运动生物力学
运动生物力学

运动生物力学运动生物力学:是生物力学的一个重要分支,是研究体育运动中人体机械规律的科学。
运动生物力学的主要任务:提高运动能力,预防运动损伤运动生物力学的研究方法分为测量方法和分析方法,其中测量方法可以分为运动学测量、动力学测量、人体测量、肌电图测量运动学测量的参数:(角)位移、(角)速度、(角)加速度动力学测量的参数:主要界定在力的测量方面。
人体测量是用来测量人体环节的长度、围度及,(质量、转动惯量等)肌电图测量是用来测量肌肉收缩时的神经支配特性。
动作结构:运动时所组成的各动作间相互联系、相互作用的方法或顺序动作结构的特征主要表现在运动学和动力学,运动学特征指完成动作时的时间、空间和时空方面表现出来的形式或外貌上的特征;动力学的特征指决定动作形式的各种力(力矩)相互作用的形式和特点,包括力、惯性和能量特征。
运动学特征:时间特征、空间特征和时空特征时间特征反映的是人体运动动作和时间的关系:半蹲起立和深蹲起立空间特征是指人体完成运动动作时人体各环节随时间变化所产生的空间位置改变状况:下肢和躯干等空间移动轨迹时空特征指人体完成运动动作时人体位置变化的快慢情况。
动力学特征包括,力的特征、能量特征和惯性特征能量特征:人体运动时完成的功、能和功率方面的表现形式。
惯性特征:人体运动中人的整体、环节以及运动器械的质量、转动惯量对运动动作所具有的影响。
动作系统:大量单一动作按一定规律组成为成套的动作技术,这些成套的动作技术叫做动作系统。
人体基本运动动作形式可主要归纳为推与拉动作、鞭打动作、缓冲和蹬伸动作及扭转、摆动和相向运动等动作形式上肢基本运动动作形式——推(铅球)、拉(单双杠)、鞭打(标枪)★人体基本运动下肢基本运动动作形式——缓冲、蹬伸、鞭打动作形式全身基本运动动作形式——摆动、躯干扭转、相向运动人体的运动是由运动器系的机能特征所决定的,即以关节为支点,以骨为杠杆,在肌肉力的牵拉下绕支点转动,各肢体环节运动的不同组合使人完成千变万化的动作。
运动生物力学

运动生物力学选择判断共45分简答55分第一章.运动生物力学学科概述1·运动生物力学中的生物通常是指有生命活动的人体2·运动生物力学研究应以体育动作为核心第二章.人体生物力学参数3·人体惯性参数是指人体整体及环节的质量、质心(重心)位置、转动惯量及转动半径。
4·质心是物质的质量中心,重心是物体各组成部分所受重力的合力作用点。
5·人体环节质心(重心)在各环节中几乎都有一个固定的位置。
6·运动学参数包括位移、角位移、速度、角速度、加速度、角加速度等7·内力与外力的概念是相对的。
如何确定某个力是内力或者是内力,取决于人们选取的研究对象。
8·从力的独立性原理可以推出物体在空间运动时,在各个方向上也同时独立保持自己运动的性质。
第三章.骨、关节、肌肉的生物力学9.骨对外力作用的反应类型并举例:(1)拉伸(单杠悬垂)(2)压缩(举重举起后上肢和下肢骨的受力)(3)弯曲(负重弯举)(4)剪切(小腿制动)10·从生物力学的观点来看,一个合理的力学环境将有利于骨折的愈合和重建,有利于生理功能的恢复。
因此,在骨折的治疗的每一个阶段,都应该充分考虑其所处的力学环境及其对骨重建的影响。
11.疲劳骨折的产生不仅与载荷的大小和循环次数有关,而且还与载荷的频率有关。
12·关节的润滑机制主要与关节软骨和关节液有关。
13·测量结果表明,当外力作用的时间在0·01s左右时,关节液是同时具有流动性和弹性的粘弹性体,像橡皮垫一样,缓冲关节面之间的碰撞。
当作用时间大于0·01s时,关节液像润滑液一样,使关节灵活活动。
如果外力的作用时间很短,关节液不再表现为液体或弹性体,而是呈现出“固体”的特点,对碰撞时的冲力不再起缓冲的作用。
如打球时的手指挫伤。
第四章.运动生物力学原理14.惯性力的方向与非惯性系的加速度方向相反15·(判断)惯性力和相互作用力的区别是:(1)惯性力不是物体间的相互作用,不存在惯性力的反作用力。
运动生物力学

运动生物力学运动生物力学名解:●运动生物力学的定义:运动生物力学是研究人体运动力学规律的科学●静载荷:静载荷是逐渐加于物体上的,其特点是在这种载荷作用下,物体各部分不产生加速度或产生可以忽略的很小的加速度。
●动载荷:动载荷所引起的加速度显著。
动载荷又分冲击载荷和交变载荷。
●载荷的表现形式:拉伸、压缩、弯曲、剪切、扭转和复合载荷。
●应变:是量度物体形变程度的量,分为线应变和剪应变。
●应力:物体在受到外力作用而变形时,其内部各质点间的相互作用力发生变化。
这种由于外力作用而引起的固体内各质点之间相互作用力的改变量,简称为内力。
单位面积上的内力称为平均应力,当面积趋近于0时平均应力的极限称为应力。
单位面积上的内力称为平均应力,当面积趋近于0时平均应力的极限称为应力。
●强度:结构破坏前所能承受的变形;结构破坏前所能承受的载荷;结构在破坏前所能贮存的能量;●刚度:弹性范围内曲线的斜率表示结构的刚度。
考虑力量和速度的组合效应。
●生物运动偶两个相邻骨环节之间的可动连接叫做生物运动偶。
●生物运动链:生物运动偶的串联式连接叫做生物运动链。
●运动的自由度:一个物体在空间运动,描述物体运动状态的独立变量的个数,叫做这个物体运动的自由度。
●约束:运动受到限制,称为约束。
每增加一个约束就减少一个自由度。
●生物运动偶:两个相邻骨环节之间的可动连接叫做生物运动偶。
●生物运动链取决于生物运动偶,生物运动偶的运动能力又取决于关节的构造和肌肉的控制作用。
●动作结构概念:每个完整的特定动作,都有固有的特点,各个动作成分之间都有着固定的联系,这是一个动作区别于另一个动作的特征,动作的这种固有特点和固定内在联系叫做动作结构。
动作结构包括运动学特征和动力学特征。
●空间特征是指位置坐标,运动轨迹,关节角度等。
●运动轨迹:动点随着时间在空间连续占有的几何位置。
●时间特征:是指运动开始时刻,结束时刻,运动持续的时间,动作的频率和节律。
●节律:动作中各个动作成分所占的时间比例。
运动生物力学

运动生物力学
1. 引言
运动生物力学是研究生物体在运动过程中所受到的力学影响的学科,它结合了
生物学和力学学科的知识,旨在探讨生物体运动的原理、规律和机制。
通过研究运动生物力学,我们可以深入了解生物体在运动中的各种表现和现象,为优化运动表现、预防运动损伤等提供科学依据。
2. 运动生物力学的基本概念
2.1 生物体的运动学
生物体的运动学涉及到位置、速度、加速度等动力学参数的研究,通过测量生
物体在运动过程中的位置和速度变化,可以分析其运动状态和运动路径。
2.2 生物体的动力学
生物体的动力学研究探讨生物体在运动中所受到的各种力的作用及其相互关系,包括重力、惯性力、摩擦力等力的影响。
3. 运动生物力学的应用
3.1 运动损伤预防
通过运动生物力学的研究,可以分析生物体在不同运动过程中受到的力学影响,帮助人们设计合理的训练计划和器械,预防运动损伤的发生。
3.2 运动表现优化
运动生物力学可以帮助运动员和教练员分析和改善运动技术,优化运动表现,
提高运动成绩。
4. 运动生物力学的研究进展
近年来,随着技术的发展和研究手段的不断完善,运动生物力学领域取得了许
多重要的研究成果,包括生物体运动模拟、运动生物力学仿真等方面的创新研究。
5. 结论
运动生物力学作为一门跨学科的学科,不仅有助于深化我们对生物体运动机制
的理解,还为优化运动表现、预防运动损伤等提供了重要的理论支持。
相信随着研究的不断深入,运动生物力学将为人类运动健康和运动科学的发展做出更大的贡献。
运动生物力学11

运动生物力学
生物力学是研究生物体在运动过程中受力、运动学和运动动力学等方面的科学。
运动生物力学是在生物力学的基础上研究生物体运动的一门学科。
运动生物力学结合了生物学、物理学和数学等多学科知识,旨在深入了解生物体的运动规律和优化运动表现。
运动生物力学的基本概念
运动生物力学研究范围广泛,涉及到骨骼、肌肉、关节和神经等系统在运动中
的作用机制。
通过运动生物力学的研究,可以揭示生物体在运动时受到的作用力,理解肌肉和关节在运动中的协调配合以及运动过程中所消耗的能量等重要信息。
运动生物力学在运动训练中的应用
运动生物力学在运动训练中有着重要的应用价值。
通过运动生物力学分析运动
员的运动技术,可以找出技术中存在的问题,并为运动员提供改进建议,帮助其提高运动表现。
此外,运动生物力学也可用于设计运动装备,优化运动装备的性能,提高运动效率和安全性。
运动生物力学的未来发展
随着科学技术的不断发展,运动生物力学领域也在不断创新和完善。
未来,人
们可以通过虚拟现实和模拟技术等手段更准确地模拟生物体在运动中的各种参数,并利用大数据和人工智能等技术分析和优化运动过程。
运动生物力学将在运动科学和运动医学等领域继续发挥重要作用,为运动员提供更科学、更准确的训练和指导。
结语
运动生物力学作为一门交叉学科,为我们深入了解生物体运动规律和提高运动
表现提供了重要的理论和实践支持。
在未来的发展中,我们可以期待运动生物力学的进一步深化和广泛应用,为促进运动健康和提高人们的生活质量做出更大的贡献。
运动生物力学

运动生物力学一.基本概念:1、人体惯性参数:是指人体整体及环节的质量、质心(重心)位置、转动惯量及转动半径。
2、鞭打动作:人们把克服阻力或自体位移过程中,肢体依次加速与制动,使末端环节产生极大速度的动作形式成为鞭打动作。
3、力偶:是指一对大小相等、方向相反的平行力,如汽车司机两手作用于方向盘的力就是一个力偶。
4、转动惯量:是衡量物体(人体)转动惯性大小的物理量。
5、稳定角:是重力作用线和重心至支撑面相应边界的连线之间的夹角。
6、运动生物力学:是研究人体运动力学规律的科学,它是体育科学学科体系的重要组成部分。
7、图像解析:对运动员的技术进行拍摄完成后,将得到的影像资料进行数字化的处理,获取原始的运动学数据,这就是图像分析。
8、转动定律:刚体绕定轴转动时,转动惯量与角加速度的乘积等于作用于刚体的合外力矩。
9、人体重心:是人体各环节所受地球引力的合力作用点。
10、相向动作:是人体在腾空状态下动作主要表现的形式,如挺身式跳远空中动作过程、排球空中大力扣(发)球动作。
二、简答:1、试举体育实例说明影响人体转动惯量大小的因素有哪些?答:①质量大小。
质量越大转动变量越大。
如:要停住相同速度且相同体积的铅球与皮球,铅球不容易停住,是因为铅球的质量大,他的转动变量大,所以要改变他的状态就不容易。
②质量分布。
转轴一定时质量分布越远离转轴,转动惯量越大,反之则越小。
如:直体空翻比团身空翻难度大,是因为直体时,身体的质量分布离转轴较远,转动惯量较大。
③转轴的位置。
转轴离质心越远转轴惯性量越大,反之则越小。
如:同一运动员做单杠大回环和腹回环相比较,单杠大回环的转动惯量较大,是因为转轴位置的不同。
2、爆发式用力的体育项目中,为什么肌肉力量训练和速度训练等重要?答:爆发式用力的体育项目指的是在短时间内输出强大肌肉功率的体育项目而爆发力是指肌肉在工作时快速地将生物学能转化为机械能对外输出强大机械功率的能力。
即:P=F*V,有肌肉收缩力-----速曲线可知,当载荷为零时,即:F=0时,则肌肉收缩速度V最大,但此时功率很小;同样,当阻力增大到肌肉不能缩短时,则V=0,肌肉不做功,所以功率为零,根据希尔方程推论,只有当处于1/3。
运动生物力学

运动生物力学运动生物力学是运用生物学、物理学、力学等知识研究动物运动过程的科学,其研究范围涵盖体育运动、机器人技术、医学康复等多个领域。
运动生物力学的主要目的是通过研究运动过程中产生的各种力、角度、速度等参数,揭示动物运动的本质规律,为人类创造更加安全高效的运动方式提供科学依据。
体育运动中的运动生物力学体育运动是运动生物力学研究的重要领域。
通过对运动员的身体姿态、力量应用、稳定性等方面进行研究,可以分析运动员运动过程中的优点和缺点,进而指导运动员的训练和技术改进。
例如,在游泳运动中,通过运动生物力学研究,可以得出最佳的手臂划水、腿部踢水节奏等技术要领,改进运动员的技术,提高游泳成绩。
在跳远项目中,通过运动生物力学研究,可以得出最佳的起跳位置、起跳姿势等技术要领,改进运动员的技术,提高跳远成绩。
因此,运动生物力学在体育运动中的应用,不仅可以提高运动员的成绩,而且可以为教练员提供更加科学的指导方法。
机器人技术中的运动生物力学机器人技术是运动生物力学应用的另一个领域。
众所周知,很多自然界的生物的运动方式都十分独特而复杂。
通过研究这些生物的运动方式,可以得到许多启示,进而应用于机器人技术中,改进机器人的运动方式。
例如,通过运动生物力学研究蝴蝶的飞行方式,可以得到其飞行的关键因素,如翅膀的形状和翅膀的振动频率。
将这些启示应用于机器人的设计中,可以大大提高机器人的飞行能力。
在其他机器人方面,如四足机器人和仿人机器人,也是应用运动生物力学研究,使得机器人更加接近自然界的生物,拥有更加高效的运动方式。
医学康复中的运动生物力学医学康复是运动生物力学应用的另一个领域。
通过运动生物力学研究,可以通过研究运动过程中的各种力、角度、速度等参数分析人体的动作和无意识的姿态反射机制。
这些信息可以用于改进康复治疗,帮助受伤或残疾的人们进行恢复和康复。
因此,运动生物力学的研究应用相对于医学而言是十分重要的。
总结运动生物力学作为跨学科、交叉领域的科学,具有广泛的应用价值。
运动生物力学

运动生物力学一、名词解释1、力学:是研究物体机械运动规律的学科。
2、生物力学:是生物物理学的一个分支,是力学与生物学的交叉、渗透、融合而形成的一门学科。
3、运动生物力学:是研究人体运动力学规律的学科,它是体育科学学科体系的重要组成部分。
4、转动惯量:是衡量物体(人体)转动惯性大小的物理量。
用ω表示。
5、角速度:是指人体在单位时间内转过的角度。
用α表示。
6、加速度:指单位时间内人体运动速度的变化量,是描述人体运动速度变化快慢的物理量。
7、角加速度:表示人体转动时角速度变化的快慢,指转动中角速度的时间变化率。
8、三维坐标系:又称空间坐标,判断人体运动要从三个方向上看,由原点引出三条互相垂直的坐标轴,分别用Ox、Oy、Oz表示。
9、力:是物体间的相互作用。
10、力矩:使物体(人体)转动状态发生改变的原因,用M表示。
11、动量:用以描述物体在一定运动状态下具有的“运动量”。
12、动量矩:是转动惯量J和角速度ω的乘积。
用L表示。
13、冲量:物体(人体)运动状态的改变时力作用的结果,力在时间上的积累可用冲量I表示14、冲量矩:在研究转动问题时,把力矩在时间上的积累称为冲量矩,是力矩和时间的乘积。
15、均匀强度分布:在特定的加载条件下,材料的每一部分受到的最大应力相同。
16、适宜应力原则:骨骼对体育运动的生物力学适应性本质上是骨骼系统对机械力信号的应变。
有利于运动负荷及强度导致的骨应变会诱导骨量增加和骨的结构改善;应变过大则造成骨组织微损伤和出现疲劳性骨折,应变过小或出现废用则导致骨质流失过快。
17、骨折:骨的完整性或连续性中断者称为骨折。
是运动损伤中最常见的损伤之一18、关节软骨:是一种多孔的粘弹性材料,其组织间隙中充满着关节液。
19、渗透性:在恒定的外力下,软骨变形,关节液和水分子溶液从软骨的小孔流出,由形变引起的压力梯度就是引起关节液渗出的驱动力。
20、界面润滑:是依靠吸附于关节面表面的关节液分子形成的界面层作为润滑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释1、力学:是研究物体机械运动规律的学科。
2、生物力学:是生物物理学的一个分支,是力学与生物学的交叉、渗透、融合而形成的一门学科。
3、运动生物力学:是研究人体运动力学规律的学科,它是体育科学学科体系的重要组成部分。
4、转动惯量:是衡量物体(人体)转动惯性大小的物理量。
用ω表示。
5、角速度:是指人体在单位时间内转过的角度。
用α表示。
6、加速度:指单位时间内人体运动速度的变化量,是描述人体运动速度变化快慢的物理量。
7、角加速度:表示人体转动时角速度变化的快慢,指转动中角速度的时间变化率。
8、三维坐标系:又称空间坐标,判断人体运动要从三个方向上看,由原点引出三条互相垂直的坐标轴,分别用Ox、Oy、Oz表示。
9、力:是物体间的相互作用。
10、力矩:使物体(人体)转动状态发生改变的原因,用M表示。
11、动量:用以描述物体在一定运动状态下具有的“运动量”。
12、动量矩:是转动惯量J和角速度ω的乘积。
用L表示。
13、冲量:物体(人体)运动状态的改变时力作用的结果,力在时间上的积累可用冲量I表示14、冲量矩:在研究转动问题时,把力矩在时间上的积累称为冲量矩,是力矩和时间的乘积。
15、均匀强度分布:在特定的加载条件下,材料的每一部分受到的最大应力相同。
16、适宜应力原则:骨骼对体育运动的生物力学适应性本质上是骨骼系统对机械力信号的应变。
有利于运动负荷及强度导致的骨应变会诱导骨量增加和骨的结构改善;应变过大则造成骨组织微损伤和出现疲劳性骨折,应变过小或出现废用则导致骨质流失过快。
17、骨折:骨的完整性或连续性中断者称为骨折。
是运动损伤中最常见的损伤之一18、关节软骨:是一种多孔的粘弹性材料,其组织间隙中充满着关节液。
19、渗透性:在恒定的外力下,软骨变形,关节液和水分子溶液从软骨的小孔流出,由形变引起的压力梯度就是引起关节液渗出的驱动力。
20、界面润滑:是依靠吸附于关节面表面的关节液分子形成的界面层作为润滑。
21、压渗润滑:液体又接触面从运动方向的前缘挤出,在接触面的后缘由渗透压把压渗出的滑液再吸收回软骨内,这种机制能够有效地保存关节液及其位置,对抗外力。
22、收缩元:代表可以相对滑动的肌浆球蛋白和肌动蛋白纤维丝,其张力与它们之间的横桥数目有关。
23、串联弹性元:表示肌浆球蛋白纤维、肌动蛋白纤维、横桥、Z线以及结缔组织的固有弹性。
24、并联弹性元:表示静息状态下肌肉的力学性质。
25、肌力变化梯度:在很多体育运动中往往要求运动员在极短时间内发挥出最大力,一般称爆发力。
26、力的时间梯度:达到1/2最大力所需要的时间称为力的时间梯度。
27、力的速度梯度:力的最大值与所需时间的比值这个指标称为力的速度梯度。
28、摆动动作:指人体肢体为增加全身活动的协调性及增加动作效果而绕某一轴进行的一定幅度的转动。
29、鞭打动作:人们把这种在克服阻力或自体位移过程中,肢体依次加速与制动,使末端环节产生极大速度的动作形式称为鞭打动作。
30、相向动作:人体在腾空状态下,由于肌群的收缩使身体两部分同时向相反方向转动称为相向动作。
31、冲击动作:在体育动作中,通过扣、踢等击打方式使人体四肢动量向运动器械实现转移的动作形式。
32、缓冲动作:肢体末端环节与外界发生相互作用,肢体由伸展到屈曲以延长力的作用时减小冲击力作用或控制外界物体的动作,在运动技术中叫缓冲动作。
33、蹬伸动作:人体在有支撑的状态下,下肢各环节积极伸展,配合以正确的摆臂技术,给支撑面施加压力,已获得较大支撑反作用力的动作过程。
二、填空题1、人体骨骼的受力形式为:拉伸、压缩、弯曲、剪切、扭转、复合载荷。
2、骨结构的生物力学特征:各向异性、壳形(管形)结构、均匀强度分布。
3、长期锻炼可使骨密质部分增厚骨变粗4、关节主要由关节面及关节软骨、关节囊、关节腔构成,关节中充满了起润滑作用的关节液,关节的润滑机制主要与关节软骨和关节液有关。
5、关节软骨和关节液共同构成了粘弹性体6、当肌小节长度为 2.1um, F(肌力)达最大值当肌小节长度小于 2.0um F 随肌小节长度的增大F 上升,当肌小节长度大于 2.5um ,F随着肌小节长度的增大而减小7、生物力学的基础是能量守恒、动量守恒、质量守恒三大定律。
8、人体运动的动力源是肌肉力。
9、在骨折治疗过程中应遵循的一条生物力学原则是:充分利用生理功能状况下的力学状态去控制骨重建,而不要干扰或尽量减少干扰骨应承受的力学状态。
10、粘弹性体相对弹性体来说具有以下三个特征:应力松弛、蠕变、滞后。
11、人体运动都是在大脑皮层支配控制下,由人体各器官系统的协调活动实现的。
12、缓冲阶段完成起跳动作的下肢各肌群做退让性工作,在蹬伸阶段,肌肉做克制性工作。
13、使蹬伸动作不充分,延长踏跳时间,这往往是运动员在起跳前过分注意摆动动作,减弱了蹬地动作,或者是蹬伸动作的肌力不足引起的。
14、转动问题中的力学基础是转动定律和动量矩定理。
15、要加大肢体摆动的角加速度,可以从两个方面考虑问题:一是减小摆动肢体的转动惯量;二是增大肌力距。
16、人体处于腾空无支撑状态时,满足动量矩守恒的条件。
人体总动量矩的大小和方向均守恒。
17、动量矩在身体内的传递和转移主要是利用某些身体环节的突然制动,从而使这些环节原以获得的动量矩向相邻环节传递和转移。
18、当肌力距大于阻力距时,环节做克制性工作;当肌力距小于阻力距时,环节做退让性工作;当肌力距等于阻力距时,环节处于相对平衡状态,完成静力性工作。
19、增大肌力距可以通过增大肌力和增大肌力臂来实现。
20、当肌力距一定时,减小环节对轴的转动惯量,可以达到增大摆动角加速度的目的。
21、物体之间动量传递是通过它们的相互作用力的冲量实现的,人体在鞭打动作中动量矩的传递时通过相邻环节相互作用力产生的冲量距来实现的。
22、动量定理是矢量式,冲量的方向即动量增量的方向。
23、人体是一个复杂的生物系统,各系统之间的复杂体现在:各种参数是动态可变,人体的推测性,人体运动的不可重复性。
24、人体的六种基本动作:摆动动作、鞭打动作、相向动作、冲击动作、缓冲动作。
蹬伸动作。
三、简答1、论述运动生物力学的学科特点?答:(1)研究对象的复杂性;人体是一个不连续的多界面、多细胞结构、多功能的复杂神经反馈作用的,具有情感意识的复杂生物材料系统;复杂人体运动的探究通常从两个方面着手:一是研究人体运动的内部和外部运动行为;二是研究人体内部运动行为与外部运动行为之间的因果关系。
(2)研究方法的综合性;运动生物力学是机能解剖学、运动生理学和力学的交叉融合;运动生物力学的研究方法主要是牛顿力学的方法体系,但同时受到研究对象复杂性所导致的生物学因素所制约。
(3)测量技术的先进性;一是有自身比较完整的学科理论体系,二是有自身系统的研究方法。
(4)研究内容的实践性2、简述运动生物力学研究对象的复杂性?答:研究对象的复杂性;(1)人体是一个不连续的多界面、多细胞结构、多功能的复杂神经反馈作用的,具有情感意识的复杂生物材料系统;(2)人体运动是在内外动因作用下,由神经系统协调全身各器系,并通过运动器系的活动直接完成运动动作的。
(3)人体的意识也参与了运动过程的控制,是人体运动动作成为自觉地、有目的的、有意识的行为活动,通过人体行为系统的不断正、负反馈使动作达到准确精细的程度。
(4)复杂人体运动的探究通常从两个方面着手:一是研究人体运动的内部和外部运动行为;二是研究人体内部运动行为与外部运动行为之间的因果关系。
3、简述学习运动生物力学应树立和贯彻的三个基本观点?答:(1)系统分析的观点;人体局部与整体的协调,结构与功能的统一,个体与系统的依存是系统分析的基本观点。
(2)发展变化观点;一切事物都是发展变化的,人体的各种运动技术都是不断演变和不断优化的,九人体动作形式而言,一般都要经历泛化、分化到自动化的过程。
(3)对立统一的观点;即矛盾的观点,矛盾是事物发展的动力,表现在矛盾的同一性和斗争性相互作用中,同时又是在内因和外因的相互作用中实现的,内因是事物发展的根本,是第一位,外因是事物发展的条件,是第二位,通过内引起作用。
4、简述人体转动惯量的特点?答:人体的转动惯量与人体的质量、质量分布和转轴位置有关,对于人体转动,整个人体或环节相对于某轴的转动惯量越大,则对该轴的转动惯性也越大。
5、论述运动生物力学参数的特征?答:(1)非线性特征;人体内部运动行为包括肌肉、骨骼、关节、韧带的力学特性及其对整体运动的约束,神经、体液控制的生物反馈系统对运动的影响,人体功能代谢等。
人体外部运动行为包括人体运动的空间位移、运动状态以及运动状态的改变。
(2)相对性特征;首先表现为人体生物的极限指标不可计测和人体功能的极限无法获得,而只能获得极限指标的相对值。
其次是由于人体反馈网络控制下的生物信息的相对稳定性。
(3)复杂性特征;人体是一个复杂的生物巨系统,各系统之间的复杂体现在:各种参数是动态可变,还表现为构成该发杂系统中的各子系统间的关系复杂。
6、骨结构优化设计理论的主要内容?答:(1)均匀强度分布,即在特定的加载条件下,材料的为一部分受到的最大应力相同;(2)轨道结构理论(壳形结构),即只在力的承受及传递的路径上使用材料,而在其他地方是空洞。
7、骨的功能适应性原理?答:骨不仅在一些不便的外力环境下能表现出承受负荷的优越性,而且在外力条件发生变化时,能通过内部调整,以有利的新的结构形式来适应新的外部环境。
8、肌力的大小随肌小节长度的变化而改变的主要原因?答:当Lo太大时,肌浆球蛋白丝与肌动蛋白丝搭接部分减小,横桥数减小,因而主动张力减小;当Lo太小时,相邻肌动蛋白纤维丝重叠,有效长度减小,主动张力亦降低。
9、关节软骨的渗透功能、润滑机制?答:调节关节液的进出,维护渗透平衡。
润滑机制:是关节会采用最适合的机制应对面临的运动和载荷,其核心是如何合理利用关节液,主要有界面润滑和压渗润滑。
10、摆动的主要目的?答:(1)增加全身活动协调性,保持人体平衡;(2)增加动作效果。
11、摆腿和摆臂动作在跳高项目中具有重要意义?答:(1)协调人体动作,维持身体平衡;(2)摆动所产生的惯性力可反射性的加大地面对人体的支撑反作用力;(3)摆动的结果提高了起跳离地瞬间的身体重心的高度;(4)摆动动作的突然停止,可以促进摆动肢体的动量矩向全身的转移,增加了躯干和起跳腿向上的速度。
12、摆动动作的特征答:(1)减小摆动肢体的转动惯量和增大肌力距可以加大摆动的角加速度;(2)摆动动作与主体动作之间应当合理配合;(3)摆动肢体的合理制动是动量矩合理转移的关键。
13、肌肉预先拉长的重要作用答:一方面有利于原动肌充分拉长使其处于一个最适的初长度,可提高后续肌肉收缩的爆发式收缩力;另一方面可延长力的作用距离。