数学分析复习题及答案

合集下载

数学分析试卷及答案6套

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+收敛.四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点.七. (12分)确定,a b 使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=. 三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导.七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. x e dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数0(1)n n x x ∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板?八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑.一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.1arcsin x dx ⎰4. 1000π⎰二. (各5分,共10分)求下列数列与函数极限:1. 221lim nn k nn k →∞=+∑2. 20lim1xt xx xe dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列2212,211()22211n n x x n f x n n x x n n x n ⎧ , 0≤≤⎪⎪⎪=- , <≤⎨⎪⎪0 , <≤⎪⎩证明{()}n f x 在[0,1]不一致收敛.五. (10分)求幂级数0(1)n n n x ∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1n n a ∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂ 二 (10分) 设n 个正数12, , , n x x x 之和是a ,求函数 n u x =的最大值.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明1()() ().f x o x x=→+∞四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算0sin sin (0, ).pxbx axI e dx p b a x+∞--=>>⎰六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面111111122222223333333 ,, = 0 , , a x b y c z h a b c a x b y c z h a b c a x b y c z h a b c ++=±⎧⎪++=±∆≠⎨⎪++=±⎩ 所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22Cxdy ydxx y-+⎰,其中C 是光滑的不通过原点的正向闭曲线. 九 (10分) 求dS z∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部.数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有01lim [()()] ()().xa h f t h f t dt f x f a h→+-=-⎰六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f x y z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数.九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。

数学分析课后习题答案

数学分析课后习题答案

数学分析课后习题答案【篇一:数学分析试卷及答案6套】>一. (8分)用数列极限的??n定义证明?1.n二. (8分)设有复合函数f[g(x)], 满足: (1) limg(x)?b;x?a(2) ?x?u(a),有g(x)?u(b) (3) limf(u)?au?b00用???定义证明, limf[g(x)]?a.x?a三. (10分)证明数列{xn}:xn?cos1cos2cosn????收敛. 1?22?3n?(n?1)1在[a,1](0?a?1)一致连续,在(0,1]不一致连续. x四. (12分)证明函数f(x)?五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界.六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定a,b使limax?b)?0.x???32八. (14分)求函数f(x)?2x?9x?12x在[?15,]的最大值与最小值. 42九. (14分)设函数f(x)在[a,b]二阶可导, f?(a)?f?(b)?0.证明存在??(a,b),使f??(?)?4f(b)?f(a). 2(b?a)数学分析-1样题(二)一. (10分)设数列{an}满足: a1?, an?1?(n?n), 其中a是一给定的正常数, 证明{an}收敛,并求其极限.二. (10分)设limf(x)?b?0, 用???定义证明limx?x0x?x011?. f(x)b三. (10分)设an?0,且liman?l?1, 证明liman?0.n??n??an?1四. (10分)证明函数f(x)在开区间(a,b)一致连续?f(x)在(a,b)连续,且 x?a?limf(x),limf(x)存在有限. ?x?b五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且f(a)?0,而函数[f(x)]2在a可导,则函数f(x)在a可导. 七. (12分)求函数f(x)?x???x???1在的最大值,其中0???1.八. (12分)设f在上是凸函数,且在(a,b)可微,则对任意x1,x2?(a,b), x1?x2,都有f?(x1)?f?(x2).?g(x),??????x?0?九. (12分)设f(x)??x 且g(0)?g?(0)?0, g??(0)?3, 求f?(0).??0???????,??????x?0数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. 3.?xarctanx?dx2.?edx4.?x?ln0??xsinx1?cosx二.(10分)设f(x)是上的非负连续函数, 三. (10分)证明?baf(x)dx?0.证明f(x)?0 (x?[a,b]).?2?sinx?0. x四. (15分)证明函数级数?(1?x)xn?0?n在不一致收敛, 在[0,?](其中)一致收敛.五. (10分)将函数f(x)?????x,????????x?0展成傅立叶级数.???x,??????0?x???22xy??????x?y?0?六. (10分)设f(x,y)???22???????????0,???????????????????x?y?0证明: (1) fx?(0,0), fy?(0,0)存在;(2) fx?(x,y),fy?(x,y)在(0,0)不连续; (3) f(x,y)在(0,0)可微.七. (10分)用钢板制造容积为v的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设0???1, 证明11. ????n?1n(n?1)数学分析-2样题(二)?一. (各5分,共20分)求下列不定积分与定积分:1.???(a?0)2.?x?xx?x100?8717121514dx3.?arcsinx??dx4.?二. (各5分,共10分)求下列数列与函数极限: 1. limn?22n??k?1n?kn2. limxx?01?ex?xetdt2三.(10分)设函数在[a,b]连续,对任意[a,b]上的连续函数g(x), g(a)?g(b)?0,有?baf(x)g(x)dx?0.证明f(x)?0 (x?[a,b]).四. (15分)定义[0,1]上的函数列1?22nx,?????????????????????x??2n?11?fn(x)??2n??2n2x?????????????x?2nn?1? ????????????????????????????x?1?n?证明{fn(x)}在[0,1]不一致收敛. 五. (10分)求幂级数?(n?1)xn?0?n的和函数.六. (10分)用???定义证明(x,y)?(2,1)lim(4x2?3y)?19.七. (12分)求函数u?(2ax?x2)(2by?y2)??(ab?0)的极值. 八. (13分)设正项级数数学分析-3样题(一)一 (10分) 证明方程f(x?zy?1, y?zx?1)?0所确定的隐函数z?z(x, y)满足方程?an?1?n收敛,且an?an?1???(n?n?).证明limnan?0.n??x?z?z?y?z?xy. ?x?y二 (10分) 设n个正数x1, x2, ?, xn之和是a,求函数u?三 (14分) 设无穷积分.???af(x) dx收敛,函数f(x)在[a, ??)单调,证明1x四 (10分) 求函数f(y)?五 (14分) 计算?1ln(x2?y2) dx的导数(y?0).sinbx?sinaxdx (p?0, b?a).0x六 (10分) 求半径为a的球面的面积s.i????e?px七 (10分) 求六个平面a1b1c1 ?a1x?b1y?c1z??h1 ,??a2x?b2y?c2z??h2 , ?=a2b2c2?0 , ?ax?by?cz??h ,a3b3c3333?3所围的平行六面体v的体积i,其中ai, bi, ci, hi都是常数,且hi?0 (i?1, 2, 3). 八 (12分) 求xdy?ydx??cx2?y2,其中c是光滑的不通过原点的正向闭曲线.九 (10分) 求ds2222?,其中是球面被平面z?h (0?h?a)所截的顶部. x?y?z?a??z?数学分析-3样题(二)一 (10分) 求曲面x?u?v, y?u2?v2, z?u3?v3在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面x2?xy?y2?z2?1与x2?y2?1交线上到原点最近的点. 三(14分) 设函数f(x)在[1, ??)单调减少,且limf(x)?0,证明无穷积分x??????1f(x) dx与级数?f(n)同时收敛或同时发散.n?1??100四 (12分) 证明?e?ax?e?bxbdx?ln(0?a?b). xa五 (12分) 设函数f(x)在[a, a]连续,证明? x?[a, a],有1xlim ?[f(t?h)?f(t)] dt?f(x)?f(a).ah?0h六 (10分) 求椭圆区域r: (a1x?b1y?c1)2?(a2x?b2y?c2)2?1(a1b2?a2b1?0)的面积a.七 (10分) 设f(t)????vf(x2?y2?z2) dx dy dz,其中v: x2?y2?z2? t2 (t?0),f是连续函数,求f(t).八 (10分) 应用曲线积分求(2x?siny)dx?(xcosy)dy的原函数. 九(12分) 计算外侧.??xyz dx dy,其中s是球面xs2?y2?z2?1在x?0, y?0部分并取球面【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。

数学分析试题及答案

数学分析试题及答案

数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。

A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。

A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。

答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。

答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。

答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。

答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。

2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。

答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。

3. 求定积分∫(0,2) (2x-1) dx。

答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。

数学分析试卷及答案6套

数学分析试卷及答案6套

f ( x1 ) f ( x2 ) .
g ( x) ,x 0 九. (12 分)设 f ( x) x 且 g (0) g (0) 0 , g (0) 3 , 求 f (0) . 0, x 0
答案参见我的新浪博客:/s/blog_3fb788630100muda.html
lim
h 0
1 h

x
a
[ f (t h) f (t )] dt f ( x) f (a).
六 (10 分 ) 求椭圆区域 R : (a1 x b1 y c1 ) 2 (a2 x b2 y c2 ) 2 1 (a1b2 a2b1 0) 的 面积 A . 七 (10 分) 设 F (t ) f ( x 2 y 2 z 2 ) dx dy dz ,其中 V : x 2 y 2 z 2 t 2 (t 0) ,
四. (12 分)证明函数 f ( x)
五. (12 分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10 分)证明任一齐次多项式至少存在一个实数零点. 七. (12 分)确定 a, b 使 lim ( x 2 x 1 ax b) 0 .
x
1 5 八. (14 分)求函数 f ( x) 2 x 3 9 x 2 12 x 在 [ , ] 的最大值与最小值. 4 2
x x0
x x0
1 1 . f ( x) b
三. (10 分)设 an 0 ,且 lim
an l 1 , 证明 lim an 0 . n n a n 1
四. (10 分 ) 证 明 函 数 f ( x) 在 开 区 间 ( a, b) 一 致 连 续 f ( x) 在 ( a, b) 连 续 , 且

数学分析试卷及答案6套

数学分析试卷及答案6套

数学分析试卷及答案6套第一套试卷一、选择题(共20题,每题4分,共80分)1. 若函数f(x) = 3x^2 + 2x - 1,求f(-1)的值是多少?A. -4B. 4C. 0D. 12. 函数f(x) = ln(x^2 + 1)在区间(-∞, 0)上的最小值是多少?A. ln(1)B. ln(0)C. ln(-1)D. 不存在最小值3. 已知函数f(x)在区间[0, 5]上连续,且f(0) = 2, f(5) = 1,证明在该区间上存在一个点c,使得f(c) = 3.(请写出证明过程)4. 求不等式2x - 5 < 3x + 2的解集。

A. x < -7B. x > -7C. x > -3D. x < -35. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b),证明在该区间上至少存在两个不同的点c和d,使得f(c) = f(d).(请写出证明过程)..................第一套答案一、选择题1. B2. A3. (证明过程略)4. A5. (证明过程略)二、填空题(共5题,每题4分,共20分)1. 若e^x = 2,则x = ln(2);2. 设a, b为实数,若a^2 + 2ab + b^2 = 0,则a = -b;3. lim(x→∞) (x^2 - 2x - 3)/(3x + 1) = 1;4. 若函数f(x) = x^2 + 3x - 2,则f(-1) = -6;5. 若f(x) = √(2x + 1),则f'(x) = 1/√(2x + 1)。

三、解答题(共3题,每题20分,共60分)1. 设函数f(x) = x^3 - 2x + 1在区间[-2, 2]上的一个驻点为c,请求该驻点c的值以及f(c)的极值。

(请写出解题过程)2. 求函数f(x) = x^3 - 3x + 1的所有零点。

(请写出解题过程)3. 若函数f(x) = 3x^4 + 4x^3 - 12x^2 + 4在区间[0, 3]上的导函数f'(x)恰有一个零点c,并且f(c) = 2,求函数f(x)在该区间上的最大值。

大学数学分析试题及答案

大学数学分析试题及答案

大学数学分析试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在区间(a, b)内连续,则下列说法正确的是:A. f(x)在区间(a, b)内一定有最大值和最小值B. f(x)在区间(a, b)内一定有界C. f(x)在区间(a, b)内不一定有界D. f(x)在区间(a, b)内一定单调答案:B2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. -1D. ∞答案:B3. 设函数f(x)=x^3-3x+1,则f'(x)等于:A. 3x^2-3B. x^2-3x+1C. 3x^2+3D. -3x^2+3答案:A4. 函数y=e^x的导数是:A. e^xB. e^(-x)C. -e^xD. 1/e^x答案:A二、填空题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则f'(a)表示______。

答案:函数f(x)在点x=a处的导数2. 设函数f(x)=x^2+2x+1,则f(2)的值为______。

答案:93. 若序列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则a_5的值为______。

答案:334. 函数y=ln(x)的定义域是______。

答案:(0, +∞)三、解答题(每题15分,共60分)1. 求函数f(x)=x^2-4x+3在区间[1, 4]上的最大值和最小值。

答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4。

令f'(x)=0,解得x=2。

在区间[1, 2)上,f'(x)<0,函数单调递减;在区间(2, 4]上,f'(x)>0,函数单调递增。

因此,最小值为f(2)=-1,最大值为f(1)=0或f(4)=3。

2. 计算极限lim(x→0) (x^2+3x+2)/(x^2-x+1)。

答案:lim(x→0) (x^2+3x+2)/(x^2-x+1) = (0+0+2)/(0-0+1) = 2。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。

12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。

考研数学分析试题及答案

考研数学分析试题及答案

考研数学分析试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b) = 0,若f(x)在区间(a, b)内至少有一个最大值点,则下列说法正确的是()。

A. f(x)在[a, b]上必有最大值B. f(x)在[a, b]上必有最小值C. 函数f(x)在[a, b]上单调递增D. 函数f(x)在[a, b]上单调递减2. 下列级数中,发散的是()。

A. ∑(-1)^n / nB. ∑1/n^2C. ∑(1/n - 1/(n+1))D. ∑sin(n)3. 已知函数F(x)在点x=c处可导,且F'(c)≠0,那么下列说法中正确的是()。

A. F(x)在x=c处连续B. 函数F(x)在x=c处一定取得最大值或最小值C. 可导性不能保证函数的连续性D. F(x)在x=c处取得极值4. 对于函数f(x) = x^3 - 6x^2 + 9x + 5,其在区间[1, 5]上的最大值是()。

A. 5B. 10C. 15D. 205. 设f(x)在[a, b]上可积,若∫[a, b] f(x) dx = 10,则下列说法中错误的是()。

A. f(x)在[a, b]上非负B. 存在x₀∈[a, b],使得f(x₀) > 0C. 存在x₀∈[a, b],使得f(x₀) = 10/b - aD. f(x)可以是负函数6. 函数f(x) = e^x / (1 + e^x)的值域是()。

A. (-∞, 0)B. (0, 1/2)C. (0, 1)D. (1/2, +∞)7. 下列选项中,不是有界函数的是()。

A. y = sin xB. y = e^xC. y = x^2D. y = 1/x8. 设函数f(x)在点x=1处可导,且f'(1) = 2,那么f(1 + h) - f(1)在h趋近于0时的表达式是()。

A. 2hB. 2h + o(h)C. h^2D. o(h)9. 对于函数f(x) = x^2,其在区间[-1, 1]上满足拉格朗日中值定理的条件,且存在ξ∈(-1, 1),使得()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析复习题及答案
一.单项选择题
1.已知x e x x f +=3)(,则)0(f '=( )
A. 1
B. 2
C. 3
D. 4 2.设3)21(lim -∞
→=+e x kx x ,则=k ( ) A. 6- B.
23 C. 32- D. 23- 3.⎰
=dx xe x ( ) A. C e x + B. C e xe x x +- C. C e x x +- D. C e x ++1
4.下列函数在),(∞-∞内单调增加的是( )
A. x y =
B. x y -=
C. 3x y =
D. x y sin =
二、填空题
1.设函数==+dz e
z y x 则全微分,2 2..______________23sin lim 0
=→x x x 3.⎪⎪⎩
⎪⎪⎨⎧>+=<=0)1ln()(00
sin )(x x x k x k x x x x f 为常数在0=x 处连续,则_________=a
三、判断题
1.若函数f 在区间),(b a 上连续,则f 在),(b a 上一致连续。

( )
2.实轴上的任一有界无限点集S 至少有一个聚点。

( )
3.设f 为定义在)(0x U ︒上的单调有界函数,则右极限)(lim 0
x f x x +→存在。

( ) 四、名词解释
1.用δε-的语言叙述函数极限的定义
2.用N -ε的语言叙述数列极限的定义
五、计算题
1.根据第四题第1小题证明04
)1(lim 2=--+∞→n n n
n 2.根据第四题第2小题证明5311lim
22=++→x x x 3.设n n n x x x x x x x ++=++
==+11,,11110010 ,,求证n n x ∞→lim 存在,并求其值。

4.证明:2)(x x f =在[]b a ,上一致连续,但在()+∞∞-,上不一致连续。

5.证明:若)(0x f '存在,则=∆∆--∆+→∆x
x x f x x f x )()(lim 000)(20x f ' 6.证明:若函数)(x f 在0x 连续,则)(x f 与)(2x f 也在0x 连续,问:若在)(x f 或)
(2x f 在I 上连续,那么)(x f 在I 上是否必连续。

一、1.D 2.C 3. B 4.C
二、1. dy e dx e y x y x +++222 2.2
3 3. 1 三、1.× 2.√ 3.√
四、
1. 函数极限定义:设函数f 在点0x 的某个空心邻域);(0δ'︒x U 内有定义,A 为定数。

0>∀ε,0>∃δ,当δ<-<00x x 时,ε<-A x f )(,则A x f x x =→)(lim 0。

2.数列极限定义:设为数列}{n a ,a 为定数,0>∀ε,0>∃N ,当N n >时,有ε<-a a n ,则称数列}{n a 收敛于a 。

五、1.证明:ε<-<-⋅++=-+<--+2
12121414)1(22n n n n n n n n n )2(>n 0>∀∴ε,21+⎥⎦⎤⎢⎣⎡=∃εN ,当N n >时,ε<--+4)1(2n n n
;得证。

2. 证明:)13()2()
1(5)13)(2(531122+-<++-=-++x x x x x x x
令1)2(<-x ,则31<<x ,此时,1013<+x ,
∴0>∀ε,⎭
⎬⎫⎩⎨⎧=∃10,1min εδ,当δ<-<20x 时,ε<-++53112x x 3. 证明:⑴211≤≤+n x ,2111≤++=+n n n x x x ⑵)1)(1(1111111----+++-=+-+=-n n n n n n n n n n x x x x x x x x x x 而01x x >,由数学归纳法可知,n x 单调增加。

综合⑴,⑵可知n n x ∞
→lim 存在, 设A x n n =∞→lim ,则由),11(lim lim 1n n n n n x x x ++=∞→+∞→ =A A A ++11 解得=A 2
15+(负数舍去) 4. 证明:先证2)(x x f =在[]b a ,上一致连续。

0>∀ε,取)1(++=b a ε
δ,则当∈'''x x ,[]b a ,且有δ<''-'x x 时,有
[]δ•''+'≤''-'''+'=''-'x x x x x x x f x f ))(()()( εε
<+⋅++≤)(2)1(2b a b a
故2)(x x f =在[]b a ,上一致连续。

但2)(x x f =在()+∞∞-,上不一致连续。

取10=ε,无论0>δ取得多小,由01lim
=∞→n
n 知,只要n 充分大, 总可以使n n x 1'+=,n x ='' 的距离δ<=-n
x x 1''', 但0221)1(2)1()''()'(2ε=>+=-+=-n n n n x f x f 故2)(x x f =在()+∞∞-,上不一致连续。

5.证明:若)(0x f '存在,则=∆∆--∆+→∆x
x x f x x f x )()(lim 000)(20x f ' 证明:由导数的定义, 有)(0x f 'x
x f x x f x ∆-∆+=→∆)()(lim 000 ⑴ 而0→∆x 等价于0→∆-x ,故)(0x f 'x
x f x x f x ∆--∆-=→∆-)()(lim 000 ⑵ ⑴和⑵相比,得)(20x f 'x
x f x x f x f x x f x ∆-∆---∆+=→∆))()(())()((lim 00000 x
x x f x x f x ∆∆--∆+=→∆)()(lim 000 6. 证明:因为)(x f 在0x 连续,所以)()(lim 00x f x f x x =→,
则 0>∀ε,0>∃δ,当δ<-<00x x 时,ε<-)()(0x f x f
则有 ε<-≤-)()()()(00x f x f x f x f ,所以)()(lim 00x f x f x x =→即)(x f 在点0x 连续。

又因为 =-)()(022x f x f )()()()(00x f x f x f x f -+ 且)(x f 在0x 连续,.0,0,0>>>∃δN M 当δ<-0x x 时,M f N x f ≤≤)0(,)(0 0>∀ε,},m in{1δδδ'=取,则当10δ<-x x 时, 有
=-)()(022x f x f )()()()()(00N M x f x f x f x f +<-+ε 因此)()(lim 0220x f x f x x =→
所以)(2x f 在点0x 连续。

若)(x f 在I 上某点0x 的值0)()(00≠-=x f x f ,则0x 是)(x f 的可去间断点,从而I 上未必连续。

相关文档
最新文档