高数(高职)习题课(1)

合集下载

(WORD)-高等数学课后习题(完整版)及答案

(WORD)-高等数学课后习题(完整版)及答案

高等数学课后习题(完整版)及答案高等数学课后答案习题1 11设A ( 5) (5 ) B [10 3)写出A BA B A\B及A\(A\B)的表达式解 A B ( 3) (5 )A B [105)A\B ( 10) (5 )A\(A\B) [105)2设A、B是任意两个集合证明对偶律 (A B)C AC BC 证明因为x (A B)C x A B x A或x B x AC或x BC x ACBC所以 (A B)C AC BC3设映射f X Y A X B X 证明(1)f(A B) f(A) f(B)(2)f(A B) f(A) f(B)证明因为y f(A B) x A B使f(x) y(因为x A或x B) y f(A)或y f(B)y f(A) f(B)所以 f(A B) f(A) f(B)(2)因为y f(A B) x A B使f(x) y (因为x A且x B) y f(A)且y f(B) y f(A) f(B)所以 f(A B) f(A) f(B)4设映射f X Y若存在一个映射g Y X使g f IXf g IY其中IX、IY分别是X、Y上的恒等映射即对于每一个x X有IX x x 对于每一个y Y有IY y y证明 f是双射且g是f的逆映射 g f 1证明因为对于任意的y Y有x g(y) X且f(x) f[g(y)] Iy y y即Y中任意元素都是X中某元素的像所以f为X到Y的满射又因为对于任意的x1 x2必有f(x1) f(x2)否则若f(x1) f(x2) g[ f(x1)] g[f(x2)] x1 x2因此f既是单射又是满射即f是双射对于映射g Y X因为对每个y Y有g(y) x X且满足f(x) f[g(y)] Iy y y按逆映射的定义 g是f的逆映射5设映射f X Y A X 证明(1)f 1(f(A)) A(2)当f是单射时有f 1(f(A)) A证明 (1)因为x A f(x) y f(A) f 1(y) x f 1(f(A))所以 f 1(f(A)) A(2)由(1)知f 1(f(A)) A另一方面对于任意的x f 1(f(A)) 存在y f(A)使f1(y) x f(x) y 因为y f(A)且f是单射所以x A这就证明了f 1(f(A)) A因此f 1(f(A)) A6求下列函数的自然定义域(1)y x233 解由3x2 0得x 2函数的定义域为[2, )(2)y 1 1x2解由1x2 0得x 1函数的定义域为( 1) (11) (1 )(3)y 1x x2解由x 0且1x2 0得函数的定义域D [1 0) (0 1](4)y 14x2解由4x2 0得 |x| 2函数的定义域为(2 2)(5)y sinx解由x 0得函数的定义D [0 )(6) y tan(x1)2 解由x1 (k 0 1 2 )得函数的定义域为x k 1 (k 0 1 2 2)(7) y arcsin(x3)解由|x3| 1得函数的定义域D [2 4](8)y x1 x解由3x 0且x 0得函数的定义域D ( 0) (0 3)(9) y ln(x1)解由x1 0得函数的定义域D (1 )(10)y ex解由x 0得函数的定义域D ( 0) (0 )7下列各题中函数f(x)和g(x)是否相同?为什么?(1)f(x) lg x2 g(x) 2lg x(2) f(x) x g(x) x2(3)f(x) x4x3g(x) xx1(4)f(x) 1 g(x) sec2x tan2x解 (1)不同因为定义域不同(2)不同因为对应法则不同 x 0时 g(x) x(3)相同因为定义域、对应法则均相相同(4)不同因为定义域不同8 |sinx| |x|3设 (x) |x| 0 3 求 ( ) ( ) ( ) (2)并作出函数y (x)644的图形) |sin | 解 ( ) |sin | 1 (446622) |sin( )| (442 (2) 09试证下列函数在指定区间内的单调性(1)y x ( 1) 1x(2)y x ln x (0 )证明 (1)对于任意的x1 x2 ( 1)有1x1 0 1x2 0因为当x1 x2时y1y2 xxx x 0 1x11x2(1x1)(1x2) 所以函数y x在区间( 1)内是单调增加的 1x(2)对于任意的x1 x2 (0 )当x1 x2时有y1y2 (x1lnx1)(x2lnx2) (x1x2)lnx 0 x2所以函数y x ln x在区间(0 )内是单调增加的10设 f(x)为定义在(l l)内的奇函数若f(x)在(0 l)内单调增加证明f(x)在(l 0)内也单调增加证明对于x1 x2 (l 0)且x1 x2有x1x2 (0 l)且x1 x2因为f(x)在(0 l)内单调增加且为奇函数所以f(x2) f(x1)f(x2) f(x1) f(x2) f(x1)这就证明了对于x1 x2 (l 0)有f(x1) f(x2)所以f(x)在(l 0)内也单调增加11设下面所考虑的函数都是定义在对称区间(l l)上的证明(1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明 (1)设F(x) f(x)g(x)如果f(x)和g(x)都是偶函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为偶函数即两个偶函数的和是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为奇函数即两个奇函数的和是奇函数(2)设F(x) f(x) g(x)如果f(x)和g(x)都是偶函数则F(x) f(x) g(x) f(x) g(x) F(x)所以F(x)为偶函数即两个偶函数的积是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x) g(x) [f(x)][g(x)] f(x) g(x) F(x)所以F(x)为偶函数即两个奇函数的积是偶函数如果f(x)是偶函数而g(x)是奇函数则F(x) f(x) g(x) f(x)[g(x)] f(x) g(x) F(x)所以F(x)为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数?(1)y x2(1x2)(2)y 3x2x3(3)y 1x2 1x2(4)y x(x1)(x1)(5)y sin x cos x1(6)y ax a x2解 (1)因为f(x) (x)2[1(x)2] x2(1x2) f(x)所以f(x)是偶函数(2)由f(x) 3(x)2(x)3 3x2x3可见f(x)既非奇函数又非偶函数(3)因为1(x)21x2f(x) f(x) 221x1x所以f(x)是偶函数(4)因为f(x) (x)(x1)(x1) x(x1)(x1) f(x)所以f(x)是奇函数(5)由f(x) sin(x)cos(x)1 sin x cos x1可见f(x)既非奇函数又非偶函数(6)因为(x)(x)xxa aa af(x) f(x) 22所以f(x)是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期(1)y cos(x2)解是周期函数周期为l 2(2)y cos 4x解是周期函数周期为l 2(3)y 1sin x解是周期函数周期为l 2(4)y xcos x解不是周期函数(5)y sin2x解是周期函数周期为l14求下列函数的反函数(1)y x1解由y x1得x y31所以y x1的反函数为y x31(2)y 1x 1x解由y 1x得x 1y所以y 1x的反函数为y 1x1x1y1x1x(3)y ax b(ad bc 0) cx d解由y ax b得x dy b所以y ax b的反函数为y dx b cx dcy acx dcx a(4) y 2sin3xyarcsin所以y 2sin3x的反函数为y 1arcsinx解由y 2sin 3x 得x 13232(5) y 1ln(x2)x2(6)y 2 1 解由y 1ln(x2)得x ey12所以y 1ln(x2)的反函数为y ex122xx y 所以的反函数为y log2211x 解 y2xy x log由得21y2 115设函数f(x)在数集X上有定义试证 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f(x)在X上有界则存在正数M使|f(x)| M即M f(x) M这就证明了f(x)在X上有下界M和上界M再证充分性设函数f(x)在X上有下界K1和上界K2即K1 f(x) K2 取M max{|K1| |K2|}则M K1 f(x)K2 M即 |f(x)| M这就证明了f(x)在X上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x1和x2的函数值(1) y u2 u sin x解 y sin2x x1 6x2 33y1 sin2 12 1y2 sin2 ()2 324624x1 x2 84 (2) y sin u u 2x解 y sin2x(3)y解 y1 sin(2 ) sin y2 sin(2 sin 1 842422u 1x x1 1 x2 2 y x2 y1 12 y2 22(4) y eu u x2 x1 0 x2 1解 y ex2 y1 e0 1 y2 e1 e 22(5) y u2 u ex x1 1 x2 1解 y e2x y1 e2 1 e2 y2 e2 (1) e217设f(x)的定义域D [0 1]求下列各函数的定义域(1) f(x2)解由0 x2 1得|x| 1所以函数f(x2)的定义域为[1 1](2) f(sinx)解由0 sin x 1得2n x (2n1) (n 0 1 2 )所以函数f(sin x)的定义域为[2n (2n1) ] (n 0 1 2 )(3) f(x a)(a>0)解由0 x a 1得a x 1a所以函数f(x a)的定义域为[a 1a](4) f(x a)f(x a)(a 0)22 解由0 x a 1且0 x a 1得 当0 a 1时 a x 1a 当a 1时无解因此当0 a 1时函数的定义域为[a 1a]当a 1时函数无意义2218设的图形解 |x| 1 1 x f(x) 0 |x| 1 g(x) e |x| 1 1 求f[g(x)]和g[f(x)]并作出这两个函数 1 |ex| 1 f[g(x)] 0|ex| 11 |ex| 1 即 1 x 0 f[g(x)] 0 x 0 1 x 0e1 |x| 1 g[f(x)] ef(x) e0 |x| 1e 1 |x| 1 e |x| 1 |x| 1即g[f(x)] 11 |x| 1 e19已知水渠的横断面为等腰梯形斜角 40 (图137)当过水断面ABCD的面积为定值S0周L(L AB BC CD)与水的函数关系式并指明其图137解 AB DC hsin40 0cot40 h所以又从1h[BC(BC2cot40 h)] S0得BC Sh时求湿深h之间定义域 2S2cos40L h hsin40自变量h的取值范围应由不等式组h 0确定定义域为0 h 0cot40S0 cot40 h 0 h20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元(1)将每台的实际售价p表示为订购量x的函数(2)将厂方所获的利润P表示成订购量x的函数(3)某一商行订购了1000台厂方可获利润多少?解 (1)当0 x 100时 p 90令001(x0100) 9075得x0 1600因此当x 1600时p 75当100 x 1600时p 90(x100) 001 910 01x综合上述结果得到0 x 100 90 p 910.01x 100 x 1600 75 x 1600 30x 0 x 1002100 x 1600 (2)P (p60)x 31x0.01x 15x x 1600(3) P 31 1000001 10002 21000(元)习题1 21观察一般项xn如下的数列{xn}的变化趋势写出它们的极限 (1)xn 1 2n解当n 时(2)xn (1)n1 n1 0 0 xn 1limn 22 解当n 时(3)xn 2 12 nxn (1)n1 0 lim(1)n1 0 n nn解当n 时(4)xn n1 n1xn 21 2 lim(21) 2 n nn2解当n 时(5) xn n(1)n xn n1 12 0 limn1 1n n1n1n 1解当n 时 xn n(1)n没有极限2 cos设数列{xn}的一般项xn nx ? 求出N使当n N时 xn问nlim n与其极限之差的绝对值小于正数 当 0001时求出数N解limx 0n n要使|x n0| 只要1 也就是n 1取n|cos|1 0 |xn0| nnN [1]则n N有|xn0|当 0001时 N [1] 10003根据数列极限的定义证明1 0 (1)nlim 2n分析要使|120| 12 只须n2 1即nnn1nn证明因为 0N [3n1 3 (2)nlim1]1 0当n N时有|120| 所以nlim 2分析2n12n13| 1 1要使|3 2n122(2n1)4n4只须证明因为 0N [1]当n N (3)nlim 分析 n2a2 1 n1 即n 14 4n3n1 3时有|3n13| 所以nlim 2n122n12只须2an222222a a naa要使|1| 22nnn a n)n2aN []证明因为 022n alim 1 n n当n N时有|n2a21|n所以(4)nlim0. 999 9 1n个分析要使|099 91|110n 1只须1 10即n 1lg1证明因为 0N [1lg1]当n N时有|099 91| 所以n n个lim0.999 9 1|u| |a|并举例说明 如果数列{|xn|}有极限但数证明nlimn4limu an n列{xn}未必有极限u a所以 0N N当n N时有|un a| 从而证明因为nlim n||un||a|| |un a||un| |a|这就证明了nlim|(1)n| 1但lim(1)n 数列{|xn|}有极限但数列{xn}未必有极限例如nlimn不存在y 0证明 5设数列{xn}有界又nlim nn limxnyn 0证明因为数列{xn}有界所以存在M使n Z有|xn| Myn 0所以 0N N当n N时有|yn| 从而当n N时又nlim M有xy 0所以nlim nn|xnyn0| |xnyn| M|yn| M M6对于数列{xn}若x2k1 a(k ) x2k a(k )证明 xn a(n )证明因为x2k1 a(k ) x2k a(k )所以 0K1当2k1 2K11时有| x2k1a| K2当2k 2K2时有|x2k a| 取N max{2K11 2K2}只要n N就有|xn a| 因此xn a (n )习题1 31根据函数极限的定义证明(3x1) 8 (1)limx 3分析因为|(3x1)8| |3x9| 3|x3|所以要使|(3x1)8| 只须|x3| 1 3 证明因为 0 1 当0 |x3| 时有 3|(3x1)8|(3x1) 8所以limx 3(5x2) 12 (2)limx 2分析因为|(5x2)12| |5x10| 5|x2|所以要使|(5x2)12| 只须|x2| 1 5 证明因为 0 1 当0 |x2| 时有 5|(5x2)12|(5x2) 12所以limx 22x4 4(3)xlim 2x 2分析因为x24(4) x24x4 |x2| |x(2)| x2x 2所以要使x24(4) x2只须|x(2)| 证明因为 0 当0 |x(2)| 时有x24(4) x2x24 4lim所以x 2x2314x(4)lim 2 2x1x分析因为所以要使14x32 |12x2| 2|x(1)| 2x1214x32 2x1只须|x(1)| 1 2222 证明因为 0 1 当0 |x(1)| 时有 14x32 2x1 314x所以lim 2 2x1x 22根据函数极限的定义证明1x (1)xlim 1 22x3分析因为所以要使1x31 1x3x3 1 2x322x32|x|3 1x312x2只须1 2|x|即|x| 1证明因为 0X 1当|x| X时有 1x312x3231x 1所以xlim3 2x2sinx 0 (2)xlim x 分析因为所以要使证明sinx0 |sinx| 1 xxxsinx0 只须1 即x 12x x因为 0X 1当x X时有 2sinx0 xsinx 0所以xlim x 3当x 2时 y x2 4问 等于多少使当|x2|< 时 |y4|<0001?解由于当x 2时 |x2| 0故可设|x2| 1即1 x 3要使|x24| |x2||x2| 5|x2| 0001只要|x2| 0.001 0.0002 5取 00002则当0 |x2| 时就有|x24| 0 0014当x 时解要使y x21 1 x32问X等于多少使当|x| X时|y1| 001? 只要|x| 43 0.01x211 4 0.01x23x23故X5证明函数f(x) |x|当x 0时极限为零证明因为|f(x)0| ||x|0| |x| |x0|所以要使|f(x)0| 只须|x|因为对 0 使当0 |x0| 时有|f(x)0| ||x|0||x| 0所以limx 06求f(x) x, x (x) |x|当xx 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为lim f(x) lim x lim1 1x 0x 0xx 0lim f(x) lim x lim1 1 x 0x 0xx 0x 0limf(x) lim f(x) x 0f(x)存在所以极限limx 0因为|x| lim x 1 x 0x 0xx 0x|x|x 1lim (x) lim limx 0x 0xx 0xlim (x) limx 0 lim (x) lim (x) x 0(x)不存在所以极限limx 07证明 若x 及x 时函数f(x)的极限都存在且都等于Af(x) A则xlimf(x) A证明因为xlim x limf(x) A所以 >0X1 0使当x X1时有|f(x)A|X2 0使当x X2时有|f(x)A|f(x) A取X max{X1 X2}则当|x| X时有|f(x)A| 即xlim8根据极限的定义证明 函数f(x)当x x0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f(x) A(x x0)则 >0 0使当0<|x x0|< 时有|f(x)A|<因此当x0 <x<x0和x0<x<x0 时都有|f(x)A|<这说明f(x)当x x0时左右极限都存在并且都等于A再证明充分性设f(x00) f(x00) A则 >01>0使当x0 1<x<x0时有| f(x)A<2>0使当x0<x<x0+ 2时有| f(x)A|<取 min{ 1 2}则当0<|x x0|< 时有x0 1<x<x0及x0<x<x0+ 2 从而有| f(x)A|<即f(x) A(x x0)9试给出x 时函数极限的局部有界性的定理并加以证明解 x 时函数极限的局部有界性的定理 如果f(x)当x 时的极限存在则存在X 0及M 0使当|x| X时 |f(x)| M证明设f(x) A(x )则对于 1X 0当|x| X时有|f(x)A| 1所以|f(x)| |f(x)A A| |f(x)A||A| 1|A|这就是说存在X 0及M 0使当|x| X时 |f(x)| M其中M 1|A|习题1 41两个无穷小的商是否一定是无穷小?举例说明之解不一定(x)2 例如当x 0时 (x) 2x (x) 3x都是无穷小但limx 0(x)3 (x)不 (x)是无穷小2根据定义证明2x9(1)y x当x 3时为无穷小; 3(2)y xsin1当x 0时为无穷小x2x9 |x3|时|y| x 3 证明 (1)当x 3有因为 0当0 |x3| 时2|y| x9 |x3| x 32x9所以当x 3时y x为无穷小 3(2)当x 0时|y| |x||sin1| |x0|因为 0 x|y| |x||sin1| |x0| x所以当x 0时y xsin1为无穷小 x当0 |x0| 时有3根据定义证明 函数y 12x为当x 0时的无穷大问x应满足什x么条件能使|y| 104?证明分析|y||x| 1 M212x 21 12 xx|x|2 M即要使|y| M只须|1x|证明因为M 0所以当取1使当0 |x0| 时有12x M xM2x 0时函数y 12x是无穷大 xM 104则 41当0 |x0| 41时|y| 104 10210 2 4求下列极限并说明理由2x1; (1)limx x21x(2)limx 01xxxxx1x2 1所以lim x 01x2x1 2解 (1)因为2x1 21而当x 时1是无穷小所以limx x (2)因为11x2 1x(x 1)而当x 0时x为无穷小5根据函数极限或无穷大定义填写下表解6函数y xcos x在( )内是否有界?这个函数是否为当x 时的无穷大?为什么?解函数y xcos x在( )内无界这是因为M 0在( )内总能找到这样的x使得|y(x)| M例如y(2k ) 2k cos2k 2k (k 0 1 2 )当k充分大时就有| y(2k )| M当x 时函数y xcos x不是无穷大这是因为M 0找不到这样一个时刻N使对一切大于N的x都有|y(x)| M例如y(2k (2k )cos(2k ) 0(k 0 1 2 ) 2222 对任何大的N当k充分大时总有x 2k N但|y(x)| 0 M7证明 函数y 1sin1在区间(0 1]上无界但这函数不是当x 0+时xx的无穷大证明函数y 1sin1在区间(0 1]上无界这是因为 xx M 0在(0 1]中总可以找到点xk使y(xk) M例如当xk2k 1(k 0 1 2 )2时有y(xk) 2k2当k充分大时 y(xk) M当x 0+ 时函数y 1sin1不是无穷大这是因为 xxM 0对所有的 0总可以找到这样的点xk使0 xk但y(xk) M例如可取xk 12k(k 0 1 2 )当k充分大时 xk 但y(xk) 2k sin2k 0 M习题1 51计算下列极限2xlim5 (1)x 2x3x25 225 9lim解 x 2x3232x(2)3 x x 1解 2()23x3 0 2x x1() 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x2 14x32x2xlim(4)x 02 3x2x3224x2x x4x2x1 1 lim解lim x 03x2xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx xxx2x1(7)xlim 2x2x 1 解 1 121 limlimx 1 2x 2x x1x 22xx2(8)xlim解或 x2x 42x3x12xx 0lim42(分子次数低于分母次数x x3x1112x lim23 0lim4x2 x x3x1x 1xx2极限为零) x6x8 (9)limx 4x5x 4解 2(x2)(x4)limx26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 n n 2421 2n 解 123 (n1) (12)nlim(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2nn(n1)(n2)(n3)(13)nlim5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 3n n 5nnn55n(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1x3x 1(1x)(x 1(1x)(1x x2)1x x2) limx 21 x 11x x2计算下列极限32x2x(1)x lim 2(x2)2解 (x2)20lim 0因为x 2x2x162x所以limx 22x2 (x2)23 x (2)xlim 2x 1解 2xlim x 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctanx (2)xlim xarctanx lim1 arctanx 0(当x 时 1是无穷小解xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题1 51计算下列极限2xlim5 (1)x 2x322x52lim 5 9解 x 2x32 3 2x(2)23 x x 1解 2()23x3 0 x x21()2 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x 1 324x2x x(4)limx 03x22x4x32x2x lim4x22x1 1解 limx 03x22xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx x2xx2(7)xlim解x21 22x x1112x1lim2 lim 1x 2x x1x 222xx x2x x x43x212x x 0解xlim(分子次数低于分母次数 x3x1(8)lim极限为零)或112x lim 0lim4x2 x x3x1x 21124xx2 x6x8 (9)limx 42x5x 4解 2(x2)(x4)xlim26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 nn n 2421 2n 解 123 (n1) (12)nlim 2(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2n2n2(n1)(n2)(n3)(13)nlim3 5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 n 5n nnn55n3(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1xx 1(1x)(x 1(1x)(1x x)1x x) limx 22 1 x 11x x2计算下列极限 32x2xlim(1)x 2(x2)2解 (x2)20lim3 0因为x 2x2x21632x2x 所以limx 2(x2)2 x2lim(2)x 2x1 x2 解 xlim 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctan x (2)xlim xarctanx lim1 arctanx 0(当x 时1是无穷小解 xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题 171当x 0时 2x x2 与x2x3相比哪一个是高阶无穷小?解232x xx x lim 0因为limx 02x xx 02x所以当x 0时 x2x3是高阶无穷小即x2x3 o(2x x2)2当x 1时无穷小1x和(1)1x3 (2)1(1x2)是否同阶?是否等2价?解 3(1x)(1x x2)1x lim lim(1x x2) 3 (1)因为limx 11xx 1x 11x所以当x 1时 1x和1x3是同阶的无穷小但不是等价无穷小1(1x2) 1lim(1x) 1 (2)因为limx 11x2x 1所以当x 1时 1x和1(1x2)是同阶的无穷小而且是等价无穷小 23证明 当x 0时有(1) arctan x~x2x(2)secx1~2arctanx lim 证明 (1)因为limx 0y 0xy 1(提示 tany令y arctan x则当x 0时y 0)所以当x 0时 arctanx~x2sin2x2sinxsecx1 2lim1cosx lim lim(2 1 (2)因为limx 02x 0x2cosxx 0x 0x2x2222xsecx1~ 2 所以当x 0时4利用等价无穷小的性质求下列极限tan3x (1)limx 02xsin(xn)(2)limx 0(sinx)m(n m为正整数)tanx sinx (3)limx 0sinx(4)limx 0sinx tanx 2(x1sinx1)tan3x lim3x 3解 (1)limx 0x 02x2x21 n mn sin(xn)x 0 n m lim(2)limx 0(sinx)mx 0xm n m1x2sinx(11)tanx sinx lim lim1cosx lim2 1(3)lim332x 0x 0x 0cosxsinxx 0xcosx2sinxsinx(4)因为sinx tanx tanx(cosx1) 2tanxsin2x~2x x)2 1x3(x 0) 222所以x21 x21x2(x 0) ~1x2)2x213sinx~sinx~x(x 0) sinx1sinx1 1x3sinx tanxlim lim 3x 0(x21sinx1)x 02x x35证明无穷小的等价关系具有下列性质(1) ~ (自反性)(2) 若 ~ 则 ~ (对称性)(3)若 ~ ~ 则 ~ (传递性)证明 (1)lim 1所以 ~1从而lim 1因此 ~ (2) 若 ~ 则lim(3) 若 ~ ~习题18 lim lim lim 1 因此 ~1研究下列函数的连续性并画出函数的图形(1) x2 0 x 1 f(x) 2x 1 x 2解已知多项式函数是连续函数所以函数f(x)在[0 1)和(1 2]内是连续的在x 1处因为f(1) 1并且x 12f(x) lim(2x) 1 limf(x) limx 1lim x 1x 1x 1f(x) 1从而函数f(x)在x 1处是连续的所以limx 1综上所述,函数f(x)在[0 2]上是连续函数x 1 x 1 (2)f(x) 1 |x| 1解只需考察函数在x 1和x 1处的连续性在x 1处因为f(1) 1并且x 1limf(x) lim1 1 f(1) x 1x 1 x 1limf(x) lim x 1 f(1)所以函数在x 1处间断但右连续在x 1处因为f(1) 1并且x 1limf(x) lim x 1 f(1) limf(x) lim1 1 f(1) x 1x 1x 1所以函数在x 1处连续综合上述讨论函数在( 1)和(1 )内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续2x(1)y 21 x 1 x 2 x3x 2解 2(x1)(x1)xy 21 x3x2(x2)(x1)因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点2xlimy lim21 因为x 2x 2x3x2所以x 2是函数的第二类间断点(x1)y lim 2所以x 1是函数的第一类间断点并且是可去因为limx 1x 1(x2)间断点在x 1处令y 2则函数在x 1处成为连续的(2)y x x k x k tanx2(k 0 1 2 )2 解函数在点x k (k Z)和x k (k Z)处无定义因而这些点都是函数的间断点因xlim k x (k 0) tanxx 1 tanxlimx k 故x k (k 0)是第二类间断点2 因为limx 0x 0(k Z) tanx所以x 0和x k (k Z) 是第一2类间断点且是可去间断点令y|x 0 1则函数在x 0处成为连续的令x k 时 y 0则函数在x k 处成为连续的2(3)y cos21 x 0 x2xx 解因为函数y cos21在x 0处无定义所以x 0是函数y cos21的间断点又因为limcos21不存在所以x 0是函数的第二类间断点x 0xx 1 x 1 (4)y 3 x x 1 x 1解因为xlim1f(x) lim(x1) 0limf(x) lim(3x) 2x 1x 1x 1所以x 1是函数的第一类不可去间断点 3讨论函数解2n1xf(x) limx的连续性 n 1x2n若有间断点判别其类型x |x| 12n 1xf(x) limx 0 |x| 1 n 1x2nx |x| 1f(x) lim(x) 1 lim f(x) lim x 1x 1x 1x 1lim 在分段点x 1处因为x1所以x 1为函数的第一类不可去间断点在分段点x 1处因为xlim 1f(x) lim x 1 limf(x) lim(x) 1x 1x 1x 1所以x 1为函数的第一类不可去间断点4证明 若函数f(x)在点x0连续且f(x0) 0则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 0证明不妨设f(x0)>0因为f(x)在x0连续所以xlimx的局部保号性定理存在x0的某一去心邻域U(x0)f(x) f(x0) 0由极限f(x)>0使当x U(x0)时从而当x U(x0)时 f(x)>0这就是说则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 05试分别举出具有以下性质的函数f(x)的例子 (1)x 0 12无穷间断点1 n 1 是2nf(x)的所有间断点且它们都是解函数f(x) csc( x)csc 在点x 0 1 2 x 1 n 1 处是间断2n的且这些点是函数的无穷间断点(2)f(x)在R上处处不连续但|f(x)|在R上处处连续1 x Q 解函数f(x) 1 x Q在R上处处不连续但|f(x)| 1在R上处处连续(3)f(x)在R上处处有定义但仅在一点连续x x Q 解函数f(x) 在R上处处有定义它只在x 0处连续x x Q习题191求函数f(x) xlimf(x) x 233x2x3的连续区间 2x x6f(x)并求极限limx 0x 3limf(x)及33x2x3 (x3)(x1)(x1)f(x) x(x3)(x2)x x 6 解函数在( )内除点x 2和x 3外是连续的所以函数f(x)的连续区间为( 3)、(3 2)、(2 )在函数的连续点x 0处 limf(x) f(0) 1 x 02在函数的间断点x 2和x 3处limf(x) limx 2(x1)(x1)(x3)(x1)(x1) 8limf(x) limx 3x 3x 2x25(x3)(x2) 2设函数f(x)与g(x)在点x0连续证明函数(x) max{f(x) g(x)} (x) min{f(x) g(x)} 在点x0也连续证明已知xlim x可以验证(x) 1[f(x)g(x)|f(x)g(x)| ]因此2 (x) 1[f(x)g(x)|f(x)g(x)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ] 20f(x) f(x0)limg(x) g(x0) x x0因为lim (x) lim1[f(x)g(x)|f(x)g(x)| ]x x0x x02 1[limf(x)limg(x)|limf(x)limg(x)| ]x x0x x0x x02x x01[f(x0)g(x0)|f(x0)g(x0)| ] (x0) 2所以 (x)在点x0也连续同理可证明 (x)在点x0也连续3求下列极限(1)limx 0x 4x22x5 (sin2x)3 (2)limln(2cos2x) (3)limx 6(4)limx 0x11 xx4x (5)limx 1x 1(6)xlimsinx sina ax a(7)xlim(x2x x2x)解 (1)因为函数f(x) x 0x22x5是初等函数f(x)在点x 0有定义所以 limx22x5 f(0) 22 054 (2)因为函数f(x) (sin 2x)3是初等函数 f(x)在点x 有定义所以lim(sin2x)3 f( (sin2 3 1 44x 46 (3)因为函数f(x) ln(2cos2x)是初等函数 f(x)在点x 有定义所以limln(2cos2x) f( ) ln(2cos2 0 66x(4)limx 0x11 lim(x11)(x11) limxx 0x 0x(x11xx(x11) )11 111112 limx 0(5)limx 1x4x lim(x4xx4x)x 1x1(x1x4x) lim444x4 lim 2x 1x4xx 1(x1x4x) 142cosx asinx alimsinx sina lim(6)x ax ax ax asinx a cosa a 1 cosalimcosx a limx a2x a2222(x2x x2x)(x2x x2x)(x x x x) lim(7)xlim 22 x (x x x x)lim2x2 lim 1 x (x2x x2x)x (11)xx4求下列极限(1)xlim(2)limlnsinx x 0x1ex(11)2 (3)xlim x2x(13tan2x)cotx (4)limx 0x13x( (5)xlim 6x(6)limx 0tanx sinxx sin2x xlime e1lim1x 解 (1) (2) (3) x e0 1 limlnsinx ln(limsinx) ln1 0x 0x 0xxx1lim(1 2x x limx 11x2(1)x e 12(4)lim(13tan2x)cotx limx 02x 0 1(13tan2x)3tan2x3 e3x13x 3 (5)(6x) (16x)36x2因为3(1)3 e lim3 x1 3 xlim x 6x26x23x2 e2所以xlim 6x(tanx sinx)(sin2x1)tanx sinx lim(6)lim22x 0x 0x sinx xx(sinx1)(tanx sinx)2xtanx 2sin(ta nx sinx sinx1) lim limx 0xsin2x(tanx sinx)x 0xsinx22x (x21 limx 02x应当如何选择数a使得f(x)成为在( 5设函数 ex x 0f(x) a x x 0)内的连续函数?解要使函数f(x)在( )内连续只须f(x)在x 0处连续即只须 x 0limf(x) limf(x) f(0) a x 0x 0 x 0f(x) limex 1因为xlim 0x 0limf(x) lim(a x) a所以只须取a 1习题1101证明方程x53x 1至少有一个根介于1和2之间证明设f(x) x53x1则f(x)是闭区间[1 2]上的连续函数因为f(1) 3 f(2) 25 f(1)f(2) 0所以由零点定理在(1 2)内至少有一点(1 2)使f( ) 0即x 是方程x53x 1的介于1和2之间的根因此方程x53x 1至少有一个根介于1和2之间2证明方程x asinx b其中a 0 b 0至少有一个正根并且它不超过a b证明设f(x) asin x b x则f(x)是[0 a b]上的连续函数f(0) b f(a b) a sin (a b)b(a b) a[sin(a b)1] 0若f(a b) 0则说明x a b就是方程x asinx b的一个不超过a b的根若f(a b) 0则f(0)f(a b) 0由零点定理至少存在一点(0 a b)使f( ) 0这说明x 也是方程x=asinx b的一个不超过a b的根总之方程x asinx b至少有一个正根并且它不超过a b 3设函数f(x)对于闭区间[a b]上的任意两点x、y恒有|f(x)f(y)| L|x y|其中L为正常数且f(a) f(b) 0证明 至少有一点 (a b)使得f( ) 0证明设x0为(a b)内任意一点因为所以 0 lim|f(x)f(x0)| limL|x x0| 0 x x0x x0x x0 lim|f(x)f(x0)| 0即 x x0limf(x) f(x0)因此f(x)在(a b)内连续同理可证f(x)在点a处左连续在点b处右连续所以f(x)在[a b]上连续因为f(x)在[a b]上连续且f(a) f(b) 0由零点定理至少有一点 (a b)使得f( ) 04若f(x)在[a b]上连续 a x1 x2 xn b则在[x1 xn]上至少有一点 使f( ) f(x1)f(x2) f(xn) n证明显然f(x)在[x1 xn]上也连续设M和m分别是f(x)在[x1 xn]上的最大值和最小值因为xi [x1 xn](1 i n)所以有m f(xi) M从而有n m f(x1)f(x2) f(xn) n M m f(x1)f(x2)f(xn) Mn由介值定理推论在[x1 xn]上至少有一点 使f( ) f(x)f(x) f(x) nf(x)存在则f(x)必在( 5证明 若f(x)在( )内连续且xlim)内有界f(x) A则对于给定的 0存在X 0只要|x| X就有证明令xlim|f(x)A| 即A f(x) A又由于f(x)在闭区间[X X]上连续根据有界性定理存在M 0使|f(x)| M x [X X]取N max{M |A | |A |}则|f(x)| N x ()即f(x)在( )内有界6在什么条件下 (a b)内的连续函数f(x)为一致连续?总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内(1)数列{xn}有界是数列{xn}收敛的________条件数列{xn}收敛是数列{xn}有界的________的条件(2)f(x)在x0的某一去心邻域内有界是xlim xx x00f(x)存在的________条件 limf(x)存在是f(x)在x0的某一去心邻域内有界的________条件0 (3) f(x)在x0的某一去心邻域内无界是xlim xx x0f(x) 的________条件 limf(x) 是f(x)在x0的某一去心邻域内无界的________条件(4)f(x)当x x0时的右极限f(x0)及左极限f(x0)都存在且相等是x x0limf(x)存在的________条件解 (1) 必要充分(2) 必要充分(3) 必要充分(4) 充分必要2选择以下题中给出的四个结论中一个正确的结论设f(x) 2x3x2则当x 0时有( )(A)f(x)与x是等价无穷小 (B)f(x)与x同阶但非等价无穷小(C)f(x)是比x高阶的无穷小 (D)f(x)是比x低阶的无穷小解xxxxf(x)232213 lim lim lim 1 因为limx 0xx 0x 0xx 0xxxxt ln3limu ln2ln3 ln2lim(令21 t 31 u)t 0ln(1t)u 0ln(1u)所以f(x)与x同阶但非等价无穷小故应选B3设f(x)的定义域是[0 1]求下列函数的定义域(1) f(ex)(2) f(ln x)(3) f(arctan x)(4) f(cos x)解 (1)由0 ex 1得x 0即函数f(ex)的定义域为( 0](2) 由0 ln x 1得1 x e 即函数f(ln x)的定义域为[1 e](3) 由0 arctan x 1得0 x tan 1即函数f(arctan x)的定义域为[0 tan 1](4) 由0 cos x 1得2n x 2n (n 0 1 2) 22即函数f(cos x)的定义域为[2n , n ] (n 0 12 ) 224设x 0 0 0 x 0 f(x) g(x) 2x x 0x x 0求f[f(x)] g[g(x)] f[g(x)] g[f(x)]0 x 0 解因为f(x) 0所以f[f(x)] f(x) x x 0因为g(x) 0所以g[g(x)] 0因为g(x) 0所以f[g(x)] 00 x 0 因为f(x) 0所以g[f(x)] f 2(x) 2 x x 05利用y sin x的图形作出下列函数的图形(1)y |sin x|(2)y sin|x|(3)y 2sinx 26把半径为R的一圆形铁片自中心处剪去中心角为 的一扇形后围成一无底圆锥试将这圆锥的体积表为 的函数解设围成的圆锥的底半径为r高为h依题意有R(2 ) 2 r222r R(2 ) 22R2(2 )24 h R r R R2 4 2圆锥的体积为V 13 R2(2 )2 24 R2R324 2(2 )2 4 a2 (0 2 )7根据函数极限的定义证明limx2x 6x 3x3 5证明对于任意给定的 0要使|x2x 6x35| 只需|x3| 取当0 |x3| 时就有|x3| 即|x2x65| 所以limx2x 6x3x 3x3 58求下列极限(1)limx2x 1x 1(x1)2(2)xlim x(x21x)(3)3xlim (2x2x1x1(4)limtanx sinxx 0x3(5)limxxx 0(a b cx3)(a 0 b 0 c 0)(6)lim(sinx)tanx x 2解 (1)因为lim(x1)2所以limx2x 1x 1x2x1 0 x 1(x1)(2)xlim x(x21x) x(x21x)(x21x)xlim (x21 x) x1xlim x21x xlim 1112x2x322x1x1() lim(1 lim(1)22(3)xlim 2x1x x 2x12x 1222(1)(1 2 xlim 2x12x 122(1) lim(1) e xlim x 2x12x 1sinx(11)sinx(1cosx)tanx sinx lim lim(4)limx 0x 0x 0x3x3x3cosxsinx 2sin2x2x (x)2lim 1 limx 0x 02x3cosxx3(提示 用等价无穷小换)(a (5)limx 0x b3x cx)x lim(1a b c。

辽宁工业大学高数习题课11-1

辽宁工业大学高数习题课11-1

an ≥ 0
正项级数
二,判别常数项级数收敛的解题方法
的敛散性, 判别常数项级数∑an的敛散性,应先考察是否有
n=1
liman = 0 成立.若不成立,则可判定级数发散; 成立.若不成立,则可判定级数发散;
n→∞
若成立,则需作进一步的判别. 若成立,则需作进一步的判别.
此时可将常数项级数分为两大类,即正项级数与任意项级数. 此时可将常数项级数分为两大类,即正项级数与任意项级数. 对于正项级数,可优先考虑应用比值法或根值法. 对于正项级数,可优先考虑应用比值法或根值法.若此 二方法失效,则可利用比较法(或定义)作进一步判别; 二方法失效,则可利用比较法(或定义)作进一步判别; 对于任意项级数, 是否收敛. 对于任意项级数,一般应先考虑正项级数 ∑ an 是否收敛. 若收敛,则可判定原级数收敛,且为绝对收敛; 若收敛,则可判定原级数收敛,且为绝对收敛;
n=1

问题是熟练掌握一批已知正项级数的敛散性(如几何级数, 问题是熟练掌握一批已知正项级数的敛散性(如几何级数,
p 级数等),然后根据 an 的特点,进行有针对性的放缩. 级数等), ),然后根据 的特点,进行有针对性的放缩.
a nn! 的收敛性. 【例6】判别级数 ∑ nn 的收敛性. 】 n =1
un+1 ∵ = un e >1 1 n (1 + ) n
∴ un+1 > un lim un ≠ 0
n →∞
所以,原级数发散. 所以,原级数发散. 的因子时, 注:在级数一般项 un 中,若含有形如 nk , an , n!, nn 的因子时, 适于使用比值审敛法. 适于使用比值审敛法.
1 的敛散性. 【例7】判断级数∑ [ln(n + 1)]n 的敛散性 】 n =1

高数练习册1答案

高数练习册1答案

大学理工科基础课程高数I练习册答案(上)高数(1)练习册习题答案第一章习题1-11求下列函数的自然定义域(1) 211x xy --=解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(2) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (3)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).2在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy ..(2)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y . (3) y =u 2 , u =e x , x 1=1, x 2=-1.解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限: (1)n n x 21=;解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2) 212n x n +=;解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (3)11+-=n n x n ;解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n(4)2 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1l i m||l i m )(l i m 000===+++→→→x x x x x x x x ϕ, )(l i m )(l i m 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.3 0sin lim =+∞→x x x . 分析 因为xxx x x 1|s i n |0s i n≤=-. 所以要使ε<-0sin xx , 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0s i n xx ,所以0sin lim =+∞→xx x .习题1-31 求下列极限并说明理由: (1)xx x 12lim +∞→;(2)xx x --→11lim 20. 解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .2 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .3. 计算下列极限:(1) 112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (2)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(3))1 111(lim +⋅⋅⋅+++;解 2211)21(1lim)21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (4)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (5)35)3)(2)(1(lim nn n n n +++∞→; 解 515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n . (6))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x . (7)12lim 2+∞→x x x ; 解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (8)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(9)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量).习题1-41计算下列极限:3 利用极限存在准则证明习题1-51利用 等价无穷小的性质,求下列极限 (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2s i n t a n 2)1(c o s t a n t a n s i n x x x x x x x x x -=⋅--=-=-(x →0), 23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~s i n ~1s i n 1s i n 1s i n1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x . 习题1-61. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x .所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处, 因为f (1)=1, 并且1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2; 解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的.(2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xx x , 0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x xx x f nnn . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.习题1-71. 求下列极限: (1)xx x 11lim 0-+→;(2)145lim 1---→x x x x ;(3)a x a x a x --→sin sin lim ;(4))(lim 22x x x x x --++∞→.解 (1) )11(lim )11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x211101111lim=++=++=→x x . (2))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x . (3)ax a x a x a x a x a x a x --+=--→→2sin 2cos 2lim sin sin lim a a a a x a x a x a x a x c o s 12c o s 22s i nlim2cos lim =⋅+=--⋅+=→→. (4))())((lim )(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim )(2lim22=-++=-++=+∞→+∞→xx x x x x x x x .2. 求下列极限:(1)2)11(lim xx x +∞→;(2)x x x 2cot 20)tan 31(lim +→;(3)21)63(lim -∞→++x x xx ; (4)x x x x x x -++-+→20sin 1sin 1tan 1lim .解. (1) []e e x x xx xx ==+=+∞→∞→21212)11(lim )11(lim .(2) []33tan 3120cot 2022)tan 31(lim)tan 31(lim e x x x x x x =+=+→→.(3)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x . 因为 e x x x =+-+-+∞→36)631(l i m , 232163lim -=-⋅+-∞→x x x ,所以2321)63(lim --∞→=++e xx x x .(4))sin 1tan 1)(1sin 1()1sin 1)(sin 1tan 1(lim sin 1sin 1tan 1lim 22020x x x x x x x x x x x x x x +++-++++-+=-++-+→→xx x x x x x x x x x x x 220220s i n 2s i n 2t a n lim )sin 1tan 1(sin )1sin 1)(sin (tan lim ⋅=+++++-=→→ 21)2(2l i m 320=⋅=→xx x x . 3. 设函数⎩⎨⎧≥+<=0 0)(x x a x e x f x 应当如何选择数a , 使得f (x )成为在(-∞, +∞)内的连续函数?解 要使函数f (x )在(-∞, +∞)内连续, 只须f (x )在x =0处连续, 即只须 a f x f x f x x ===+→-→)0()(lim )(lim 0.因为1lim )(lim 0==-→-→x x x e x f , a x a x f x x =+=+→+→)(lim )(lim 0, 所以只须取a =1.习题1-82. 证明方程x 5-3x =1至少有一个根介于1和2之间. 证明 设f (x )=x 5-3x -1, 则f (x )是闭区间[1, 2]上的连续函数.因为f (1)=-3, f (2)=25, f (1)f (2)<0, 所以由零点定理, 在(1, 2)内至少有一点ξ (1<ξ<2), 使f (ξ)=0, 即x =ξ 是方程x 5-3x =1的介于1和2之间的根. 因此方程x 5-3x =1至少有一个根介于1和2之间.3. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根; 若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b .4. 若f (x )在[a , b ]上连续, a <x 1<x 2< ⋅ ⋅ ⋅ <x n <b , 则在[x 1, x n ]上至少有一点ξ , 使n x f x f x f f n )( )()()(21+⋅⋅⋅++=ξ.证明 显然f (x )在[x 1, x n ]上也连续. 设M 和m 分别是f (x )在[x 1, x n ]上的最大值和最小值.因为x i ∈[x 1, x n ](1≤ i ≤n ), 所以有m ≤f (x i )≤M , 从而有 M n x f x f x f m n n ⋅≤+⋅⋅⋅++≤⋅)( )()(21,M nx f x f x f m n ≤+⋅⋅⋅++≤)( )()(21.由介值定理推论, 在[x 1, x n ]上至少有一点ξ 使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ.复习题一1证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -.证明 (1)因为1tan lim arctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时,y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1s e c 2x x -. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2; 解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2) xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4 (空缺,课堂讲解)5 (空缺,课堂讲解) 6求下列极限:(1)221)1(1lim -+-→x x x x ; (2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ;(4)30sin tan lim x x x x -→; (5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x . (2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x 21212)1221()1221(lim ++++=+∞→x x x xe x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(4)xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换). (5)x c b a c b a xx x x xx xxx x x x x x x cb ac ba 3333010)331(lim )3(lim -++⋅-++→→-+++=++,因为e c b a x x x c b a xx x x =-+++-++→330)331(lim , )111(lim 3133lim 00xc x b x a x c b a xx x x x x x x -+-+-=-++→→ ])1l n (1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=, 所以 3ln 103)3(lim abc e c b a abc x x x x x ==++→. 提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v .(6)x x x x xx x x tan )1(sin 1sin 12tan 2)]1(sin 1[lim )(sin lim -⋅-→→-+=ππ, 因为e x x x =-+-→1s i n 12)]1(sin 1[lim π,x x x x x x x c o s )1(s i n s i n limtan )1(sin lim 22-=-→→ππ01s i nc o s s i n lim )1(sin cos )1(sin sin lim222=+-=+-=→→x x x x x x x x x ππ, 所以 1)(s i n lim 0tan 2==→e x x x π.7. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为f (0)=a , a x a x f x x =+=--→→)(lim )(lim 200, 01sin lim )(lim 00==++→→xx x f x x ,所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续.8. 设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln(0 )(11x x x e x f x , 求f (x )的间断点, 并说明间断点所属类形.解 因为函数f (x )在x =1处无定义, 所以x =1是函数的一个间断点.因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x ), ∞==-→→++1111lim )(lim x x x e x f (提示+∞=-+→11lim 1x x ), 所以x =1是函数的第二类间断点.又因为0)1ln(lim )(lim 0=+=--→→x x f x x , ee xf x x x 1lim )(lim 110==-→→++,所以x =0也是函数的间断点, 且为第一类间断点.9. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且1111lim lim2=+=+∞→∞→n n n n n n , 1111lim 1lim 22=+=+∞→∞→nn n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n .10. 证明方程sin x +x +1=0在开区间)2,2(ππ-内至少有一个根.证明 设f (x )=sin x +x +1, 则函数f (x )在]2,2 [ππ-上连续.因为2121)2 (πππ-=+--=-f , 22121)2 (πππ+=++=f , 0)2()2 (<⋅-ππf f ,所以由零点定理, 在区间)2,2 (ππ-内至少存在一点ξ, 使f (ξ)=0.这说明方程sin x +x +1=0在开区间)2,2 (ππ-内至少有一个根.第二章 习题2-11. 求下列函数的导数: (1)32x y =;(2)5322x x x y =; 解 (1))3113232323232)()(--=='='='x x x xy . (2)651616153226161)()(--=='='='x x x x x x y . 2. 如果f (x )为偶函数, 且f (0)存在, 证明f (0)=0. 证明 当f (x )为偶函数时, f (-x )=f (x ), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→,从而有2f '(0)=0, 即f '(0)=0. 3. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x , 233sin 3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y , 法线方程为)3(3221π--=-x y .4. 讨论函数在x =0处的连续性与可导性:(1)⎪⎩⎪⎨⎧=≠=0001sin 2x x xx y . 解 (1)因为01sin lim )(lim 200==→→xx x y x x , 又y (0)=0, 所以函数在x =0处连续.又因为01s i n lim 01sin lim 0)0()(lim 0200==-=--→→→xx x x x x y x y x x x ,所以函数在点x =0处可导, 且y '(0)=0.5. 设函数⎩⎨⎧>+≤=1 1)(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 解 因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f (1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211l i m )1(21=--='-→-x x f x , a x x a x b a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111,所以要使函数在x =1处可导, 必须a =2, 此时b =-1.6. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ;当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim 00=-=---→→xx x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→xx x f x f x x , 所以f '(0)=1, 从而f '(x )=⎩⎨⎧≥<0 10cos x x x .7. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解 由xy =a 2得x a y 2=, 22xa y k -='=.设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x 轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距.此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-22. 求下列函数的导数: (1) y =tan(x 2); (2) y =arctan(e x ); (3) y =(arcsin x )2; (4) y =lncos x .解 (1) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2). (2)xx x x e e e e y 221)()(11+='⋅+='. (3) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(4)x x xx x y tan )sin (cos 1)(cos cos 1-=-='⋅='.2. 求下列函数的导数:(1)xx y ln 1ln 1+-=; (2)x y arcsin =;(3) y =ln(sec x +tan x );解.(1)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (2)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (3) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. 3. 求下列函数的导数:(1)11arctan -+=x x y ; (2) y =ln[ln(ln x )] ;(3)xx y +-=11arcsin . 解(1)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. .(2))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y )l n (l n ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(3)2)1()1()1(1111)11(1111x x x xxx x x x y +--+-⋅+--='+-⋅+--=')1(2)1(1x x x -+-=. 4. 设f (x )可导, 求函数y =f (sin 2x )+f (cos 2x ).的导数dxdy : 解y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x )=sin 2x [f '(sin 2x )- f '(cos 2x )].5. 求下列函数的导数:(1)2)2(arctan x y =; (2)x e y 1sin 2-=;(3)x x y +=;解(1)2arctan 44214112arctan 222x x xx y +=⋅+⋅='. . (2))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e x e y x x -⋅⋅-⋅='-⋅='-- x e x x1s i n 222s i n 1-⋅⋅=. (3))211(21)(21x xx x x x x y +⋅+='+⋅+=' x x x x +⋅+=412. 习题 2-31. 求函数的二阶导数:(1) y =(1+x 2)arctan x ;(2)2x xe y =;(3))1ln(2x x y ++=.解(1)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 212a r c t a n 2xxx y ++=''. (2))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(3)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 若f ''(x )存在, 求下列函数y =ln[f (x )]的二阶导数22dxy d : 解)()(1x f x f y '=', 2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=.3. 设函数y =x 2sin 2x , 求y (50) .解令u =x 2 , v =sin 2x , 则有u '=2x , u ''=2, u '''=0;x x v 2s i n 2)2482sin(24848)48(=⋅+=π, v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''= )2s i n 2(2c o s 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅=)2s i n 212252cos 502sin (2250x x x x x ++-=.习题 2-41. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程. 解 方程两边求导数得032323131='+--y y x , 于是 3131---='y x y , 在点)42 ,42(a a 处y '=-1. 所求切线方程为)42(42a x a y --=-, 即a y x 22=+. 所求法线方程为)42(42a x a y -=-, 即x -y =0. . 2. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |,两边求导得xx x x x x y y +⋅-+-⋅+='11)1l n (1ln 1, 于是 ]111[l n )1(xx x x x y x ++++='.. 3. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程:(1) ⎩⎨⎧==ty t x 2cos sin , 在4π=t 处; 解 (1)tt x y dx dy t t cos 2sin 2-=''=.当4π=t 时, 222224cos )42sin(2-=-=⋅-=ππdx dy , 220=x , 00=y , 所求切线方程为)22(22--=x y , 即0222=-+y x ; 所求法线方程为)22(221---=x y , 即0142=--y x . 4. 求下列参数方程所确定的函数的二阶导数22dxy d : (1) ⎩⎨⎧==-t t ey e x 23; (2) ⎩⎨⎧-==)()()(t f t tf y t f x t t , 设f ''(t )存在且不为零. 解(1)t t t t t e e e x y dx dy 23232-=-=''=-, t t t t t x e e e x y dx y d 3222943232)(=-⋅-='''=-. (2) t t f t f t f t t f x y dx dy t t ='''-''+'=''=)()()()(, )(1)(22t f x y dx y d t t x ''='''=.习题2-51. 求下列函数的微分:(1) y =x 2e 2x ;(2) y =e -x cos(3-x );(3)21arcsin x y -=;(4) y =tan 2(1+2x 2); (5)2211arctan x x y +-=; (6) s =A sin(ωt +ϕ) (A , ω, ϕ是常数)解 (1)因为x x y 112+-=', 所以dx xx dy )11(2+-=. (2) dy =y 'dx =[e -x cos(3-x )]dx =[-e -x cos(3-x )+e -x sin(3-x )]dx=e -x [sin(3-x )-cos(3-x )]dx .(3)dx xx x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=. (4) dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4xdx=8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .(5))11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-= dx x x dx x x x x x x x 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. (6) dy =d [A sin(ω t +ϕ)]=A cos(ω t +ϕ)d (ωt +ϕ)=A ω cos(ωt +ϕ)dx .复习题二1已知⎩⎨⎧<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 解 因为f -'(0)=10lim )0()(lim 00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在. 2求下列函数的导数:(1)2)2(arcsin x y =; (2)2tan ln x y =;(3)xx y arccos arcsin =; (4)xx x x y -++--+1111; (5) y =sin 2x ⋅sin(x 2); (6) xy 1cos ln =解 (1)'⋅=')2(arcsin )2(arcsin 2x x y )2()2(11)2(a r c s i n 22'⋅-⋅=x x x 21)2(11)2(a r c s i n 22⋅-⋅=x x . 242a r c s i n 2xx -= (2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x xy x x x c s c 212s e c 2t a n 12=⋅⋅=.(3)222)(arccos arcsin 11arccos 11x x x x x y -+-=' 22)(a r c c o s a r c s i n a r c c o s 11x x x x +⋅-=22)(a r c c o s 12x x -=π.(4)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=. (5) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x=sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2). (6) x xx x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅=' 3空缺4求由y =tan(x +y )所确定的隐函数y 的二阶导数22dxy d 方程两边求导数得y '=sec 2(x +y )⋅(1+y '),1)(c o s 1)(s e c 1)(s e c 222-+=+-+='y x y x y x y 222211)(s i n )(c o s )(s i n y y x y x y x --=+-+++=, 52233)1(2)11(22y y y y y y y +-=--='=''. 5用对数求导法求下列函数的导数:54)1()3(2+-+=x x x y ; 解 两边取对数得)1l n (5)3l n (4)2l n (21ln +--++=x x x y , 两边求导得1534)2(211+---+='x x x y y , 于是 ]1534)2(21[)1()3(254+--+++-+='x x x x x x y6求下列参数方程所确定的函数的二阶导数22dxy d : (1) ⎩⎨⎧==t b y t a x sin cos ; 解t ab t a t b x y dx dy t t cot sin cos -=-=''=, t a b t a t a b x y dx y d t t x 32222sin sin csc )(-=-='''= 7求下列函数的微分:(1)12+=x xy ;(2) y =ln 2(1-x );解(1)因为1)1(111122222++=++⋅-+='x x x x xx y , 所以dx x x dy 1)1(122++=. (2)dx x x dx x x dx x dx y dy )1ln(12])1(1)1ln(2[])1([ln 2--=--⋅-='-='= 8. 求下列函数的二阶导数:(1)y =cos 2x ⋅ln x ;(2)21x x y -=. 解 (1)xx x x x x x x x y 1cos ln 2sin 1cos ln sin cos 222⋅+⋅-=⋅+⋅-=', 221c o s 1s i n c o s 212s i n ln 2cos 2x x x x x x x x x y ⋅-⋅-⋅-⋅-='' 22c o s 2s i n 2ln 2cos 2xx x x x x --⋅-=. (2)232222)1(111--=---⋅--='x xx xx x y52252)1(3)2()1(23x x x x y -=-⋅--=''-. 9 讨论函数⎪⎩⎪⎨⎧=≠=0 00 1sin )(x x x x x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim 000→→→=-=-不存在, 所以f (x )在x =0处不可导.. 第三章习题3-11.不用求出函数f (x )=(x -1)(x -2)(x -3)(x -4)的导数,说明方程f '(x )=0有几个实根, 并指出它们所在的区间.解 由于f (x )在[1, 2]上连续, 在(1, 2)内可导, 且f (1)=f (2)=0, 所以由罗尔定理可知, 存在ξ1∈(1, 2), 使f '(ξ1)=0. 同理存在ξ2∈(2, 3), 使f '(ξ2)=0; 存在ξ3∈(3, 4), 使f '(ξ3)=0. 显然ξ1、ξ2、ξ 3都是方程f '(x )=0的根. 注意到方程f '(x )=0是三次方程, 它至多能有三个实根, 现已发现它的三个实根, 故它们也就是方程f '(x )=0的全部根.2. 证明恒等式: 2arccos arcsin π=+x x (-1≤x ≤1). 证明 设f (x )= arcsin x +arccos x . 因为01111)(22≡---='x x x f , 所以f (x )≡C , 其中C 是一常数.因此2arccos arcsin )0()(π=+==x x f x f , 即2arccos arcsin π=+x x . 3 若方程a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x =0有一个正根x 0, 证明方程a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.证明 设F (x )=a 0x n +a 1x n -1+ ⋅ ⋅ ⋅ + a n -1x , 由于F (x )在[0, x 0]上连续, 在(0, x 0)内可导, 且F (0)=F (x 0)=0, 根据罗尔定理, 至少存在一点ξ∈(0, x 0), 使F '(ξ)=0, 即方程 a 0nx n -1+a 1(n -1)x n -2 + ⋅ ⋅ ⋅ +a n -1 =0 必有一个小于x 0的正根.4 若函数f (x )在(a , b )内具有二阶导数, 且f (x 1)=f (x 2)=f (x 3), 其中a <x 1<x 2<x 3<b , 证明:在(x 1, x 3)内至少有一点ξ, 使得f ''(ξ)=0.证明 由于f (x )在[x 1, x 2]上连续, 在(x 1, x 2)内可导, 且f (x 1)=f (x 2), 根据罗尔定理, 至少存在一点ξ1∈(x 1, x 2), 使f '(ξ1)=0. 同理存在一点ξ2∈(x 2, x 3), 使f '(ξ2)=0. 又由于f '(x )在[ξ1, ξ2]上连续, 在(ξ1, ξ2)内可导, 且f '(ξ1)=f '(ξ2)=0, 根据罗尔定理, 至少存在一点ξ ∈(ξ1, ξ2)⊂(x 1, x 3), 使f ''(ξ )=0. 5 证明下列不等式: (1)|arctan a -arctan b |≤|a -b |; (2)当x >1时, e x >e ⋅x .证明 (1)设f (x )=arctan x , 则f (x )在[a , b ]上连续, 在(a , b )内可导, 由拉格朗日中值定理, 存在ξ∈(a , b ), 使f (b )-f (a )=f '(ξ)(b -a ), 即)(11arctan arctan 2a b a b -+=-ξ,所以||||11|arctan arctan |2a b a b a b -≤-+=-ξ, 即|arctan a -arctan b |≤|a -b |.(2)设f (x )=e x , 则f (x )在区间[1, x ]上连续, 在区间(1, x )内可导, 由拉格朗日中值定理, 存在ξ∈(1, x ), 使f (x )-f (1)=f '(ξ)(x -1), 即 e x -e =e ξ (x -1). 因为ξ >1, 所以e x -e =e ξ (x -1)>e (x -1), 即e x >e ⋅x .习题3-21. 用洛必达法则求下列极限:(2)xe e x x x sin lim 0-→-;(6)n n m m a x ax a x --→lim ; (7)xx x 2tan ln 7tan ln lim 0+→;(11)x x x 2cot lim 0→;(13))1112(lim 21---→x x x ;(14)x x x a )1(lim +∞→;(15)x x x sin 0lim +→;(16)x x x tan 0)1(lim +→. 解(2)2cos lim sin lim 00=+=--→-→xe e x e e x x x x x x . . (6)n m n m n m a x n n m m a x a n m namx nx mx a x a x -----→→===--1111lim lim . (7)22sec 2tan 177sec 7tan 1lim 2tan ln 7tan ln lim 2200⋅⋅⋅⋅=+→+→x xx x x x x x177s e c 22s e c l i m 277t a n 2t a n l i m 272200=⋅⋅==+→+→x x x x x x .(11)2122sec 1lim 2tan lim2cot lim 2000=⋅==→→→x x x x x x x x .(13)2121lim 11lim 1112lim 12121-=-=--=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x . (14)因为)1ln(lim )1(lim x ax x x x exa +∞→∞→=+,而 221)(11lim1)1ln(lim )1(ln(lim xx a x a x x a x a x x x x --⋅+=+=+∞→∞→∞→ a a a x ax x x ==+=∞→∞→1lim lim ,所以 a x ax x x x e exa ==++∞→∞→)1l n (lim )1(lim . .(15)因为x x x x x e x ln sin 0sin 0lim lim +→+→=,而 x x x x x x x x x x c o tc s c 1lim csc ln lim ln sin lim 000⋅-==+→+→+→0c o ss i n lim 20=-=+→x x x x ,所以 1lim lim 0ln sin 0sin 0===+→+→e e x x x x x x .(16)因为x x x x e xln tan tan 0)1(lim -+→=, 而 xx x x x x x x x 2000c s c 1limcot ln lim ln tan lim -==+→+→+→ 0s i n l i m 20=-=+→xx x , 所以 1lim )1(lim 0ln tan 0tan 0===-+→+→e e x x x x x x .习题3-31. 按(x -4)的幂展开多项式x 4-5x 3+x 2-3x +4. 解 设f (x )=x 4-5x 3+x 2-3x +4. 因为 f (4)=-56,f '(4)=(4x 3-15x 2+2x -3)|x =4=21, f ''(4)=(12x 2-30x +2)|x =4=74,f '''(4)=(24x -30)|x =4=66, f (4)(4)=24, 所以4)4(32)4(!4)4()4(!3)4()4(!2)4()4)(4()4()(-+-'''+-''+-'+=x f x f x f x f f x f =-56+21(x -4)+37(x -4)2+11(x -4)3+(x -4)4.2. 求函数f (x )=ln x 按(x -2)的幂展开的带有佩亚诺型余项的n 阶泰勒公式. 解 因为f '(x )=x -1, f ''(x )=(-1)x -2, f '''(x )=(-1)(-2)x -3 , ⋅ ⋅ ⋅ ,nn nn x n x n x f )!1()1()1( )2)(1()(1)(--=+-⋅⋅⋅--=--;kk k k f 2)!1()1()2(1)(--=-(k =1, 2, ⋅ ⋅ ⋅, n +1),所以])2[()2(!)2( )2(!3)2()2(!2)2()2)(2()2(ln )(32n n n x o x n f x f x f x f f x -+-+⋅⋅⋅+-'''+-''+-'+=])2[()2(2)1( )2(231)2(221)2(212ln 13322n n n n x o x n x x x -+-⋅-+⋅⋅⋅--⋅+-⋅--+=-.习题3-41确定下列函数的单调区间: (1) y =2x 3-6x 2-18x -7; (2))0())(2(32>--=a x a a x y ;解 (1) y '=6x 2-12x -18=6(x -3)(x +1)=0, 令y '=0得驻点x 1=-1, x 2=3. 列表得可见函数在(-∞, -1]和[3, +∞)内单调增加, 在[-1, 3]内单调减少.x (-∞, -1) -1 (-1, 3) 3 (3, +∞) y ' + 0 - 0 + y↗↘↗(2) 32)()2(3)32(x a a x a x y ----=', 驻点为321a x =, 不可导点为22a x =, x 3=a .列表得x )2,(a-∞2a )32 ,2(a a 32a ) ,32(a aa (a , +∞) y ' + 不存在 + 0 - 不存在 + y↗↗↘↗可见函数在)2 ,(a -∞, ]32 ,2(a a , (a , +∞)内单调增加, 在) ,32[a a 内单调减少.2. 证明下列不等式: (1)当x >0时, x x +>+1211; (2)当x >0时, 221)1ln(1x x x x +>+++; (3)当20π<<x 时, sin x +tan x >2x ;(4)当20π<<x 时, 331tan x x x +>;(5)当x >4时, 2x >x 2;证明 (1)设x x x f +-+=1211)(, 则f (x )在[0, +∞)内是连续的. 因为x x f +-='12121)(01211>+-+=xx , 所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01211>+-+x x , 也就是 x x +>+1211.(2)设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为0)1l n (1)11(11)1l n ()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x xx f ,。

大一专科高等数学教材习题

大一专科高等数学教材习题

大一专科高等数学教材习题本文基于大一专科高等数学教材,针对其中的习题进行探讨和解答。

我们将以“问题+解答”的形式来展开讨论,从而全面覆盖各个章节的习题内容。

希望通过本文的阅读,能够给大家带来对高等数学习题的更深入理解和掌握。

1. 导数和微分1.1 问题:求函数f(x)=3x²-2x+1的导数。

解答:根据导数的定义,我们可以分别对函数中的各项进行求导。

对于3x²,其导数为6x;对于-2x,其导数为-2;对于常数1,它的导数为0。

因此,函数f(x)的导数为f'(x) = 6x - 2。

1.2 问题:求函数f(x)=√x的微分。

解答:首先,我们需要将函数f(x)写成指数形式,即f(x) = x^(1/2)。

根据微分的定义,微分df(x)可以通过导数f'(x)乘以dx来表示。

因此,对于函数f(x)=√x,它的微分df(x) = (1/2)x^(-1/2)dx = (1/2√x)dx。

2. 曲线的切线与法线2.1 问题:求曲线y=x³+2x的一条切线方程,并求此切线与曲线的交点。

解答:要求曲线的切线方程,首先需要求出曲线在某一点的斜率。

根据导数的定义,我们对函数y=x³+2x进行求导得到y'=3x²+2。

切线的斜率即为该点的导数值。

假设所求切线经过点(x0, y0),那么其斜率为f'(x0) = 3x0²+2。

接下来,我们可以根据切线的斜率和经过的点(x0, y0)来建立切线方程。

切线方程的一般形式为y-y0 = k(x-x0),其中k为斜率。

代入切线的斜率和点的坐标,我们得到切线方程为y-(x0³+2x0) = (3x0²+2)(x-x0)。

为了求出切线与曲线的交点,我们可以将切线方程中的y替换为曲线方程中的y,并解方程组y=x³+2x和y-(x0³+2x0) = (3x0²+2)(x-x0)。

高数习题课1

高数习题课1
习题课
一. 例题分析 二.目标测验题 三. 答案 五 . 求导数举例
一,例题分析
1 , 求g ( x ) = f ( x + a ) + 例1 设f ( x ) = ln( 3 x ) + 2 49 x
f ( x a )的定义域(a > 0).
解 当3 x > 0且49 x 2 > 0时,f ( x )有意义.即f ( x )
1. lim x ( x + 1 x ).
2 x →∞
3+ x 2. lim ( 6+ x ) . x →∞
x 1 2
3. lim
n→ ∞
x ( 1 cos x ) ( 1 e x ) sin x 2 x →0
.
4. lim(1+ + ) .
n→∞ 1 n 1 n n2
5. lim ( n31+1 + n31+ 2 + + n31+ n ).
6. lim
ln( x0 + x )+ ln( x0 x ) 2 ln x0 x2 x →0
( x0 > 0).
7. lim [sin ln( x + 1) sin ln x ].
x → +∞
设f ( x) = lim nxnx+1 , 求f ( x)的表达式, 并讨论 3 (四), 四, x →∞
= f ( x ),
所以此时 f ( x )也为奇函数 .
例3
设a, x0均为正常数, 数列
xn = 1 ( xn1 + xna1 ), n = 1, 2 , 2
求 lim xn .

高职高专层次高等数学习题集及答案-函数

高职高专层次高等数学习题集及答案-函数

第一章 函数 第一节 函数及其性质思考题:1. 确定一个函数需要有哪几个基本要素?答:需要两个基本要素,分别为对应规则和函数的定义域. 2. 思考函数的几种特性的几何意义.答:①有界性反映了函数图像是否在平行于x 轴的两条直线之间.②单调性反映了函数图像沿x 轴正方向的升降. ③奇偶性反映了函数图像的对称性:奇函数图像关于原点对称; 偶函数图像关于y 轴对称. ④周期性反映了函数图像是否重复出现.3.直接函数)(x f y =,其直接反函数为x =)(y ϕ,其矫形反函数为y =)()(1x x f ϕ=-.(1)x =)(y ϕ与)(x y ϕ=是否为同一函数? (2))(),(),(1x fy y x x f y -===ϕ在同一坐标系中的几何表现是什么?答:(1)是同一函数; (2))(x f y =与)(y x ϕ=在同一坐标系中的图像相同,)()(1x f y x f y -==与 在同一坐标系中的图像关于直线x y =对称.习作题:1.设自变量{}4,3,2,1∈x ,判断下列数学结构哪些是函数?哪些不是函数?为什么?(1)11204321:-↓↓↓↓f ;答:是,因为对任意x ∈{1,2,3,4}按规则f 有惟一的y 与之对应.(2)11114321:↓↓↓↓ϕ;答:是,因为对任意x ∈{1,2,3,4}按规则ϕ有惟一的y 与之对应.(3)4103214321:↓↓↓↓↓y ;答:不是.因为对x = 1 ∈{1,2,3,4}有2=y 与4=y 两个值与之对应.(4)3214321:↓↓↓h . 答:不是.因为对4=x ∈{1,2,3,4}没有y 值与之对应.2. 一位旅客住在旅馆里,图1—5描述了他的一次行动,请你根据图形给纵坐标赋予某一个物理量后,再叙述他的这次行动.你能给图1—5标上具体的数值,精确描述这位旅客的这次行动并用一个函数解析式表达出来吗?答:设纵坐标y 为离开旅馆的距离,时间为t ,则图1—5可描述为:此旅客离开旅馆出外办事,一件事办完后,又回到旅馆,休息一段时间然后再离开旅馆. 标明具体数据如下图所示,设距离y 的单位为 km ,时间t 的单位为h ,则这位旅客的这次行动可描 述为:他以2 km/h 的速度出外办事行走1h 到达办事 处,到达办事处,用1h 办完一件事,以同样的速度 回到旅馆休息1h ,又以同样的速度离开旅馆.行动用函数解析式表达如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<≤<+-≤<≤≤=.4,82,43,0,32,62,21,2,10,2t t t t t t t t y第二节 初等函数思考题:任意两个函数是否都可以复合成一个复合函数?你是否可以用例子说明? 答:不是.例如:u y ln =与||x u -=两个函数就不可以复合成一个复合函数.习作题:1. 设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z , ∴ )(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z . 2. 设)(x f =x-11,求)]([x f f ,{})]([x f f f . 解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).。

高数上1-习题课

高数上1-习题课

lim f ( x) A 或
x x0
f ( x) A(当x x0 )
" "定义 0, 0,使当0 x x0 时, 恒有 f (x) A .
左极限 0, 0,使当x0 x x0时, 恒有 f (x) A .
记作 lim f ( x) A 或 x x0 0
两个重要 极限
等价无穷小 及其性质
无穷小 的性质
唯一性
求极限的常用方法
极限的性质
1、极限的定义
定义 如果对于任意给定的正数(不论它多么
小),总存在正数N ,使得对于n N 时的一切xn ,不
等式 xn a 都成立,那末就称常数a 是数列xn
的极限,或者称数列 xn 收敛于a ,记为
lim
n
2、函数的性质
(1) 单值性与多值性:
若对于每一个x D ,仅有一个值y f ( x) 与之对 应,则称 f ( x)为单值函数,否则就是多值函数.
y
y
( x 1)2 y2 1
y ex
o
x
o
x
(2) 函数的奇偶性:
设D关于原点对称, 对于x D,有
f ( x) f ( x) 称f ( x)为偶函数;
f (x) f (x)
y
称f ( x)为奇函数;
y
y x
y x3
o
x
偶函数
o
x
奇函数
(3) 函数的单调性:
设函数f(x)的定义域为D,区间I D,如果对于区间I上
任意两点 x1及 x2,当 x1 x2时,恒有:
(1) f (x1) f (x2 ),则称函数 f (x) 在区间I上是单调增加的; 或(2) f (x1) f (x2 ), 则称函数 f (x)在区间I上是单调递减的;

大学高数第一章例题

大学高数第一章例题

2

x
lim
1 x
0,
| arctan
x |
- 12 -

2
. lim
a rcta n x x
x
0
习题课(一)
(3)
第 一 章 函 数 极 限 连 续
lim
sin 2 x x 2 2
x 0

原式
lim
(
x 2
2 ) sin 2 x
x 0
x 22
n
lim x n
N 0,
M 0,
使得当 n
N
时, 恒有
xn M
成立, 则称 x n 是 n

时的负无穷大量
-7-
习题课(一)
(2) lim f ( x ) 2
x 3
第 一 章 函 数 极 限 连 续
0, 0,
使当
0 x 3
第 一 章 函 数 极 限 连 续
x n x n1 x n1 ,
2
证明 lim
n
xn
存在, 并求 lim 解 由于 x 1
n
xn .
2
x 0 x 0 x 0 ( 1 x 0 ),
0 x 0 1,
所以 0
x1 1 .
- 11 -
习题课(一)
(1)
第 一 章
x 8
lim
1 x 3 2
3
x
( 1 x 3 )(
1 1
1
2

原式
x 8
lim
1 x 3 )( 4 2 x 3 x 3 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录 上页 下页 返回 结束
)、重积分计算的基本技巧 (二)、重积分计算的基本技巧
(1) 交换积分顺序 (2) 利用对称性 (3) 消去被积函数绝对值符号 利用对称性 (4)被积函数为 时巧用其几何意义 被积函数为1时巧用其几何意义 被积函数为 分块积分法
∫∫ dxdy = D的面积 D
目录
上页
下页
积分后再用 代替 u, 便得原方程的通解. 便得原方程的通解
目录 上页 下页 返回 结束
)、一阶线性方程 三)、一阶线性方程
一阶线性微分方程的标准形式: 一阶线性微分方程的标准形式: 的标准形式
dy + P( x) y = Q( x) dx dy + P( x) y = 0 1. 解齐次方程 dx
垂直: 平行: s1 ×s2 = 0
s1 ⋅ s2 夹角公式: cosϕ = s1 s2
m m2 + n1n2 + p1 p2 = 0 1 m n1 p1 1 = = m 2 n 2 p2
目录
上页
下页
返回
结束
面与线间的关系 平面: Ax + By + Cz + D = 0, n = (A, B, C)
目录
上页
下页
返回
结束
轴和点( 的平面方程. 例3 求通过 x 轴和点 -3, 1, 2) 的平面方程 例4 设平面过原点及点 (6,−3, 2) ,且与平面 垂直,求此平面方程. 4 x − y + 2 z = 8 垂直,求此平面方程 例5. 求与两平面 x – 4 z =3 和 2 x – y –5 z = 1 的交线 平行, 且 过点 (–3 , 2 , 5) 的直线方程 平行 的直线方程.
数之和, 数之和, 如 y′′ + P( x) y′ + Q( x) y = f1 ( x) + f2 ( x)
* * 而 y1 与 y2分别是方程, 分别是方程,
y′′ + P( x) y′ + Q( x) y = f1 ( x) y′′ + P( x) y′ + Q( x) y = f2 ( x)
四、关于多元函数微分学应用的题类
目录 上页 下页 返回 结束
xy + 1 − 1 【例1】求 lim 】 . x →0 xy y →0 sin( xy ) 【例2】 】 求 lim ( x , y )→ ( 0 , 2 ) x
【例3】 】
( x , y )→(0,1)
lim (1 + xy )
1 x
一)、可分离变量微分方程
例 1 求微分方程
例2 例3
dy = 2xy 的通解. dx
目录
上页
下页
返回
结束
二)、齐次方程 )、齐次方程
形如 的方程叫做齐次方程 的方程叫做齐次方程 .
y 解法: 解法 令 u = , x
du = ϕ(u) 代入原方程得 u + x dx du dx = 分离变量: 分离变量 ϕ(u) −u x du dx =∫ 两边积分, 两边积分 得 ∫ ϕ(u) −u x
目录
上页
下页
返回
结束
第九章 多元函数微分法及其应用 习题课
【熟练掌握本章以下几个概念之间的关系】 熟练掌握本章以下几个概念之间的关系】 本章以下几个概念之间的关系
偏导数存在 偏导数连续
极限存在
可 微
连 续
极限存在
一、关于多元函数极限的题类 关于偏导数、 二、关于偏导数、全微分计算的题类 三、关于复合函数隐函数求导的题类
【例8】求曲线 x = t, y = t , z = t 在点 M (1, 1, 1) 处的切线
2 3
方程与法平面方程. 方程与法平面方程
【例 9】将正数 12 分成三个正数 x , y , z 之和 使 】 为最大. 得 u = x 3 y 2 z 为最大.
目录
上页
下页
返回
结束
第十章 重积分
习题课
y′′ + P( x) y′ + Q( x) y = 0
的两个解, 的两个解 则 y = C1 y1( x) + C2 y2( x) 也是该方程的解. 叠加原理1) 也是该方程的解 (叠加原理 叠加原理 【定理 2】 是二阶线性齐次方程的两个线 性无关特解, 性无关特解 则 y = C1 y1( x) + C2 y2( x) 是该方程的通解. 通解结构1) 数) 是该方程的通解 (通解结构 )
A A + B B2 + C C2 = 0 1 2 1 1 A B C 1 = 1= 1 A2 B2 C2
目录
上页
下页
返回
结束
线与线的关系
x 直线 L : − x1 = y − y1 = z − z1 , s = (m , n , p ) 1 1 1 1 1 m n1 p1 1 x − x2 y − y2 z − z2 = = , s2 = (m2, n2, p2 ) 直线 L2: m2 n2 p2
重根, λ 为特征方程的 k (=0, 1, 2) 重根 = 则设特解为
y* = x kQm( x)eλ x
【例1】 】
0 k = 1 2
λ不是根 λ是单根 , λ是重根
的一个特解. 的一个特解
目录
上页
下页
返回
结束
2)以 = C1ex + C2e2x为通解, C1、 2为任意常数)Βιβλιοθήκη y 为通解, C 为任意常数) (
的特解, 就是原方程的特解. 的特解, 那么 y + y 就是原方程的特解.
* 1 * 2
目录 上页 下页 返回 结束
六)二阶常系数齐次线性方程的标准形式
y′′ + py′ + qy = 0
y′′ + py′ + qy = 0
特征根的情况
实根 r1 实根 r1 复根 r
r + pr + q = 0
2
通解的表达式
≠ r2 = r2
1, 2
= α ± iβ
y = C1e + C 2 e rx y = (C1 + C 2 x )e y = eαx (C1 cos βx + C 2 sin βx )
r1 x r2 x
2
目录
上页
下页
返回
结束
的通解. 【例1】求方程 y′′ − 2 y′ − 3 y = 0的通解 【例2】求解初值问题 】
d2s ds +s=0 2 +2 dt dt ds s t=0 = 4 , = −2 dt t = 0
【例3】 求方程 y′′ + 2y′ + 5y = 0 的通解 】 .
目录
上页
下页
返回
结束
待定系数法) 七)二阶常系数非齐次线性方程 (待定系数法)
1. y′′ + p y′ + q y = P ( x) eλ x m
高数(高职) 高数(高职)习题课 第七章 微分方程 习题课
一、一阶微分方程求解
1. 一阶标准类型方程求解 可分离变量方程 三个标准类型 齐次方程 线性方程 关键: 关键 辨别方程类型 , 掌握求解步骤 2. 二阶微分方程求解 二阶常系数齐次 二阶常系数非齐次 特征方程法 待定系数法
目录 上页 下页 返回 结束
xy 【例 4】设 z = e 求 dz。 】 。
【例 5】 设 z = u2 + v 2 ,而 u = x + y , v = x − y , 】
∂ z ∂z 求 和 . ∂x ∂y
目录 上页 下页 返回 结束
d2y dy y 2 2 【例 7】 已知 ln x + y = arctan ,求 】 . dx 2 x dx
( λ 1 , λ 2 不 为0 ) 全
目录
上页
下页
返回
结束
(2)点 M0(x0, y0, z0) 到平面 Π :A x+B y+C z+D = 0 的距离为
M0
d
r n
Π
M1
目录
上页
下页
返回
结束
掌握常用的曲面方程:球面,椭球面, 例1. 掌握常用的曲面方程:球面,椭球面,锥 面,抛物面等 例2. 求坐标面 xOy 上的双曲线 轴旋转一周所生成的旋转曲面方程. 轴和 y 轴旋转一周所生成的旋转曲面方程 分别绕 x
目录
上页
下页
返回
结束
【定理 3】 设y *( x) 是二阶非齐次方程 】 是二阶非齐次 非齐次方程 ① 是相应齐次方程的通解 齐次方程的通解, 特解, 的一个特解 的一个特解 Y (x) 是相应齐次方程的通解 则
y = Y( x) + y *( x)
是非齐次方程的通解 .

定理 4
设非齐次方程的右端 设非齐次方程的右端 f (x)是几个函
目录 上页 下页 返回 结束
)、可降阶微分方程的解法 四)、可降阶微分方程的解法 —— 降阶法 逐次积分
令 y′ = p(x) , 则 y′′ = dp dx
dp 令 y′ = p(y) , 则y′′ = p dy
目录
上页
下页
返回
结束
五)解的结构
定理1】若函数 y1( x), y2( x) 是二阶线性齐次方程 【定理 】.
∫∫ dxdy D
D
σ = ∫∫ ρdρdθ
D
4求由曲面所围立体的体积 求由曲面所围立体的体积
V = ∫∫ f ( x , y )dxdy
∂ z 2 ∂z 2 1 + ( ) + ( ) dxdy ∂x ∂y
相关文档
最新文档