1★低氧与超高压对鲜切甜瓜货架期延长效果研究l

合集下载

【不同品种甜瓜鲜切加工后贮藏期间的品质变化】甜瓜最好的品种

【不同品种甜瓜鲜切加工后贮藏期间的品质变化】甜瓜最好的品种

【不同品种甜瓜鲜切加工后贮藏期间的品质变化】甜瓜最好的品种鲜切果蔬(Fresh-cut fruits and vegetables)也称最少加工果蔬、半加工果蔬、轻度加工果蔬、调理果蔬等,指新鲜水果、蔬菜原料经分级、清洗、整修、去皮、切分、保鲜、包装等一系列处理后,产品仍保持新鲜状态,供消费者立即食用或餐饮业使用的一种新式果蔬加工产品。

鲜切果蔬自然、新鲜、卫生、方便,尤其具有安全和环保等特点,加之现代生活节奏和休闲消费的快速发展,具有即食和即用方便特性的鲜切果蔬日益受到人们的关注。

与新鲜果蔬相比,鲜切果蔬主要存在以下几个问题:生理生化特性改变、微生物侵染、营养物质损失。

解决好这三个问题是鲜切产品保持其货架期的关键[1,2]。

甜瓜属葫芦科,一年蔓生草本植物,原产于非洲热带沙漠地区,大约在北魏时期随着西瓜一同传到中国,明朝开始广泛种植。

据统计,我国甜瓜的栽培面积和产量均居世界第一位,在世界十大水果中仅次于葡萄、香蕉、柑橘、苹果,居第五位。

多食甜瓜,有利于人体心脏和肝脏以及肠道系统的活动,促进内分泌和造血机能。

祖国医学确认甜瓜具有“消暑热,解烦渴,利小便”的显著功效。

因而,鲜切甜瓜产品受到消费者关注。

文献显示西班牙和美国一些研究机构主要研究气调保鲜和保鲜剂对鲜切西瓜品质的影响[3,4],国内关于鲜切甜瓜的研究鲜有报道,本文主要研究鲜切处理对我国主要栽培甜瓜品种品质的影响,进而确定适合鲜切加工的甜瓜品种,为产业化生产提供理论依据。

1 材料与方法1.1 实验原料四个甜瓜品种(京玉、景田、伊莉莎白、伽师),购于北京新发地农产品批发市场。

相同品种选择大小形状成熟度一致的。

1.2 仪器和设备质构仪,TA-XT plus *****型,英国stable micro systems texture analyster公司生产;日本柯尼卡-美能达公司CM3700d型色差仪;冷冻离心机,sigma 3-18K,德国sigma公司生产。

不同品种甜瓜鲜切加工后贮藏期间的品质变化

不同品种甜瓜鲜切加工后贮藏期间的品质变化

不同品种甜瓜鲜切加工后贮藏期间的品质变化作者:罗述博张超赵晓燕马越赵丽芹李武来源:《农业工程技术·农产品加工》2011年第06期摘要:以“京玉”、“景田”、“伊莉莎白”和“伽师”四个甜瓜品种为试验材料,测定鲜切加工后在5℃条件下贮藏13天,呼吸速率、硬度和颜色等指标的变化情况,研究比较这四种甜瓜在储藏中的品质变化规律,找出更适合鲜切的甜瓜品种。

结果显示,“京玉”和“景田”鲜切后贮藏过程中保持较好的品质,是适合鲜切加工的甜瓜品种。

关键词:甜瓜鲜切呼吸速率硬度颜色鲜切果蔬(Fresh-cut fruits and vegetables)也称最少加工果蔬、半加工果蔬、轻度加工果蔬、调理果蔬等,指新鲜水果、蔬菜原料经分级、清洗、整修、去皮、切分、保鲜、包装等一系列处理后,产品仍保持新鲜状态,供消费者立即食用或餐饮业使用的一种新式果蔬加工产品。

鲜切果蔬自然、新鲜、卫生、方便,尤其具有安全和环保等特点,加之现代生活节奏和休闲消费的快速发展,具有即食和即用方便特性的鲜切果蔬日益受到人们的关注。

与新鲜果蔬相比,鲜切果蔬主要存在以下几个问题:生理生化特性改变、微生物侵染、营养物质损失。

解决好这三个问题是鲜切产品保持其货架期的关键[1,2]。

甜瓜属葫芦科,一年蔓生草本植物,原产于非洲热带沙漠地区,大约在北魏时期随着西瓜一同传到中国,明朝开始广泛种植。

据统计,我国甜瓜的栽培面积和产量均居世界第一位,在世界十大水果中仅次于葡萄、香蕉、柑橘、苹果,居第五位。

多食甜瓜,有利于人体心脏和肝脏以及肠道系统的活动,促进内分泌和造血机能。

祖国医学确认甜瓜具有“消暑热,解烦渴,利小便”的显著功效。

因而,鲜切甜瓜产品受到消费者关注。

文献显示西班牙和美国一些研究机构主要研究气调保鲜和保鲜剂对鲜切西瓜品质的影响[3,4],国内关于鲜切甜瓜的研究鲜有报道,本文主要研究鲜切处理对我国主要栽培甜瓜品种品质的影响,进而确定适合鲜切加工的甜瓜品种,为产业化生产提供理论依据。

臭氧在采后果蔬保鲜的应用研究进展

臭氧在采后果蔬保鲜的应用研究进展
放 电臭 氧 处 理后 的果 实 呼 吸强 度 高 于对 照 , 与臭 这 氧处 理 能 抑 制 呼 吸作 用 矛盾 同 。不 同 的结果 可 能是
臭氧对果蔬 品质 的影 响因处理浓度和作用 对 象不同而结论不一致。 6 z Pr 等研究 了 0 5 m / e . g 3 L臭 氧处理对草莓采后品质的影响, 发现贮藏末期 , 臭氧
4期
郑雁 月
臭氧在采后果蔬保鲜的应 用研 究进展
13 2
3天无 明显差 异 , 随着货 架 期 的延 长 , 氧处 理 能有 臭
臭 氧 处 理 时要 注 意 通 过 一 些 环 境 条 件 来 提 高 处 理效 果 。 当贮 藏 温度 低 于 1 ℃时 ,杀 菌 能力 较 0
效地 抑制呼吸强度上升 ,减缓鲜切韭 薹的衰老 。 A uy 等发现 ,用富集臭氧气体对 T o a 番茄整 gao hm s 体和鲜切片进行循环处理 ,在 5 环境 中贮 藏 1 5 d 贮藏 2d时的新 陈代谢速率较对照慢f n , 5 l 。A 等报 道 , 1mg 用 ] 臭氧 处 理 鲜 切芦 笋 , 氧处 理 较 对 L的 臭
决 于果 蔬 的化学 组 成 、 氧 剂量 和处 理条 件 。h ag 臭 Z un
初 的质构和芳香物l。 ags IM r a 5 1 o n等发现臭氧可显著抑 制灰葡萄孢霉 、 丛梗孢霉 、 指状青霉和匍枝根霉 的孢 子萌发 。Br 等在 2 q下 , 01 0 g ah t C 用 .~ _ m / 3 L的臭
处 理过 的草莓 V 含量是 对照组 的 3倍[。据 A uy 2 0 1 gao
等报道 ,臭氧气体对 T o a 番茄整体和鲜切片进 hm s 行循环处理 [ 氧浓度 ,4 0 ) L 臭 ( ± . J 5 / L每隔 3 h 处

不同浓度1-MCP 处理对鲜切杨桃贮藏品质的影响

不同浓度1-MCP 处理对鲜切杨桃贮藏品质的影响

不同浓度1-MCP 处理对鲜切杨桃贮藏品质的影响林媛;林娇芬【摘要】探讨了4℃贮藏条件下,不同浓度1-MCP(0、0.5、1.0和1.5μL/L)处理对鲜切杨桃贮藏品质的影响.结果表明:相比对照处理,1-MCP处理能够有效降低鲜切杨桃的生理代谢水平,并延缓其后熟衰老进程,有利于保持鲜切产品的品质.经统计分析,1-MCP处理有效抑制了鲜切杨桃呼吸强度、细胞膜相对渗透率、腐烂率和褐变指数的上升,延缓了可溶性固形物、可滴定酸和维生素C的损失,有效维持了产品的硬度和感官评分值,其中浓度为1.0μL/L 1-MCP处理的保鲜效果最好.【期刊名称】《闽南师范大学学报:自然科学版》【年(卷),期】2016(029)003【总页数】9页(P76-84)【关键词】1-MCP 鲜切杨桃贮藏品质【作者】林媛;林娇芬【作者单位】[1]福建农林大学金山学院,福建福州350002;[2]闽南师范大学生物科学与技术系,福建漳州363000【正文语种】中文【中图分类】TS255.3鲜切果蔬(fresh-cut fruits and vegetables)是以新鲜果蔬为原料,经清洗、去皮、切割、修整、包装等加工过程而制成的即食果蔬制品[1].随着人们生活节奏的加快,鲜切果蔬顺应时代的需求迅速发展,对其种类、品质和安全的要求日益提高[2].果蔬经鲜切处理后,因细胞和组织结构的完整性被破坏,组织液渗漏,使其生理特性有别于完整蔬果,呼吸强度的提高、创伤乙烯的产生、组织的褐变,严重缩短了产品的货架期.与马铃薯、莴苣、胡萝卜和番茄等传统鲜切果蔬相比,杨桃是近几年加入鲜切产品的新种类,其横切面呈五角星形,鲜切产品具有果形优美、颜色鲜亮和芳香可口等优点,所以深受广大消费者喜爱,具有极大的市场潜力.1-甲基环丙烯(1-methylcyclopropene,1-MCP)是一种新型的乙烯受体抑制剂,可降低完整果蔬及其鲜切产品的乙烯作用效果,延长其货架寿命[3-8].近年来,1-MCP处理已成功应用在哈密瓜[5]、西瓜[6]、茄子[7]和山药[8]等多种鲜切产品中,但有关1-MCP处理应用于鲜切杨桃的研究未见报道.笔者们研究发现,1-MCP处理采后杨桃果实,可以保持其贮藏品质,延长货架寿命[9].为了进一步探索1-MCP处理对鲜切杨桃贮藏品质的影响,本文以常见杨桃品种‘香蜜’甜杨桃为材料,通过预试验初步选定了1-MCP处理的浓度范围,设定了四个不同浓度处理来探索其对鲜切杨桃贮藏品质的影响,从而筛选最佳的1-MCP处理浓度,为延长鲜切杨桃的货架寿命提供基础理论依据.1.1 材料与处理2015年10月从福建省漳州市漳浦县石榴镇果园采收接近八成熟的‘香蜜’甜杨桃果实为材料,采收当天运回实验室,挑选大小基本一致,且无伤无病虫害的果实,用无菌水冲洗后,浸泡于0.5%的二氧化氯溶液,5 min后晾干进行下列处理:①对照处理(Control):将杨桃果实置于体积约0.04 m3泡沫箱内,在(15+1)℃环境中密闭12 h.②1-MCP处理:将杨桃果实放入的泡沫箱,纸片型1-MCP喷湿后迅速放入箱内,在(15±1)℃环境中密闭12 h;处理浓度为0.5 μL/L、1.0μL/L和1.5 μL/L.上述四组处理结束后,在无菌条件下,取杨桃果实中部以1 cm的厚度切分成片,鲜切处理的杨桃采用PVC保鲜薄膜和食用级塑料托盘进行包装,包装规格为每盒(120±5)g,然后放置于(4±1)℃冷库中,每隔一天测定一次各项生理和品质指标.1.2 测定指标与方法1.2.1 呼吸强度:按照曹建康等[10]的方法测定,结果以CO2计,单位为mg/(kg·h).1.2.2 细胞膜相对渗透率:按照Kim等[11]的方法测定.1.2.3 可溶性固形物和可滴定酸含量:分别按照林娇芬等[12]和田密霞等[13]的方法测定.1.2.4 维生素C含量:按照曹建康等[10]的方法测定.1.2.5 褐变指数:按照刁春英等[7]的方法测定,褐变指数=Σ(褐变级别×该级别数)/(最高褐变级别×检查总数).1.2.6 腐烂率和硬度:随机抽查50片鲜切杨桃,计算腐烂样品数,腐烂率(%)=腐烂样品数/供试样品数×100;硬度按照刁春英等[7]的方法测定.1.2.7 感官评价:参考杨芮等[14]的方法,制定鲜切杨桃感官评价分值表(见表1),由6位具有经验的感官评定人员,分别对4组样品的外观、气味和整体接受度进行感官评分.1.3 数据处理:以上各指标测定均重复3次,采用SPSS18.0数据分析软件进行方差分析和差异显著性分析.2.1 1-MCP处理对鲜切杨桃呼吸强度的影响呼吸强度的高低与果蔬产品货架期有关,鲜切处理引起的呼吸强度提高会缩短产品的货架期[15].由图1可知,在4℃贮藏条件下,鲜切杨桃的呼吸强度先下降而后迅速上升,鲜切当天较高的呼吸强度,可能与切割引起的机械损伤有关[15];贮藏第2 d,对照和各处理组的呼吸强度均达到最低值,其中,浓度为1.0 μL/L的1-MCP处理组呼吸强度最低,为40.61 mgCO2/kg·h,对照组的呼吸强度为50.33 mgCO2/kg·h,二者差异显著(P<0.05);贮藏2-6 d,对照组的呼吸强度急剧上升,并在第6 d出现呼吸高峰,峰值达126.23 mgCO2/kg·h,随后开始下降;而0.5、1.0和1.5 μL/L 1-MCP处理组的呼吸强度在贮藏2-8 d均呈上升趋势,在贮藏第8 d呼吸强度分别为125.23 mgCO2/kg·h、119.66 mgCO2/kg·h和127.31 mgCO2/kg·h.上述统计分析表明,1-MCP处理抑制了呼吸作用,延迟了峰值的出现,进而延缓了鲜切杨桃的后熟衰老进程;其中浓度为1.0 μL/L的1-MCP处理对抑制鲜切杨桃的呼吸作用效果最好.2.2 1-MCP处理对鲜切杨桃细胞膜相对渗透率的影响果蔬细胞膜的降解会导致细胞和组织结构丧失正常功能,鲜切处理加快膜降解的速度,进而加速果蔬的褐变和劣变[16].由图2可知,鲜切杨桃随贮藏时间的延长,细胞膜相对渗透率增加;到贮藏第8 d时,对照(0)、0.5、1.0和1.5 μL/L 1-MCP处理的鲜切杨桃细胞膜相对渗透率分别为82.69%、76.21%、70.35%和78.11%,与鲜切处理当天相比,细胞膜相对渗透率分别增加了34.80%、28.32%、22.46%和30.22%;与对照处理比较,1.0 μL/L 1-MCP处理可极显著抑制细胞膜相对渗透率的提高(P<0.01),0.5和1.5 μL/L 1-MCP处理可显著抑制细胞膜相对渗透率的提高(P<0.05).上述统计分析表明,1-MCP处理能延缓鲜切杨桃细胞膜降解的速度,其中以1.0 μL/L 1-MCP处理的效果最佳.2.3 1-MCP处理对鲜切杨桃可溶性固形物和可滴定酸含量的影响可溶性固形物和可滴定酸含量是果蔬风味的重要影响因素[17],两者含量的变化与呼吸强度存在相关性,呼吸强度越强,两者含量的下降速度越快[15-16].由图3可知,贮藏0-2 d,可溶性固形物含量先是小幅上升,在贮藏第2 d时,对照(0)、0.5、1.0和1.5 μL/L 1-MCP处理的鲜切杨桃可溶性固形物较鲜切当天分别为上升了0.52%、0.18%、0.11%和0.27%,不同浓度1-MCP处理的鲜切杨桃可溶性固形物上升量均极显著低于对照处理(P<0.01),这可能是由于1-MCP处理抑制了鲜切杨桃乙烯的作用,进而延缓了杨桃的后熟衰老进程[3-5];贮藏2-8 d,随着鲜切杨桃呼吸强度的提高(如图1),可溶性固形物含量逐渐下降,到贮藏第8 d时,对照(0)、0.5、1.0和1.5 μL/L 1-MCP处理的鲜切杨桃可溶性固形物含量与鲜切处理当天比分别减少了0.67%、0.5%、0.39%和0.59%,不同浓度1-MCP处理与对照处理间均存在极显著差异(P<0.01).由图4可知,鲜切杨桃在贮藏期间,可滴定酸含量呈先下降后上升的趋势;贮藏0-4 d,不同浓度1-MCP处理的鲜切杨桃可滴定酸含量下降趋势均显著缓于对照组(P<0.05),这可能与1-MCP处理降低了呼吸强度有关(如图1);从贮藏第4 d开始,对照组的可滴定酸含量开始呈上升趋势,而不同浓度1-MCP处理组的上升趋势均延迟到第6 d才开始,鲜切杨桃贮藏后期可滴定酸含量的上升,可能与乳酸菌等的繁殖有关[15-16].上述统计分析表明,1-MCP处理能延缓鲜切杨桃的呼吸作用,进而延缓了贮藏期间可溶性固形物和可滴定酸含量的下降,较好的保持了鲜切产品的风味.2.4 1-MCP处理对鲜切杨桃维生素C含量的影响维生素C作为果蔬重要的营养物质和抗氧化物质,在贮藏中参与抗氧化反应,与醌类结合形成无色物质,从而减少鲜切果蔬的褐变[15].由图5可知,在整个贮藏期间,鲜切杨桃的维生素C含量呈快速下降趋势,各处理组的下降趋势均缓于对照组;到贮藏第4 d时,对照处理的鲜切杨桃维生素C损失最多,与鲜切处理当天相比,损失率高达45.87%,此时,0.5、1.0和1.5 μL/L 1-MCP处理的鲜切杨桃维生素C损失率分别为31.28%、25.19%和36.32%,与对照组均存在极显著差异(P<0.01),其中,浓度为1.0 μL/L的1-MCP处理组维生素C损失率最低,与0.5和1.5 μL/L 1-MCP处理组存在显著差异(P<0.05);到贮藏第8 d时,不同浓度1-MCP处理组的维生素C含量相近(P>0.05),与对照处理组均存在极显著差异(P<0.01).上述统计分析表明,1-MCP处理能有效减缓鲜切杨桃贮藏中维生素C的损失,其中浓度为1.0 μL/L的1-MCP处理在贮藏0-4 d效果较明显,但到贮藏第8 d时,效果与0.5和1.5 μL/L 1-MCP处理组相近(P>0.05).2.5 1-MCP处理对鲜切杨桃褐变指数的影响褐变是影响鲜切杨桃货架期的重要因素[15,18].由图6可知,浓度为1.0 μL/L的1-MCP处理抑制褐变的效果最好,在贮藏2 d之后才出现褐变,而其它处理组均在贮藏2 d内出现褐变;贮藏4-8 d,对照组的褐变指数始终极显著高于各不同浓度1-MCP处理组(P<0.01);到贮藏第8 d时,对照(0)、0.5、1.0和1.5μL/L 1-MCP处理的鲜切杨桃褐变指数分别为0.51,0.33、0.26和0.36,其中,浓度为1.0 μL/L的1-MCP处理效果最好,与其它各处理组均存在显著差异(P<0.05).上述统计分析表明,1-MCP处理能抑制鲜切杨桃的褐变,有效延长产品的货架期.2.6 1-MCP处理对鲜切杨桃腐烂率和硬度的影响果蔬产品的腐烂率和硬度存在一定的相关性,腐烂的发生会使果蔬硬度下降,从而进一步加剧果蔬组织结构的软化和腐烂率的提升[17].由图7可知,鲜切杨桃不同处理组均在贮藏第4 d出现腐烂现象,其中,对照组的腐烂率高达14%,极显著高于浓度为0.5和1.0 μL/L的1-MCP处理组(P<0.01),显著高于浓度为1.5 μL/L 1-MCP处理组(P<0.05);其中,浓度为1.0 μL/L的1-MCP处理效果最好,腐烂率仅为2%;贮藏4-8 d,各处理组的腐烂率均明显上升,到贮藏第8 d 时,对照(0)、0.5、1.0和1.5 μL/L 1-MCP处理的鲜切杨桃腐烂率分别为48%、18%、14%和26%,不同浓度1-MCP处理组与对照组均存在极显著差异(P<0.01).由图8可知,贮藏0-2 d,鲜切杨桃的硬度呈小幅上升趋势,这可能与贮藏初期鲜切产品表面失水收缩有关[15-16],此时,各处理组间无显著差异(P>0.05);贮藏2-8 d,随着鲜切杨桃腐烂的开始(如图7),硬度快速下降,其中对照组下降最为明显,到贮藏第8 d,对照(0)、0.5、1.0和1.5 μL/L 1-MCP处理的鲜切杨桃硬度分别为4.07kg/cm2、4.51kg/cm2、5.45kg/cm2和4.71kg/cm2,其中,浓度为1.0 μL/L 1-MCP的处理效果最好,与其它处理组之间均存在极显著差异(P<0.01).上述统计分析表明,经1-MCP处理后的鲜切杨桃,腐烂率上升和硬度下降的速度均减缓,这与Suriyan等[20]用1-MCP处理甜瓜的研究结果相似.2.7 1-MCP处理对鲜切杨桃感官品质的影响鲜切产品的感官品质可直接影响消费者的购买意愿,是衡量产品货架期长短的重要指标.由图9、图10和图11可知,随着贮藏时间的延长,鲜切杨桃的外观、气味和整体接受度评分值均逐渐下降,其中对照处理的评分值下降最快,在贮藏第2 d 时,对照处理的鲜切杨桃外观、气味和整体接受度评分值分别为3.87分、3.33分和2.67分,说明此时鲜切杨桃已经出现"边缘明显褐变,果肉暗沉无光,异味加重"的特征,整体接受度评分低于3分,说明此时消费者已无购买意愿;不同浓度1-MCP处理的鲜切杨桃,在整个贮藏过程中各项感官评分值均高于对照处理,这说明1-MCP处理对鲜切杨桃的感官品质无不利的影响,在贮藏第4 d时,0.5、1.0和1.5 μL/L 1-MCP处理的鲜切杨桃整体接受度评分值分别为3.33分、4.67分和3.17分,说明此时消费者仍有购买意愿;其中浓度为1.0 μL/L 1-MCP的处理效果最好,在贮藏第8 d时整体接受度评分仍维持3分,这说明1.0 μL/L 1-MCP处理可将产品的货架期可延长至8天.鲜切处理引起的机械伤可明显提高果蔬呼吸强度[15-16],在本研究中,不同浓度1-MCP处理的鲜切杨桃呼吸强度的提高均缓于对照处理,且推迟了呼吸高峰到来的时间(如图1),与此同时,因呼吸作用带来的物质消耗(可溶性固形物、可滴定酸)也缓于对照处理(如图3、图4),这与罗述博等[6]用1-MCP处理鲜切哈密瓜的研究结果相似.鲜切处理使细胞的膜系统受损伤,细胞膜透性增加是果蔬衰老和腐烂的重要生理基础[15-16];在本研究中,不同浓度1-MCP处理的鲜切杨桃细胞膜相对渗透率低于对照处理(如图2),这与1-MCP处理鲜切茄子[7]的研究结果一致;伴随着细胞膜透性的增加,鲜切杨桃的腐烂率不断提高,同时,硬度的下降与腐烂率的提高有着密切的相关性(如图7、图8),贮藏0-2 d各处理组的鲜切杨桃均未出现腐烂现象,此时,硬度的小幅上升与鲜切杨桃表面失水有关,贮藏2 d后,随着腐烂率的逐步提高,鲜切杨桃的硬度不断下降.贮藏中较高的维生素C含量对于延缓果蔬褐变具有重要作用[15-17],在本研究中,鲜切杨桃维生素C含量随着贮藏时间的延长不断下降,到贮藏结束时,不同浓度1-MCP处理组的维生素C损失率均极显著低于对照组(P<0.01),与此同时,鲜切杨桃的褐变指数在贮藏4-8 d内均极显著小于对照组(P<0.01),这说明1-MCP处理可以明显减少鲜切杨桃维生素C损失,有效抑制褐变的发生,这与1-MCP处理鲜切茄子[7]、鲜切马铃薯[19]和鲜切生姜[21]的研究结果一致.果蔬鲜切处理后,感官评分值迅速下降[16],在本研究中,对照处理的鲜切杨桃在贮藏第2 d就已失去商品价值(如图9、图10和图11),而不同浓度1-MCP处理的鲜切杨桃在外观、气味和整体接受度上均得到了较好的保持,这与1-MCP处理抑制呼吸作用,从而延缓了鲜切杨桃的衰老进程有关.综上所述,在4℃贮藏条件下,不同浓度1-MCP(0.5、1.0和1.5 μL/L)处理均能有效抑制鲜切杨桃呼吸强度、细胞膜相对渗透率、腐烂率和褐变指数的上升,减少可溶性固形物、可滴定酸、维生素C的损失以及硬度和的下降,并有效维持了鲜切杨桃的感官品质.其中,浓度为1.0 μL/L 1-MCP处理的效果最好,可将鲜切杨桃的货架期延长至8天.【相关文献】[1]郑优,陈厚荣.鲜切果蔬贮藏保鲜技术的研究进展[J].食品工业科技,2012,5:372-375.[2]王邈,李玮,王邦辉,等.保鲜技术在鲜切果蔬中的应用[J].中国食物与营养,2010,2:43-45.[3]Piriyavinit P,Ketsaa S,Doorn W G.1-MCP extends the storage and shelf life of mangosteen(Garcinia mangostana L.)fruit[J]. Postharvest Biology andTechnology,2011,61(1):15-20.[4]Acuna M G,Biasi W V,Mitcham E J,et al.Fruit temperature and ethylene modulate 1-MCP response in‘Bartlett’pears[J]. Postharvest Biology and Technology,2011,60(1):17-23. [5]罗述博,张超,侯田莹,等.1-MCP处理对鲜切哈密瓜贮藏品质的影响[J].保鲜与加工,2011,11(6):23-26.[6]张超,蔡文倩,李云飞,等.1-MCP处理对不同品种鲜切西瓜品质的影响[J].农产品加工,2015,9:1-4.[7]刁春英,高秀瑞,王哲.1-MCP对鲜切茄子的保鲜效果[J].北方园艺,2015,34(6):123-126.[8]苑宁,寇莉萍.1-MCP处理对鲜切山药贮藏品质的影响[J].食品研究与开发,2011,32(9):205-209.[9]陈艺晖,张华,林河通,等.不同浓度1-MCP处理对采后杨桃果实的保鲜效应[J].热带作物学报,2013,34(11):2283-2288.[10]曹建康,姜微波.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007.[11]Kim J G,Luo Y,Tao Y,et a1.Effect of initial oxygen concentration and film oxygen transmission rate on the quality of freshcut romaine lettuce[J].Journal of the Science of Food and Agriculture,2005,85(10):1622-1630.[12]林娇芬,林志超,庄远红,等.壳聚糖涂膜对鲜切芋头保鲜效果的研究[J].漳州师范学院学报:自然科学版,2013,26(4):55-59.[13]田密霞,胡文忠,刘程惠,等.海藻酸钠处理对鲜切雪花梨生理生化的影响[J].食品安全质量检测学报,2015,6(7):2464-2468.[14]杨芮,吴俊达.壳聚糖与添加抗坏血酸处理对截切‘红龙’杨桃橱架寿命与品质的影响[J].台湾园艺,2013,59(1):75-88.[15]Olusola Lamikanra.Fresh-cut fruits and vegetables:science,technology andmarket[M].CRC Press,2002.[16]胡文忠.鲜切果蔬科学与技术[M].北京:化学工业出版社,2009.[17]罗云波,毕阳.果蔬采后生理与生物技术[M].中国农业出版社,2010.[18]Gustavo H.A,Jose F,Ricardo E,et al.Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres[J].Postharvest Biology and Technology,2008,48(3):415-421.[19]李玲,郭衍银.1-甲基环丙烯联合壳聚糖对鲜切马铃薯保鲜效果的影响[J].现代食品科技,2013,29(8):1893-1897.[20]Suriyan S,Gregory A.The Effect of 1-Methylcyclopropene(1-MCP)on Quality and Cell Wall Hydrolases Activities of Fresh-Cut Muskmelon(Cucumis melo var.reticulatus L.)DuringStorage[J].Food and Bioprocess Technology,2013,6(8):2196-2201.[21]孟兆明,李玲,郭衍银,等.1-MCP、壳聚糖对鲜切生姜保鲜特性的影响[J].食品研究与开发,2013,34(2):96-100.。

超高压对哈密瓜汁中关键酶、氨基酸及理化指标影响的研究

超高压对哈密瓜汁中关键酶、氨基酸及理化指标影响的研究

超高压对哈密瓜汁中关键酶、氨基酸及理化指标影响的研究哈密瓜是新疆特色瓜果,独特的气候地理条件造就了哈密瓜“清香袭人、味甘如蜜”的特点。

但由于哈密瓜的成熟采摘期较为集中,同时又不变贮藏运输。

每年有大量优质哈密瓜无法运往内地市场而造成浪费。

因此需要开发哈密瓜附加产品。

采用超高压这种非热力加工技术可以最大限度的保留原瓜汁的风味品质,同时达到卫生标准。

本论文以鲜榨哈密瓜汁作为研究对象,研究了超高压处理对哈密瓜汁中6种关键酶:醇脱氢酶(Alcoholdehydrogenase,ADH)、酰基转移酶(Acyltransferase,AAT)、氢过氧化物裂解酶(Hydroperoxide Lyase,HPL)、脂肪氧合酶(Lipoxygenase Inhibitors,LOX)、磷脂酶(Phospholipase A1,PLA-1、Phospholipase A2,PLA-2)的活性变化。

同时采用氨基酸自动检测仪对哈密瓜汁中的氨基酸组分及含量进行检测分析,探究超高压处理前后哈密瓜汁中氨基酸含量与组分的变化规律。

利用主成分分析法分析了高压条件与6种关键酶活性、氨基酸含量及组分之间的相关性。

并研究了试验前后哈密瓜汁中主要理化指标的变化情况。

主要结果如下:(1)超高压处理对ADH酶、AAT酶、HPL酶、LOX酶、PLA-1酶及PLA-2酶会产生一定的钝化效果。

经过500 MPa、35℃、15 min超高压处理后的6种酶残存酶活分别为0、0、3%、73%、30.8%、28.5%。

同时在350 MPa、400 MPa条件下6种酶又出现不同程度的激活。

35℃、400 MPa与45℃的绝大部分压力条件下6种酶残存酶活能够保持较高水平。

进一步分析6种酶活性与超高压条件在主成分分析中呈现两类相关性。

35℃与45℃条件聚为一类,55℃聚为一类。

(2)压力改变对哈密瓜汁中氨基酸总含量的影响不明显,随着压力的增加氨基酸总量变化不大。

一氧化氮处理对采后新密3号甜瓜抗冷性的影响的开题报告

一氧化氮处理对采后新密3号甜瓜抗冷性的影响的开题报告

一氧化氮处理对采后新密3号甜瓜抗冷性的影响的
开题报告
一、研究背景和意义
新密市是中国华南地区优质高产的夏季甜瓜产区之一,甜瓜在采收后运输、储存和销售过程中易受低温等逆境的影响,导致质量下降和经济损失。

因此,提高采后甜瓜的质量和延长储存期成为当前研究的重要问题。

一氧化氮是一种重要的信号分子,其参与了植物的生长发育调控过程。

近年来的研究表明,一氧化氮可以通过调节植物的抗氧化系统、诱导植物产生抗寒蛋白等方式,提高植物的耐逆性。

因此,使用一氧化氮处理甜瓜,可能能够提高采后甜瓜的抗冷性,延长其储存期。

二、研究内容和方法
本研究将以新密3号甜瓜为试材,使用不同浓度的一氧化氮处理采后甜瓜,研究其对甜瓜抗冷性的影响。

1.试验设计
处理组:使用不同浓度(0、50、100、200、400 μmol/L)的一氧化氮处理采后甜瓜。

对照组:未处理的采后甜瓜。

2.测定指标
测定采后甜瓜的抗冷性指标,包括相对电导率、丙二醛含量、抗氧化酶活性等。

3.数据处理
使用SPSS软件对测定数据进行统计分析,比较处理组和对照组之间的差异。

三、预期结果
本研究预计通过一氧化氮处理来提高采后甜瓜的抗冷性,延长甜瓜的储存期。

结果显示,一氧化氮处理组的相对电导率、丙二醛含量和抗氧化酶活性均会显著高于对照组,表明一氧化氮处理能够提高采后甜瓜的抗氧化能力和抗冷性。

四、研究意义
本研究的结果将为采后甜瓜的质量保障和延长储存期提供理论基础和实践指导。

同时,该研究的结果还可以为其他类似果蔬的贮藏和保鲜问题的解决提供参考。

超高压对鲜切胡萝卜硬度的影响及机制研究

超高压对鲜切胡萝卜硬度的影响及机制研究
摘 要: 鲜切 果蔬 的 品 质 在 加 工后 易 受到 破 坏 , 超 高 压技 术 ( h i g h p r e s s u r e p r o c e s s i n g , H P P ) 在 鲜切 果蔬 品质 保 持 方 面 具
潜力 旨在 探 究鲜 切 果 蔬 的硬 度 随压 力 变化 的 规 律 及 硬 度 变化 的 机 制 . .本 文 以 胡 萝 I 、 为 对 象, 研 究 了超 高 压 ( 1 0 0 - 6 0 0 MP a , 5 a r i n ) 对 鲜切 胡 萝 I 、 硬度、 细胞膜 完整性、 果胶 甲 酯酶 ( p e c t i n m e t h y l e s t e r a s e , P ME ) 及 细 胞 壁 果胶 组 成 的 影
后 细 胞 膜 透性 的 改 变和 细 胞 壁 果 胶 组 分 的 变化 共 同影 响 了鲜切 胡 萝 的硬 度 , 关键 词 : 超 高压 , 胡萝 l 、 , 硬 度, 机 制
S t u d y o n e f f e c t a n d me c h a n i s m o f h i g h p r e s s u r e p r o c e s s i n g
Fr u i t a n d\ / s s i n g; Ke y L a b o r a t o r y o f Fr u i t s a n d Ve g e t a bl e s P r o c e s s i n g, Mi n i s t r y o f Ag r i c ul t u r e,
响。1 0 0 M P a处理 后 胡 萝 卜 硬 度 无显 著 变化 , 随 着压 力增加 , 胡萝 I 、 相 对 电导率 显 著增加 , 硬 度 显著 下 降, 当达 到

不同保鲜处理对甜瓜采后贮藏性状的影响

不同保鲜处理对甜瓜采后贮藏性状的影响

不同保鲜处理对甜瓜采后贮藏性状的影响再吐娜.买买提;张小梅;马西欣;许建【期刊名称】《中国农学通报》【年(卷),期】2017(33)19【摘要】为探究不同保鲜处理类型对甜瓜采后的影响,以新疆精品甜瓜‘西州密25号’为试材,研究室温条件下保鲜剂(1-MCP)、杀菌剂以及杀菌剂复合1-MCP等3种不同处理方式对甜瓜采后贮藏性状的影响。

试验结果表明,常温贮藏过程中,1-MCP处理对延缓果实硬度及可溶性固形物含量的下降,保持果品水分含量,并保持果皮颜色等方面效果显著。

杀菌剂则对腐烂率降低效果更显著。

复合保鲜处理能够有效发挥两者优势,对生理失调和病害衰老引起的采后问题有良好抑制效果。

综合来看,常温条件下复合保鲜处理的贮藏效果最佳,能够有效保持甜瓜品质,降低果实腐烂率。

【总页数】5页(P52-56)【关键词】甜瓜;复合保鲜;采后;品质;衰老【作者】再吐娜.买买提;张小梅;马西欣;许建【作者单位】新疆维吾尔自治区葡萄瓜果研究所;郑州工程技术学院化工食品学院;新疆农业职业技术学院园林科技学院【正文语种】中文【中图分类】S652.1【相关文献】1.振动防护和涂膜保鲜等不同处理措施对苹果采后\r贮藏特性的影响 [J], 孙京超;杜秉健;赵伟;李晓雪2.不同厚度保鲜膜处理对蓝莓鲜果采后贮藏品质的影响研究 [J], 王洪琳;王瑞;苏伟3.不同复合保鲜剂处理对青椒采后贮藏品质的影响 [J], 冯春婷; 陶永清; 董成虎; 纪海鹏; 张娜; 张学杰; 陈存坤4.不同保鲜处理对青皮核桃采后贮藏品质的影响 [J], 张欢欢;刘佳;李亚玲;杨莉玲;孙俪娜;祝兆帅;崔宽波5.不同保鲜处理对青皮核桃采后贮藏品质的影响 [J], 张欢欢;刘佳;李亚玲;杨莉玲;孙俪娜;祝兆帅;崔宽波因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Effect of superatmospheric and low oxygen modified atmosphereson shelf-life extension of fresh-cut melonG.Oms-Oliu,R.M.Raybaudi-Massilia Martı´nez,R.Soliva-Fortuny,O.Martı´n-Belloso *Department of Food Technology,UTPV-CeRTA,University of Lleida,Rovira Roure 191,25198Lleida,SpainReceived 20June 2006;received in revised form 13March 2007;accepted 20March 2007AbstractThe physiological,physicochemical and microbiological quality of fresh-cut ‘Piel de Sapo’melon packaged under 2.5kPa O 2+7kPaCO 2,21kPa O 2and 70kPa O 2atmospheres was studied.Initial low O 2levels combined with moderate CO 2concentrations reduced in-package ethylene concentration whereas high O 2levels avoided anaerobic metabolism.Both 2.5kPa O 2+7kPa CO 2and 70kPa O 2atmospheres significantly reduced the growth of microorganisms for 14days of storage at 5°C.Rhodotorula mucilaginosa was initially the dominant yeast,and prevailed during the subsequent storage of fresh-cut ‘Piel de Sapo’melon although high O 2levels as well as low O 2and high CO 2conditions were found to have a certain inhibitory effect on its growth.Therefore,a 70kPa O 2atmosphere prevented fermentation and significantly improved the quality of fresh-cut melon,while preserving its microbiological stability.Ó2007Elsevier Ltd.All rights reserved.Keywords:Fresh-cut melon;High oxygen;Modified atmosphere packaging1.Introduction‘Piel de Sapo’melon (Cucumis melo L .)is the most widely available melon in Spanish markets.Like other members of the Cucurbitaceae,‘Piel de Sapo’is chilling injury sensitive,when stored at low temperatures,which limits its storability and causes significant postharvest losses (Wang,1989).Thus,fresh-cut processing may be a strategy to reduce losses in quantity and quality during storage of perishable whole fruits.However,good sensory quality is required for fresh-cut products and the fruit pro-cessing industry requires the development of preservation techniques capable of keeping safe shelf-life and preserving the original organoleptic fresh-like characteristics of fresh-cut melon.Low O 2atmospheres combined with adequate CO 2concentrations have been used to extend the shelf-life of fresh-cut fruits,helping to reduce respiration and ethyleneproduction,inhibiting or delaying enzymatic reactions andpreserving the product from quality losses.Atmosphere modification can also substantially delay the growth of most aerobic spoilage microorganisms.However,under certain conditions,the growth of some anaerobic psycho-trophic pathogens might be allowed or even stimulated(Soliva-Fortuny &Martı´n-Belloso,2003a ).Initial concen-trations of 2–5kPa O 2combined with 5–10kPa CO 2have been suggested for fresh-cut melon quality maintenance (Ayhan &Chism,1998;Bai,Saftner,&Watada,2003;Bai,Saftner,Watada,&Lee,2001;Qi,Wu,&Watada,1999).However,excessively low O 2levels and/or excessive amounts of CO 2in the package headspace are often detri-mental to the fruit shelf-life because anaerobic respiration is induced,leading to fermentation processes,and the subsequent production of undesirable metabolites (Soliva-Fortuny,Oms-Oliu,&Martı´n-Belloso,2002;Zagory &Kader,1988).Respiration quotient of fresh-cut butter lettuce exposed to 0–10kPa O 2increased above 1due to fermentation whereas under aerobic conditions (P 20kPa O 2)the respiration quotient was below one (Escalona,*Corresponding author.Tel.:+34973702593;fax:+34973702596.E-mail address:omartin@tecal.udl.es (O.Martı´n-Belloso)/locate/foodcontFood Control 19(2008)191–199Verlinden,Geysen,&Nicolaı¨,2006).High CO2concentra-tions inhibit several enzymes of the Krebs’s cycle including succinate dehydrogenase,which would either trigger anaer-obic respiration or result in accumulation of succinic acid, which is potentially toxic to the fruit tissue(Varoquaux, 1991).Besides,high CO2levels above20kPa may be responsible for physiological disorders,which can be visu-ally assessed through accelerated browning and necrosis in theflesh tissue(Gorny,Hess-Pierce,Cifuente,&Kader, 2002).The use of elevated O2atmospheres(P70kPa O2)has been suggested as an effective method to inhibit the growth of bacteria,yeasts and molds(Amanatidou,Smid,&Gorris,1999;Jacxsens,Devlieghere,Van der Steen,& Debevere,2001;Van der Steen,Jacxsens,Devlieghere,& Debevere,2002).However,the impact of high O2atmo-spheres on microorganisms associated with fresh-cut fruits and vegetables differs greatly among commodities and the effect may be dependent on storage temperature(Poubol &Izumi,2005)or CO2accumulation in the headspace environment(Allende,Luo,McEvoy,Arte´s,&Wang, 2004;Jacxsens et al.,2001).A100kPa O2atmosphere inhibited mycelial growth of Botrytis cinerea and subsequent fruit decay of strawberries at5°C(Wszelaki &Mitcham,2000).Consistently,an initial high O2of P70kPa O2retarded the growth of moulds(Van der Steen et al.,2002)and yeasts(Jacxsens,Devlieghere,Van der Steen,Siro,&Debevere,2003)on strawberries and raspberries.On the other hand,exposure to elevated oxygen levels may stimulate,reduce or have no effect on respiration,pro-duction of fermentative metabolites,enzymatic browning and loss of overall sensory quality,depending on the com-modity,O2concentration,storage time and temperature, and CO2and C2H4concentrations(Kader&Ben-Yehos-hua,2000).Treatments with high oxygen partial pressures about100kPa have been reported to have some positive effects on enzymatic browning inhibition in fresh-cut pota-toes(Limbo&Piergiovanni,2006).This work aims to overcome the major problems associ-ated with packaging of fresh-cut melon,such as off-odour appearance,development of translucency,loss offirmness and microbial spoilage.The objective was to determine the effects of package atmospheres with different oxygen content on physiological,physicochemical and microbio-logical quality of fresh-cut‘Piel de Sapo’melon.2.Materials and methods2.1.Sample preparation‘Piel de Sapo’melon(Cucumis melon L.)were purchased at a local supplier at a commercial stage of ripeness(Table 1)and stored in a ventilated room at10°C prior to pro-cessing.The fruits were cleaned,peeled and theflesh was product/solution ratio of1:2.The excess of water was completely drained and then,100g were packaged in poly-propylene trays.The O2and CO2permeance of thefilm were110cm3mÀ2dayÀ1barÀ1and500cm3mÀ2dayÀ1 barÀ1,respectively,at23°C and0%RH(ILPRA Systems Espan˜a,S.L.Mataro´,Spain).The packages wereflushed with a mixture of2.5kPa O2+7kPa CO2(N2balanced) or70kPa O2(N2balanced)in a ratio product/gas mixture of1:2and thermosealed with a vacuum packing machine ILPRA Food Pack Basic V/6(ILPRA Systems.CP. Vigevono,Italia).Trays were stored in darkness at 4±1°C and analyzed throughout28days of storage in duplicate.2.2.Headspace gas analysisThe gas composition of the packages headspace was determined with a gas analyzer(Micro-GC CP2002, Chrompack International,Middelburg,The Netherlands) equipped with a thermal conductivity detector.A little adhesive septum was stuck to the plastic that seals the tray to reinforce the place where the gas sample is taken,thus avoiding leakage of gas.A sample of1.7ml was automat-ically withdrawn from the headspace atmosphere through a needle connected to the injection system.The determina-tion of the oxygen concentration was carried out by inject-ing a sample of0.25l l to the a CP-Molsieve5A˚column (4m·0.35mm,df=10l m)at60°C and100kPa whereas a portion of0.33l l was injected to a Pora-PLOT Q column (10m·0.32mm,df=10l m)at75°C and200kPa for carbon dioxide,ethylene,acetaldehyde and ethanol deter-mination.Two trays were taken at each time to perform the analysis and2readings were carried out for each package.The variation of headspace atmosphere composition in packages was also expressed through the following equation:CO2accumulatedO2depleted¼CO2tÀCO2iO2iÀO2tð1Þwhere O2i and CO2i are the initial oxygen and carbon diox-Table1Physicochemical characteristics of fresh melon before processing Soluble solids(°Brix)13.4±0.1Total acidity(g citric acid/100g)0.29±0.01pH 5.95±0.08Pulp colorL*70.2±0.7a*À2.8±0.1b*20.9±0.6WI a63.5±0.5 Firmness(N) 3.97±1.05Mean±standard deviation.a WI:whiteness index.192G.Oms-Oliu et al./Food Control19(2008)191–1992.3.Colour andfirmness evaluationThe colour of fresh-cut melon was determined with a Minolta CR-400chromameter(Konica Minolta Sensing, Inc.,Osaka,Japan).The equipment was set up for a D65 illuminant and10°observer angle.Five fruit pieces from each of two replicate packages were evaluated for each treatment at each sampling time.CIE L*(lightness),a* (red–green)and b*(yellow–blue)values were measured using reflectance measurements.Colour changes of fresh-cut processed melon were also measured through whiteness index(WI)(2),according to authors such as Aguayo, Allende,and Arte´s(2003,2004)and Oms-Oliu,Soliva-For-tuny,and Martı´n-Belloso(2006).WI¼100À½ð100ÀLÃÞ2þðaÃÞ2þðbÃÞ2 12ð2ÞFirmness evaluation was performed using a TA-XT2Tex-ture Analyzer(Stable Micro Systems Ltd.,Surrey,Eng-land,UK)by measuring the maximum penetration force. Cylindrical samples of2.0cm high were obtained from trapezoidal melon pieces and were positioned to be pene-trated by a4mm diameter rod through their geometric center.The downward distance was set at10mm at a rate of5mm/s and automatic return.Two trays were taken at each sampling time to perform the analyses,and5fruit pieces from each replicate were randomly withdrawn to carry out repetitions.2.4.Microbial countsTotal aerobic psychrophilic microorganisms and yeast and mold populations were evaluated during storage of fresh-cut‘Piel de Sapo’melon.Two counts were obtained each time from each of two replicate packages.The analy-ses were carried out twice a week during thefirst two weeks and then,weekly up to28days.In sterile conditions,10g of melon sample were homogenized for2min with90ml of0.1%sterile peptone water with a Stomacher Lab Blen-der400(Seward medical,London,England).Serial dilu-tions of fruit homogenates were poured in plate count agar(PCA;Biokar Diagnostics,Beauvais,France)at 7°C±1°C for7days for psychrophilic aerobic bacteria counts(ISO4833,1991)and chloramphenicol glucose agar (GCA)at25°C±1°C for5days for yeast and mold counts(ISO7954,1988).2.5.Predictive modelingThe Gompertz equation has been often used to calculate the shelf-life of numerous fresh-cut fruits and vegetables (Corbo et al.,2004;Lanciotti,Corbo,Gardini,Sinigaglia, &Guerzoni,1999;Soliva-Fortuny,Elez-Martı´nez,&Mar-tı´n-Belloso,2004;Soliva-Fortuny&Martı´n-Belloso, 2003b).Experimental data of this study were used to test include shelf-life as a parameter of the equation.The model was tested for psychrophilic aerobic bacteria counts,taking into account the maximum acceptable contamination value at the end of the microbiological shelf-life according to the Spanish legislationy¼logð107ÞÀA expÀexpðl max eÞÁðkÀSLÞAþ1þA expÀexpðl max eÞÁðkÀtÞAþ1ð3Þwhere log(107)is the recommended limit of acceptability for aerobic microorganisms population,according to the Spanish legislation(RD3484/2000)[log(CFU gÀ1)];A, the maximum growth attained at the stationary phase [log(CFU gÀ1)];l max,the maximal growth rate[D log (CFU gÀ1)dayÀ1];k,the lag time(days);t,the storage time (days);SL,the estimated shelf life parameter(days).2.6.Isolation and identification of spoilage microorganisms on fresh-cut melonThree types of yeasts were isolated as prevalent spoilage flora from fresh-cut melon packages stored under modified atmosphere(MA)packaging at4°C for their identifica-tion.Colonies were isolated and purified on glucose chlor-amphenicol agar(GCA)(Biokar Diagnostics.Beauvais, France)and incubated for24h.The yeast strains purified were kept on extract malt agar slants(EMA)(Biokar Diag-nostics.Beauvais,France)at4°C until their identification. Yeasts were identified with an API biochemical kit(apiÒ20C AUX,bioMe´rieux,Marcy l’Etoile,France).The three yeasts isolated from fresh-cut‘Piel de Sapo’melon stored under2.5kPa O2+7kPa CO2,air or70kPa O2atmo-spheres were Rhodotorula mucilaginosa,Candida famata and Candida ciferii.2.7.Strain,inoculums preparation and fresh-cut melon inoculationR.mucilaginosa isolated as the dominant yeast strain associated with spoilage of fresh-cut melon packed under MA and stored at4°C in the Food Technology Depart-ment of Lleida University,Lleida,Spain,was used to eval-uate the effect of different MA packaging conditions on the inactivation of main spoilage yeasts of fresh-cut melon. Stock culture of R.mucilaginosa was grown in extract malt broth(EMB)at30°C for24h and80rpm.Concentration was then adjusted to105CFU mlÀ1using saline peptone (0.1%peptone,Biokar Diagnostics.Beauvais,France,+ NaCl,Scharlau Chemie,S.A.Barcelona,Spain).Fifty grams of fresh-cut melon processed as in point2.1were inoculated by uniformly spreading500l l of R.mucilagin-osa diluted stock culture(105CFU mlÀ1)over its entire upper surface using a sterile micropipette.Trays of inocu-G.Oms-Oliu et al./Food Control19(2008)191–199193is indicated in point2.1.Non inoculated fresh-cut melon, packaged under the same atmosphere conditions,was used as a control.A total of84trays(42inoculated and42with-out inoculated)containing50g of fresh-cut melon were stored at4°C for28days.A pair of trays of inoculated and non-inoculated fresh-cut melon packaged under each atmosphere condition was analyzed at0,3,7,10,14,21 and28days.2.8.Statistical analysisStatistical analysis were performed using the Statgraph-ics plus v.5.1software(Manugistics,Inc.,Rockville,MA, USA).Data were analyzed by multifactor analysis of vari-ance.The analysis of covariance provided significant differ-ences throughout the time within fresh-cut melon stored under the conditions tested.The statistical package was used to apply the Duncan multiple range test in order to find significant differences between packaging conditions.3.Results and discussion3.1.Atmosphere composition in packages of fresh-cut melonThe concentrations of O2and CO2in package head-space of fresh-cut melon packaged under 2.5kPa O2+7kPa CO2,air conditions or70kPa O2atmospheres are shown in Fig.1.The O2levels inside high O2atmo-sphere packages decreased slowly during thefirst14days, thus remaining above60kPa(Fig.1a),and underwent a more marked decrease during the subsequent days up to levels of approximately40kPa.Oxygen levels in packages stored under initial air atmospheres decreased continuously throughout storage,reaching values below10kPa after10–15days and only slightly above1kPa at the end of storage. On the other hand,an initial 2.5kPa O2+7kPa CO2 atmosphere strongly induced critical O2concentrations below1kPa at day14,when values stabilized(Fig.1a). On the other hand,carbon dioxide production increased in packages of fresh-cut‘Piel de Sapo’melon up to 10kPa during14days of storage and no substantial differ-ences were detected among packaging conditions during this period.However,CO2levels inside packagesflushed with high O2atmospheres reached partial pressures of near 30kPa after28days of storage and almost trebled the amount of CO2accumulated in packages with initial low O2concentrations(Fig.1b).The relationship between CO2accumulation and O2depletion was kept constant through the storage under both non MA or high O2pack-aging conditions,whereas it increased through28days in samples packaged under2.5kPa O2+7kPa CO2,indicat-ing induced anaerobic respiration(Fig.2).This increase of anaerobic respiration and,in turn,of respiration quotient, is generally an indicative of a switch to fermentative reac-tions(Wills,McGlasson,Graham,&Joyce,1998).Our results are therefore in accordance with those of Bai et al. (2003),who suggested a minimum of1kPa O2and a max-imum of15kPa CO2to ensure safety of fresh-cut Canta-loupe melon in order to prevent anaerobic conditions that cause fermentative decay.The inhibition of ethylene production under absence or low O2conditions has been reported by many authors. Low O2atmosphere reduced dramatically ethylene produc-tion in honeydew melon cubes(Qi et al.,1999).In this study,fresh-cut’Piel de Sapo’melon produced more ethyl-ene under70kPa O2than under2.5kPa O2+7kPa CO2 or non MA(p60.05)(Fig.3).However,C2H4levels did not exceed1ppm under high O2concentrations,suggesting that‘Piel de Sapo’melon is a fruit with low physiological activity(Valdenegro,Flores,Romojaro,Ramı´rez,& Martı´nez-Madrid,2004).Acetaldehyde and ethanol production was triggered under2.5kPa O2+7kPa CO2atmosphere in comparison to70kPa O2or non MA conditions.An increase in acetal-dehyde levels was observed in packages stored under low O2levels during thefirst week,reaching maximum values about15ppm(Fig.4a).The tissue could have initiated anaerobic respiration,by which glucose is converted to pyruvate by glycolysis and then,pyruvate metabolized to acetaldehyde.However,these high amounts began to194G.Oms-Oliu et al./Food Control19(2008)191–199decrease without significant amounts of ethanol being accumulated in the package atmosphere,suggesting that the initial peak production could be a consequence of the wounding response.Subsequently,the decrease in acetalde-hyde content could continue due to the shift to fermenta-tive anaerobic conditions mediating itsfinal conversion to ethanol.Ethanol began to accumulate beyond day7in packages stored under initial2.5kPa O2+7kPa CO2con-ditions and beyond the third week storage under initial air atmospheres,as a consequence of a drop of O2concentra-tions inside the packages below2kPa levels(Figs.1a and 4b).Low O2atmospheres seem to promote the production of anaerobic metabolites due to anaerobic metabolism (Wszelaki&Mitcham,2000).In packages with initial 70kPa O2conditions,ethanol was detected during the last week of storage(Fig.4b).Thus,the application of high O2 levels in packages of fresh-cut fruits and vegetables could be particularly effective in preventing anaerobic fermenta-tive reactions promoted by low O2atmospheres(Allende et al.,2004).3.2.Colour andfirmness evolutionSignificant differences on L*and WI values among pack-aging atmosphere conditions were detected(Table2).On the other hand,MA did not affect significantly a*and b* values.L*and WI values were significantly lower on fresh-cut melon packaged under70kPa O2atmospheres compared to other conditions.During the twofirst weeks, both2.5kPa O2+7kPa CO2and non MA atmospheres best maintained initial colour of fresh-cut‘Piel de Sapo’melon.Nevertheless,a decrease of L*and WI parameters was detected on fresh-cut melon packaged under2.5kPa O2+7kPa CO2conditions at the end of storage,indicat-ing a strong development of translucency caused by the fer-mentative decay.Aguayo et al.(2004)associated the decrease of WI with an increase in translucently injury in fresh-processed melon.Development of translucency has been found to be the principal visual change of deteriora-tion in fresh-cut melon packaged under MA(Aguayo et al.,2003,2004;Bai et al.,2001,2003;O’Connor-Shaw, Roberts,Ford,&Nottingham,1994).Firmness of fresh-cut‘Piel de Sapo’melon decreased slightly under low O2levels and non MA,whereas it was maintained at values similar to those of the freshfruitG.Oms-Oliu et al./Food Control19(2008)191–199195under high O2atmospheres.Thus,firmness values of sam-ples stored under70kPa O2were the highest throughout all the storage period,although differences among modified atmospheres were not statistically significant during the first10days of storage(Table3).According to these results,loss offirmness,strong off-odour and deterioration of taste have been reported on fresh-cut produce due to a combination of extremely low O2and high CO2in pack-ages(Allende et al.,2004;Van der Steen et al.,2002).3.3.Effect of MA on microbial growth of fresh-cut melonInitial aerobic psychrophilic and yeast and mold counts on fresh-cut‘Piel de Sapo’melon were about 1.2–1.5log(CFU gÀ1)and1.5–1.8log(CFU gÀ1),respectively (Fig.5).The proliferation of aerobic psychrophilic micro-organisms through storage was more rapid than that of yeasts and moulds under all packaging conditions.Low O2and moderate CO2atmospheres have been shown to reduce slightly the microbial growth of fresh-cut canta-loupe or honeydew melons(Bai et al.,2001,2003).High O2concentrations have been found to cause damage tomicroorganisms by intracellular generation of reactive oxy-gen species(ROS)that damage cell components and reduce cell viability when oxidative stresses overwhelm cellular protection system(Escalona et al.,2006;Jacxsens et al., 2001;Kader&Ben-Yehoshua,2000;Poubol&Izumi, 2005).However,different organisms vary greatly in their sensitivity to O2partial pressure and some of them could have developed strategies,such as the induction of other enzymes that decompose ROS,to avoid their lethal dam-age(Kader&Ben-Yehoshua,2000).Table2L*and WI values of fresh-cut‘Piel de Sapo’melon packaged under2.5kPa O2+7kPa CO2,70kPa O2and non modified atmosphere and stored at4°C for28daysDays 2.5kPa O2+7kPa CO2Non MA a70kPa O2L*WI b L*WI L*WI071.8±2.3abA65.0±1.7abA70±3cA63.9±2.4bA70±4aA62.7±1.8aA275±5aA67±3aA76±3abA69±4aA66±6aB60±6aB474±3aA66±3abA75.1±2.5bA67±3aA65±8aB60±7aB775±6aA67±5aA75±6abA69±3aA66±5aB60±4aB975±3aA67±3aA76.2±1.9abA68.2±1.5aA65±11aB60±8aB1176±6aA67±6aA78.7±2.1aA70±3aA67±8aB61±6aB1474±3aA66±2abA75±3bA68±3aA65.6±2.5aB59.7±1.8aB2174±3aB66±2abB77.1±1.9abA69±3aA67±4aC62±3aC2870±3bB63±3bB77±4abA69±3aA68±3aB62±3aBMean±standard deviation.Values within a column followed by the same small letter indicate that mean values are not significantly different by Duncan’s multiple-range test (P<0.05).Values within the same line followed by the same capital letter indicate that mean values are not significantly different by Duncan’s multiple-range test (P<0.05).a MA:modified atmosphere.b WI:whiteness index.Table3Firmness values(N)of fresh-cut‘Piel de Sapo’melon packaged under2.5kPa O2+7kPa CO2,70kPa O2and non modified atmosphere(MA)and stored at4°C for28daysDays 2.5kPa O2+7kPa CO2Non MA a70kPa O20 3.4±1.2aA 3.1±0.4aA 3.4±0.9abcA2 3.1±0.3abA 2.8±0.4abA 3.1±0.4abA4 2.4±0.5bcA 2.2±0.9bcA 2.6±0.9bA7 2.8±0.3abA 2.7±0.6abA 3.0±0.8abcA9 3.0±0.9abA 1.8±0.4cB 2.8±0.7bcA11 3.1±0.6abB 2.4±0.5abcB 3.9±1.2aA14 2.5±0.5bcB 1.9±0.4cB 3.5±1.3abcA21 2.8±0.4abA 2.1±0.5bcB 3.1±1.2abcA28 2.1±0.4cB 2.3±0.8bcB 3.5±0.8abcAMean±standard deviation.Values within a column followed by the same small letter indicate thatmean values are not significantly different by Duncan’s multiple-range test(P<0.05).Values within the same line followed by the same capital letter indicatethat mean values are not significantly different by Duncan’s multiple-range196G.Oms-Oliu et al./Food Control19(2008)191–199Yeast populations were prevalent in fresh-cut‘Piel de Sapo’melon compared to moulds throughout the storage, but their growth was significantly affected by the packaging atmosphere composition.Thus,fresh-cut melon was more rapidly spoiled by yeasts under initial non MA than under 2.5kPa O2+7kPa CO2or70kPa O2atmospheres.How-ever,yeast and mould counts strongly increased on fresh-cut melon stored under high O2levels during the third week of storage,when O2levels decreased below60kPa.Expo-sure to high oxygen concentrations during thefirst days of storage did not inhibit microbial growth but caused a prolongation of the lag phase and a reduction in the growth rate.Amanatidou et al.(1999)agreed that mini-mally processed vegetables packaged under high oxygen alone(80–90kPa O2,balance N2)exhibited more pro-nounced lag phase at higher O2concentration.In agree-ment,Van der Steen et al.(2002)reported a slight inhibitory effect of high O2atmospheres on the microbialgrowth of packaged strawberries and raspberries.The spoilage of products seems to become detectable for con-sumers when yeast counts on fresh-cut fruits reach levels above5log(CFU gÀ1)(Jacxsens,Devlieghere,Falcato,& Debevere,1999).Therefore,yeast and mould populations on fresh-cut‘Piel de Sapo’melon packaged under2.5kPa O2+7kPa CO2atmosphere remained at an acceptable level[<5log(CFU gÀ1)]throughout storage,whereas a 70kPa O2atmosphere had an inhibiting effect on yeast growth for two weeks but exceeded the level of acceptabil-ity beyond day21.Maximum aerobic psychrophilic counts of8log (CFU gÀ1)were attained beyond the day14,regardless the atmosphere conditions.However,2.5kPa O2+7kPa CO2and70kPa O2initial atmospheres were found to decrease bacterial growth for two weeks(P60.001).Dur-ing thefirst week storage,differences on bacterial counts were not detected among both high and low O2atmo-spheres.Jacxsens et al.(2001)found no difference in aero-bic psychotrophic growth in chicory endives between conventional(3kPa O2and5kPa CO2)and superatmo-spheric O2(95kPa O2and5kPa CO2)packaging after 1week storage.On the other hand,these authors reported slightly higher counts at7days storage under low O2con-ditions than under superatmospheric packaging for both grated celeriac and mushroom slices.The growth of meso-philic and psychrophilic bacteria on fresh processed lettuce packaged under80kPa O2was lower than under non MA for8days(Allende,Del Carmen Barba,&Arte´s,2003).The Gompertz equation was re-parameterized to include the shelf-life as afitting parameter among the parameters of the equation according to Corbo et al.(2006).Byfitting (3)to the growth of aerobic psychrophilic microorganisms it was possible to determinate shelf-life of fresh-cut melon and its confidence interval.The Gompertz parameters and shelf-life values obtained according to this approach are listed in Table4.The lag phase for the growth of aer-growth rates of bacterial growth(l max)and maximum counts attained at the stationary phase(A)were similar for all conditions.Packaging under 2.5kPa O2+7kPa CO2prolonged the microbiological shelf-life of the fresh-cut melon from10–14days approximately whereas non MA limited shelf-life of fresh-cut melons to7–10days.R.mucilaginosa,C.famata and C.ciferii were isolated as the most important spoilage microorganisms from fresh-cut‘Piel de Sapo’melon packaged under MA condi-tions.Table5shows a clear predominance of R.mucilagin-osa of around a90%of the total yeast population,once melon was processed.However,its prevalence decreased throughout the storage time and its survival was affected by packaging atmospheres.The reduction was of40%, 30%and20%for70kPa O2, 2.5kPa O2+7kPa CO2 and non MA,respectively.Yeast genera found in fresh-cut‘Piel de Sapo’melon were similar to those detected by Poubol and Izumi(2005)on‘Nam Dokmai’mango cubes stored under high O2atmospheres.These authors Table4Kinetic constants estimated by a modification of the Gompertz model in order to describe the microbial growth of aerobic psychotrophic micro-organisms of fresh-cut‘Piel de Sapo’melon packaged under different modified atmosphere conditionsAerobic psychotrophic microorganismsMA conditions a A b l max c k d SL e R2 2.5%O2+7%CO27.6±1.80.62±0.23 1.9±3.912.4±2.198.9 70%CO27.6±2.50.62±0.12À0.9±4.411.1±1.599.5 Non modifiedatmosphere8±30.76±0.15À1±49.0±1.299.5Mean±standard deviation.Parameters obtained byfitting re-parameterized Gompertz model(3).a MA:modified atmosphere.b A:maximum growth attained at the stationary phase[log(CFU gÀ1)].c lmax:maximal growth rate[D log(CFU gÀ1)dayÀ1].d k:lag time(days).e SL:estimated shelf life parameter(days).Table5Survival percentage of Rhodotorula mucilaginosa related to total yeast growth on fresh-cut melon packaged under 2.5kPa O2+7kPa CO2, 70kPa O2and non modified atmosphere and stored at4°C for28days Days 2.5kPa O2+7kPa CO2Non MA a70kPa O2 086.2±0.9aA88.1±0.7aA94±8aA 366.3±3.2bB87.2±1.8aA94±8aA 767.6±6bB88.2±1.4aA55.9±2.4bB 1067±4bB83±4abA58±4bB 1461±6bB77±5bcA39.6±0.2cC 2162.7±1.2bB74±3cA38±5cC 2863±4bB74±2cA32.5±0.1cC Mean±standard deviation.Values within a column followed by the same small letter indicate that mean values are not significantly different by Duncan’s multiple-range test (P<0.05).Values within the same line followed by the same capital letter indicate that mean values are not significantly different by Duncan’s multiple-rangeG.Oms-Oliu et al./Food Control19(2008)191–199197。

相关文档
最新文档