0,如果能求出解,则有几个不同的解就有几个零点 定理法零点存在性定理:利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能[例2] (1)函数f (x )=⎩⎪⎨⎪⎧x +x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0(2)设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x +x -3,则f (x )的零点个数为( )A .1B .2C .3D .4[解析] (1)法一:由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.因此函数f (x )共有2个零点. 法二:函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.(2)因为函数f (x )是定义域为R 的奇函数, 所以f (0)=0,即0是函数f (x )的一个零点, 当x >0时,令f (x )=e x +x -3=0,则e x =-x +3,分别画出函数y =e x 和y =-x +3的图象,如图所示,两函数图象有一个交点,所以函数f (x )有一个零点,根据对称性知,当x <0时函数f (x )也有一个零点.综上所述,f (x )的零点个数为3. [答案] (1)B (2)C[易错提醒](1)图象法求函数零点个数的关键是正确画出函数的图象.在画函数的图象时,常利用函数的性质,如周期性、对称性等,同时还要注意函数定义域的限制.(2)对于一般函数零点个数的判断问题,不仅要判断区间[a ,b ]上是否有f (a )·f (b )<0,还需考虑函数的单调性.能力练通抓应用体验的“得”与“失”1.[考点一]用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为( )A .(0,0.5),f (0.125)B .(0.5,1),f (0.875)C .(0.5,1),f (0.75)D .(0,0.5),f (0.25)解析:选D ∵f (x )=x 5+8x 3-1,f (0)<0,f (0.5)>0,∴f (0)·f (0.5)<0,∴其中一个零点所在的区间为(0,0.5),第二次应计算的函数值应为f (0.25),故选D.2.[考点一]设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选B 函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围.作出图象如图,可知f (x )的零点所在的区间为(1,2).故选B.3.[考点二]设f (x )是区间[-1,1]上的增函数,且f ⎝⎛⎭⎫-12·f ⎝⎛⎭⎫12<0,则方程f (x )=0在区间[-1,1]内( )A .可能有3个实数根B .可能有2个实数根C .有唯一的实数根D .没有实数根解析:选C 由f (x )在区间[-1,1]上是增函数,且f ⎝⎛⎭⎫-12·f ⎝⎛⎭⎫12<0,知f (x )在区间⎣⎡⎦⎤-12,12内有唯一的零点,∴方程f (x )=0在区间[-1,1]内有唯一的实数根.4.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧-2,x >0,-x 2+bx +c ,x ≤0,若f (0)=-2,f (-1)=1,则函数g (x )=f (x )+x 的零点个数为______.解析:依题意得⎩⎪⎨⎪⎧c =-2,-1-b +c =1,由此解得b =-4,c =-2.由g (x )=0得f (x )+x =0,该方程等价于⎩⎪⎨⎪⎧ x >0,-2+x =0,①或⎩⎪⎨⎪⎧x ≤0,-x 2-4x -2+x =0.②解①得x =2,解②得x =-1或x =-2.因此,函数g (x )=f (x )+x 的零点个数为3.答案:3突破点(二) 函数零点的应用问题由于函数y =f (x )的零点就是方程f (x )=0的根,所以在研究方程的有关问题时,如比较方程根的大小、确定方程根的分布、证明根的存在性等,都可以将方程问题转化为函数问题解决.此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.考点贯通抓高考命题的“形”与“神”由函数零点存在情况或个数求参数的范围[例1] (1)(2017·昆明模拟)若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是( )A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞ C.⎝⎛⎭⎫-1,15D .(-∞,-1) (2)(2017·南昌十校联考)若函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x .若在区间(-1,1]内,g (x )=f (x )-mx -2m 有两个零点,则实数m 的取值范围是( )A.⎝⎛⎭⎫0,13B.⎝⎛⎦⎤0,13 C.⎝⎛⎭⎫13,1D.⎝⎛⎦⎤13,1[解析] (1)当a =0时,f (x )=1,与x 轴无交点,不合题意,所以a ≠0.函数f (x )=3ax +1-2a 在区间(-1,1)内是单调函数,又因为f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,所以f (-1)·f (1)<0,即(1-5a )(a +1)<0,解得a <-1或a >15,故选B.(2)当-1<x <0时,0<x +1<1, 所以f (x +1)=x +1,从而f (x )=1f (x +1)-1=1x +1-1,于是f (x )=⎩⎪⎨⎪⎧1x +1-1,-1<x <0,x ,0≤x ≤1,f (x )-mx -2m =0⇔f (x )=m (x +2),由图象可知0<m ≤k AB =13.[答案] (1)B (2)B[方法技巧]已知函数零点求参数的范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.利用函数零点比较大小[例2] 已知函数f (x )=2x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .a >b >cD .c >a >b[解析] f (x )=2x +x 的零点a 为函数y =2x 与y =-x 图象的交点的横坐标,由图象可知a <0,g (x )=log 2x +x 的零点b 为函数y =log 2x 与y =-x 图象的交点的横坐标,由图象知b >0,令h (x )=0,得c =0.故选B.[答案] B能力练通抓应用体验的“得”与“失”1.[考点一]若函数f (x )=ax +1在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,1)C .(-∞,-1)∪(1,+∞)D .(-1,1)解析:选C 由题意知,f (-1)·f (1)<0, 即(1-a )(1+a )<0,解得a <-1或a >1.2.[考点一]函数f (x )=2a log 2x +a ·4x +3在区间⎝⎛⎭⎫12,1上有零点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,-12 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫-∞,-34 D.⎝⎛⎭⎫-32,-12 解析:选C 函数f (x )在⎝⎛⎭⎫12,1上是单调函数,又f ⎝⎛⎭⎫12=3>0,则根据零点存在性定理,应满足f (1)=4a +3<0,解得a <-34.3.[考点二]已知x 0是f (x )=⎝⎛⎭⎫12x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0解析:选C 在同一坐标系下作出函数f (x )=⎝⎛⎭⎫12x ,f (x )=-1x 的图象(图略),由图象可知当x ∈(-∞,x 0)时,⎝⎛⎭⎫12x >-1x ;当x ∈(x 0,0)时,⎝⎛⎭⎫12x <-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0.4.[考点一](2017·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >1,9x (1-x )2,x ≤1.若函数g (x )=f (x )-k 仅有一个零点,则k 的取值范围是( )A.⎝⎛⎦⎤43,2 B .(-∞,0)∪⎝⎛⎭⎫43,+∞ C .(-∞,0)D .(-∞,0)∪⎝⎛⎭⎫43,2解析:选D 函数f (x )=⎩⎪⎨⎪⎧2x ,x >1,9x (1-x )2,x ≤1,若函数g (x )=f (x )-k仅有一个零点,即f (x )=k 只有一个解,在平面直角坐标系中画出y =f (x )的图象,结合函数图象可知,方程只有一个解时,k ∈(-∞,0)∪⎝⎛⎭⎫43,2,故选D.5.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x <1,log 12x ,x ≥1,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是________.解析:关于x 的方程f (x )=k 有三个不同的实根,等价于函数f (x )与函数y =k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0).答案:(-1,0)[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.已知函数f (x )=6x -log 2x ,在下列区间中,包含 f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4),故选C.2.函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3解析:选B 令f (x )=0,得x 12=⎝⎛⎭⎫12x ,在平面直角坐标系中分别画出函数y =x 12与y =⎝⎛⎭⎫12x的图象(图略),可得交点只有一个,所以零点只有一个,故选B.3.若f (x )是奇函数,且x 0是y =f (x )+e x 的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x -1B .y =f (x )e -x +1C .y =e x f (x )-1D .y =e x f (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e x f (x )-1的零点.4.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C.5.(2016·天津六校联考)已知函数y =f (x )的图象是连续的曲线,且对应值如表:则函数y 解析:依题意知f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)内均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.答案:3[练常考题点——检验高考能力]一、选择题1.设a 是方程2ln x -3=-x 的解,则a 在下列哪个区间内( ) A .(0,1)B .(3,4)C .(2,3)D .(1,2)解析:选D 令f (x )=2ln x -3+x ,则函数f (x )在(0,+∞)上递增,且f (1)=-2<0,f (2)=2ln 2-1=ln 4-1>0,所以函数f (x )在(1,2)上有零点,即a 在区间(1,2)内.2.已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定解析:选C 在同一坐标系中作出函数y =2x ,y =log 12x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log 12x 0,即f (x 0)<0.3.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个解析:选B 因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示:显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.4.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .5解析:选A 由已知条件得g (x )=3-f (2-x )=⎩⎪⎨⎪⎧|x -2|+1,x ≥0,3-x 2,x <0,分别画出函数y =f (x ),y =g (x )的草图,观察发现有2个交点.故选A.5.(2016·山西四校联考)函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0,f (x +1),x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0,f (x +1),x <0的图象如图所示,作出直线l :y =a -x ,向左平移直线l ,观察可得当函数y =f (x )的图象与直线l :y =-x +a 的图象有两个交点,即方程f (x )=-x +a 有且只有两个不相等的实数根时,有a <1,故选C.6.(2017·湖南衡阳模拟)函数f (x )的定义域为[-1,1],图象如图1所示,函数g (x )的定义域为[-2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m +n =( )A .14B .12C .10D .8解析:选A 由题图可知,若f (g (x ))=0,则g (x )=-1或g (x )=0或g (x )=1;由题图2知,g (x )=-1时,x =-1或x =1;g (x )=0时,x 的值有3个;g (x )=1时,x =2或x =-2,故m =7.若g (f (x ))=0,则f (x )=-32或f (x )=32或f (x )=0.由题图1知,f (x )=32与f (x )=-32各有2个;f (x )=0时,x =-1或x =1或x =0,故n =7.由此可得m +n =14.故选A.二、填空题7.若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.解析:要求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根,∴⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1.∴g (x )的零点为1+2,1. 答案:1+2,18.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为________.解析:函数g (x )=f (x )-e x 的零点个数即为函数y =f (x )与y =e x 的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.答案:29.(2016·湖北优质高中联考)函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:题设可转化为两个函数y =⎝⎛⎭⎫12|x -1|与y =-2cos πx 在[-4,6]上的交点的横坐标的和,因为两个函数均关于x =1对称,所以两个函数在x =1两侧的交点对称,则每对对称点的横坐标的和为2,分别画出两个函数的图象易知两个函数在x =1两侧分别有5个交点,所以5×2=10.答案:1010.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧a x ,x ≥0,kx +1,x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________.解析:函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y =f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.答案:(0,1) 三、解答题11.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解:设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解, ∵f (0)=1>0, ∴f (2)≤0.又∵f (2)=22+(m -1)×2+1,∴m ≤-32.而当m =-32时,f (x )=0在[0,2]上有两解12和2,∴m <-32.②若f (x )=0在区间[0,2]上有两解, 则⎩⎪⎨⎪⎧Δ≥0,0<-m -12<2,f (2)≥0,∴⎩⎪⎨⎪⎧(m -1)2-4≥0,-3<m <1,4+(m -1)×2+1≥0.∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1.由①②可知实数m 的取值范围是(-∞,-1].12.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 解:(1)设x <0,则-x >0,∴f (-x )=x 2+2x . 又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解,即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个不同的解,只需-1<a <1,故a 的取值范围为(-1,1).。

相关文档
最新文档