数学分析习题及答案(29)

合集下载

数学分析试题及答案

数学分析试题及答案

数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。

A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。

A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。

答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。

答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。

答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。

答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。

2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。

答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。

3. 求定积分∫(0,2) (2x-1) dx。

答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。

微积分(数学分析)证明题及参考答案.doc

微积分(数学分析)证明题及参考答案.doc

统计专业和数学专业数学分析练习题1. 证明极限yx yx y x -+→)0,0(),(lim不存在。

2. 用极限定义证明: .0lim 22)0,0(),(=++→yx yx y x3. 证明极限22222)0,0(),()(lim y x y x y x y x -+→不存在.4. 设),(),(x f y x F =)(x f 在 0x 连续,证明:对,0R y ∈∀),(y x F 在),(00y x 连续.5. 证明:如果),(y x f 在 ),(000y x P 连续,且0),(00>y x f ,则对任意),(00y x f r <,),;(0δP ⋃∃对一切),;(),(0δP y x P ⋃∈有.),(r y x f >6. 证明:22),(y x y x f +=在点)0,0(处连续且偏导数不存在.7. 证明;2222221sin 0(,)00y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在)0,0(点连续,且0)0,0(,0)0,0(==y x f f 不存在.8. 证明222222221()sin 0(,)00x y x y f x y x y x y ⎧++≠⎪=+⎨⎪+=⎩在 点)0,0(处连续且偏导数存在.9. 设 函数),(y x f 在),(00y x 的某邻域内存在偏导数,若),(y x 属于该邻域,则存在)(010x x x -+=θξ和 )(020y y y -+=θη,,10,1021<<<<θθ 使得00000(,)(,)(,)()(,)()x y f x y f x y f y x x f x y y ξη-=-+-。

10. 证明:2222220(,)00xy x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩,在点)0,0(不可微.11. 证明: 对任意常数,ρϕ, 球面2222x y z ρ++=与锥面2222tan x y z ϕ+=⋅是正交的. 12. 证明: 以λ为参数的曲线族221() x y a b a b λλ+=>-- 是相互正交的(当相交时).13. 证明: 由方程()z y x z ϕ=+所确定的隐函数(,)z z x y =满足222()z z z x y y ϕ⎡⎤∂∂∂=⎢⎥∂∂∂⎣⎦, 其中ϕ二阶可导. 14. 设()20()ln 12cos F a a x a dx π=-+⎰, 证明20,10,()ln , 1. 若且 若a a F a a a π⎧<≠⎪=⎨>⎪⎩15. 证明含参量反常积分⎰+∞sin dy yxy 在[)+∞,δ上一致收敛()0>其中δ,但在()0,+∞内不一致收敛。

数学分析课后习题答案

数学分析课后习题答案

习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数解 由推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。

因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n m习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材 例9或关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。

数学分析课后习题答案

数学分析课后习题答案

数学分析课后习题答案数学分析课后习题答案数学分析是大学数学的重要分支之一,它研究的是数学函数的性质、极限、连续性、可导性等等。

在学习数学分析的过程中,课后习题是巩固和拓展知识的重要途径。

然而,有时候我们会遇到一些难题,不知道如何下手。

为了帮助大家更好地学习数学分析,本文将提供一些常见习题的答案和解析。

一、极限与连续性1. 求极限:lim(x→0) (sinx/x)。

解析:利用极限的性质,我们可以得到lim(x→0) (sinx/x) = 1。

这是因为当x趋近于0时,sinx/x的值趋近于1。

2. 证明函数f(x) = x^2在点x = 3处连续。

解析:要证明函数f(x) = x^2在点x = 3处连续,我们需要证明lim(x→3) f(x) = f(3)。

根据函数的定义,f(3) = 3^2 = 9。

而lim(x→3) f(x) = lim(x→3) x^2 = 3^2 = 9。

因此,函数f(x) = x^2在点x = 3处连续。

二、导数与微分1. 求函数f(x) = x^3的导数。

解析:根据导数的定义,导数f'(x) = lim(h→0) (f(x+h) - f(x))/h。

对于函数f(x) = x^3,我们可以得到f'(x) = lim(h→0) ((x+h)^3 - x^3)/h。

化简后,我们得到f'(x) = 3x^2。

2. 求函数f(x) = sinx的微分。

解析:微分的定义是df(x) = f'(x)dx。

对于函数f(x) = sinx,我们已经知道它的导数f'(x) = cosx。

因此,函数f(x) = sinx的微分为df(x) = cosxdx。

三、积分与级数1. 求函数f(x) = x^2在区间[0,1]上的定积分。

解析:根据定积分的定义,函数f(x) = x^2在区间[0,1]上的定积分为∫[0,1] x^2 dx。

计算这个积分,我们得到∫[0,1] x^2 dx = [x^3/3]0^1 = 1/3。

钱吉林《数学分析题解精粹》错误更正完整版

钱吉林《数学分析题解精粹》错误更正完整版

P14.28. C k(x i)= a k()把i去掉h(x)=……=(a k+a1+k )x+(akx1+k+a1+kxk)把()x后面的+改为-30.证加一句“不妨设x1>0”infE=min{ x1, x2,…, x100}把x100改为xNxp = min{ x1, x2,…, x100}同上改法.P2137(2)1311sin )(13lim---+→xx x x f 把3下的“-1”去掉.P 3057证 (2)令M= ()34322改为()3432aP3160故{ x n }当x ≣6时为单调减小,改为“当n ≣5时” P3261[]改为().P 4595“=21+2[1-121-⎪⎭⎫ ⎝⎛n ]-212nn -”改为“x n =1+2[1-121-⎪⎭⎫⎝⎛n ]-212nn -”在题中令a=6即为100题P48102“用数学归纳法可证:……5a 3=3a 4+1”中的a 3改为a 5怎么想到的“用数学归纳法可证:2≢na n ≢2+n30(n ≣5)”? 另外思路(注意不是解题过程!): 设b n =na n (求什么设什么,很正常的想法) 由已知得b 1+n =b n (21+n1)+1 (*) (*)中若lim ∞→n b n 存在(让证明的肯定成立),则对(*)两边取n →∞,得lim ∞→n b n =2现在的问题是b n 是递增还是递减的呢?没办法,只能硬算了。

由(*)及b 1=a 1=2算出b 2=4,b 34=5,b 4=631,b 54=839(考试时能算到b 5的人应该是相当沉着了) 由此猜测当n ≣4时,{ b n }单调递减。

由b n (21+n 1)+1=b 1+n <b n 得b n >2+24-n (n ≣4) 下面按正常书写过程证:设b n =na n ,则由已知得b 1+n =b n (21+n1)+1 下面证明当n ≣4时,b n >2+24-n 。

(完整word版)数学分析—极限练习题及详细答案

(完整word版)数学分析—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。

A.sin ||xB.ln(1)x -C.11.【答案】D 。

2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。

4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。

5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。

本科数学分析试题及答案

本科数学分析试题及答案

本科数学分析试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则以下哪个选项是正确的?A. f(x)在点x=a处连续B. f(x)在点x=a处不可导C. f(x)在点x=a处不连续D. f(x)在点x=a处的导数为0答案:A2. 设f(x)是定义在实数集上的函数,若f'(x)存在,则以下哪个选项是正确的?A. f(x)是单调函数B. f(x)在任意点处都有定义C. f(x)在任意点处都可导D. f(x)是周期函数答案:B3. 若函数f(x)在区间(a, b)内连续,则以下哪个选项是正确的?A. f(x)在区间(a, b)内一定有最大值和最小值B. f(x)在区间(a, b)内一定有唯一的最大值和最小值C. f(x)在区间(a, b)内不一定有最大值和最小值D. f(x)在区间(a, b)内的最大值和最小值一定在区间端点处取得答案:C4. 若函数f(x)在区间[a, b]上可积,则以下哪个选项是正确的?A. f(x)在区间[a, b]上一定连续B. f(x)在区间[a, b]上一定有界C. f(x)在区间[a, b]上一定单调D. f(x)在区间[a, b]上一定有界且连续答案:B二、填空题(每题5分,共20分)1. 设函数f(x)在区间(a, b)内连续,且f(a)=f(b),则根据罗尔定理,存在至少一个点c∈(a, b),使得f'(c)______。

答案:=02. 若函数f(x)在点x=a处可导,则f(x)在点x=a处的导数定义为______。

答案:lim (x→a) [f(x) - f(a)] / (x - a)3. 设f(x)在区间[a, b]上连续,则根据微积分基本定理,∫[a, b]f(x) dx = F(b) - F(a),其中F(x)是f(x)的一个原函数,即F'(x)______。

答案:=f(x)4. 若函数f(x)在区间[a, b]上可积,则∫[a, b] f(x) dx表示的是函数f(x)在区间[a, b]上与x轴所围成的区域的______。

(完整word版)数学分析复习题及答案(word文档良心出品)

(完整word版)数学分析复习题及答案(word文档良心出品)

数学分析复习题及答案一.单项选择题1. 已知, 则=()A. B. C. D.2. 设, 则()A. B. C. D.3. ()A. B. C. D.4. 下列函数在内单调增加的是()A. B. C. D.二、填空题1. 设函数2.3.在处连续, 则三、判断题1. 若函数在区间上连续, 则在上一致连续。

()2. 实轴上的任一有界无限点集至少有一个聚点。

()3.设为定义在上的单调有界函数, 则右极限存在。

()四、名词解释1. 用的语言叙述函数极限的定义2. 用的语言叙述数列极限的定义五、计算题1. 根据第四题第1小题证明2. 根据第四题第2小题证明3. 设, 求证存在, 并求其值。

4.证明:在上一致连续, 但在上不一致连续。

5. 证明: 若存在, 则6. 证明: 若函数在连续, 则与也在连续, 问: 若在或在上连续, 那么在上是否必连续。

一、1.D 2.C 3.B 4.C二、1. 2. 3.三、1.× 2.√ 3.√四、1.函数极限定义: 设函数在点的某个空心邻域内有定义, 为定数。

, , 当时, , 则。

2.数列极限定义:设为数列, 为定数, , , 当时, 有, 则称数列收敛于。

五、1.证明:, , 当时, ;得证。

2.证明:令, 则, 此时, ,, , 当时,3.证明:⑴,⑵)1)(1(1111111----+++-=+-+=-n n n n n n n n n n x x x x x x x x x x 而, 由数学归纳法可知, 单调增加。

综合⑴, ⑵可知存在,设, 则由解得=A 215+(负数舍去)4.证明: 先证在上一致连续。

, 取, 则当且有时, 有 []δ•''+'≤''-'''+'=''-'x x x x x x x f x f ))(()()(εε<+⋅++≤)(2)1(2b a b a故2)(x x f =在[]b a ,上一致连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 场论初步1.设 a 3i 20 j 15k ,对以下数目场 f ( x, y, z) ,分别计算 grad f 和 div ( fa) :1(1) (2) (3)f (x, y, z) ( x 2 y 2 z 2 ) 2 ; f (x, y, z) x 2 y 2 z 2 ; f (x, y, z) ln( x 2 y 2 z 2 ) 。

解(1) grad f3( x 2y 2 z 2 ) 2 ( xi yjzk ) ,3div ( fa)(x 2 y 2 z 2 ) 2 (3x 20 y 15z) 。

(2) grad f 2( xi yj zk ) ,div ( fa) 2(3x 20 y 15z) 。

(3) grad f 2( x 2 y 2 z 2 ) 1 (xi yj zk ) ,div ( fa) 2(x 2 y 2 z 2 ) 1 (3x 20 y 15 z) 。

2.求向量场 a x 2 i y 2 j z 2 k 穿过球面 x 2 y 2 z 2 1 在第一卦限部分 的通量,此中球面在这一部分的定向为上侧。

解 设 : x 2 y 2 z 2 1 ( x 0, y 0, z 0) ,方向取上侧,则所求通量为x 2 dydz y 2 dzdx z 2 dxdy ,因为z 2dxdy(1 x2y 2 )dxdy2d13dr ,r48xy同理可得x 2 dydzy 2dzdx,8因此x 2 dydzy 2 dzdx z 2 dxdy 3。

83.设 r xi yj zk , r | r | ,求:(1)知足 div [ f (r )r ] 0 的函数 f (r ) ; (2)知足 div[grad f (r )] 0 的函数 f (r ) 。

解(1)经计算获得( f ( r ) x)f (r ) f (r ) x2,xr( f (r ) y)f (r )f ( r )y 2 ,yr( f (r ) z)f (r ) f ( r ) z2,zr 因此。

由 div [ f (r )r ] 0 ,得 3 f (r ) r f (r )0,解此微分方程,获得f ( r )c 3 ,r此中 c 为随意常数。

(2)由 f (r ) x f (r ) , f (r ) x f (r ) , f ( r )x f (r ) ,获得xrx rxrx r 2 x 2f (r )x 2x f (r )r 3r 2 f (r ),ryf (r )23y22y r rf ( r ) y2 f (r ),rrzf ( r )r23z2 z 2z rf (r )2 f (r ) ,rr因此div[grad f (r )]2f( r ) f "( r ) 。

r由 div[grad f (r )] 0 ,得 2 f (r )rf ( r ) 0 ,解此微分方程,获得f (r )c 1 c 2 ,r此中 c 1 ,c 2 为随意常数。

4. 计算grad c 1 ln( c r )r2此中 c 是常矢量, r xi yj zk ,且 c r 0 。

解 设 c (c 1 , c 2 , c 3 ) , u c r 1 c r ) ,则ln(2u c 1 , u c 2 , u c 3 c 3 ,x c 1 c 2 2(c z 2(c r )2(c r ) y r ) 因此grad c r1ln( c r )c 1 c 。

22 c r5. 计算向量场 a grad arctan y沿以下定向曲线的环量:x(1)圆周 ( x 2) 2 ( y 2) 2 1, z 0 ,从 z 轴正向看去为逆时针方向;(2)圆周 x 2 y 2 4, z 1 ,从 z 轴正向看去为顺时针方向。

解 经计算,可得a grad arctany12 ( y, x,0),x x 2yi j krot a =x y z0 ,y xx2 y2 x2 y2它在除掉 z 轴的空间上是无旋场。

(1)设L ( x, y, z) ( x 2)2 ( y 2)2 1,z 0 ,从 z 轴正向看去为逆时针方向;(x, y, z) (x 2)2 ( y 2)2 1, z 0 ,方向取上侧。

因为z 轴不穿过曲面,依据 Stokes公式,a ds rot a dS 0 。

L(2)令x 2cos , y 2sin , z 0 ,则a ds xdy ydx 2d 2 。

x 2 y 2 0L L6. 计算向量场 r xyz(i j k ) 在点M (13,,2)处的旋度,以及在这点沿方向 n i 2 j 2k 的环量面密度。

解由i j krotrx y zx( z y)i y( x z)j z( y x)k ,xyz xyz xyz可得rot r (M ) i 3 4 。

j k向量场 r xyz(i j k ) 在点M (1,3,2) 沿方向 n 的环量面密度为lim 1 r dr rot r (M ) n 1 。

) nM m( 37. 设 a a x i a y j a z k 向量场, f ( x, y, z) 为数目场,证明:(假定函数a x ,a y ,a z和 f 拥有必需的连续偏导数)(1)div(rot a) 0 ;(2)rot (grad f ) 0;(3)grad(div a) rot (rot a) a 。

证(1)rot a z a yia x a zja y a xk 。

a y z z x x y设 a x , a y , a z二阶偏导数连续,则div(rot a)a z a ya x a za y a x 0 。

yz yzxzxyxi jk(2) rot (grad f )y z 0 。

xff f xyz(3)由grad(div a) div a div ajdiv aikxyz2a x 2a y2a zi2a x2a y2a zjx 2x yx zx yy 2y z2a x 2a y 2a zk ,x z y zz2以及a za ya xa zj a y a x k ,rotaizxxyyzrot(rot a) =2a y 2a x2a x2a zix yy2z2x z2a z 2a y 2a y 2a xj2a x2a z2a z2a yy zz 2 x 2x y x zx 2 y 2k ,y z获得grad(div a) rot (rot a)a x ia y ja z ka 。

8. 位 于 原 点 的 点 电 荷 q 产 生 的 静 电 场 的 电 场 强 度 为Eq3( xi yj zk ) ,此中 rx 2 y 2z 2 , 0 为真空介电常数。

4 0r求 rot E 。

解zy 3yz 3yz 0 , yr 3z r 3r 4r 4xz 3zx 3zx 0 ,zr 3x r 3r 4r 4yx3xy 3xy 0 ,xr3y r3r4r4因此rot E0 , ( x, y, z) 0 。

9. 设a为常向量,r xi yj zk ,考证:(1)(a r ) 0 ;(2)(a r ) 2a ;(3)((r r )a) 2r a 。

证(1)(a r )x y z a x a y a z x y z(a y z a z y) (a z x a x z) (a x y a y x)0。

x y zi j k(2)(a r )x y za y z a z y a z x a x z a x y a y x2( a x i a y j a z k ) 2a 。

(3)((r r )a) (a x x2 ) ( a y y 2 ) (a z z2 )a 。

x y z 2r10. 求全微分( x2 2 yz) dx ( y 2 2xz)dy ( z2 2xy)dz 的原函数。

解记 a ( x2 2 yz)i ( y2 2xz) j ( z2 2xy)k ,因为a z 2x a y, a x 2 yaz ,a y2zax ,z xy z x y因此向量场 a ( x2 2 yz)i ( y 2 2xz) j ( z2 2xy)k 是一个无旋场,其原函数为U ( x, y, z) (x , y, z)22 yz)dx ( y2 2 xz)dy ( z2 2xy)dz C(x(0,0,0)x 0 x2 dxy2 dy z 2xy)dz 1 (x2 y2 z2 ) 2xyz C 。

y ( z20 0 3x y x y11.证明向量场ax 2 y 2 ix2 y 2j (x 0) 是有势场并求势函数。

证当 x 0 时,x y y 2 x 2 2xy x y,y x2 y2 (x 2 y2 ) 2 x x 2 y 2因此向量场 a 是有势场,其势函数为V (x, y) U (x, y) ( x, y) ( xy)dx ( x y)dyC(1,0) x 2 y 2x dxy x y dy C arctany 1ln( x2 y2 ) C 。

1 x 0 x2 y2 x 212.证明向量场a (2x y z) yzi ( x 2y z)zxj ( x y 2z) xyk 是有势场,并求出它的势函数。

证 设 a a x i a y j a z k ,则a z x 22x( yz)a y a xy 22 y(x z)a z,yz,xza yz 2 2 z( x y)a x ,xy因此向量场 a 是有势场。

设原函数为 UU (x, y, z) ,则dU (2 x y z) yzdx ( x 2yz)zxdy (x y 2z) xydz[ yzdx 2 x 2 (zdy ydz)] [ y 2 ( zdx xdz) zxdy 2 ][ z 2 ( ydx xdy) xydz 2 ]d( x 2 yz) d ( xy 2 z) d( xyz 2 ) d[ xyz( x y z)] ,因此势函数为V (x, y, z)U (x, y, z)xyz( xy z) C 。

13.考证:(1) u y 3 3x 2 y 为平面 R 2 上的调解函数;(2) u ln ( x a) 2 ( y b)2 为 R 2 {( a,b)} 上的调解函数; (3) ux 21为 R 3 {( 0,0,0)} 上的调解函数。

y 2 z 2解(1)因为u 6 xy, u 3y 2 3x 2 , 2u6 y,2u6y ,xy x 2y 2因此2u2u0 ,x2y2即 u y 3x 2 y为平面 R 2 上的调解函数。

3(2)因为ux auy b,x2( y b)2,22( x a)y ( x a)( y b)2u( y b) 2(x a)22u( x a)2( y b) 2x2[( x a)2( y b) 2 ] 2 ,y 2[( x a)2( y b) 2 ]2,因此2u2u0 ,x2y2即 u ln ( x a) 2 ( y b) 2 为 R 2 {( a, b)} 上的调解函数。

相关文档
最新文档