焊接原理

焊接原理
焊接原理

焊接原理

一、锡焊、是将表面清洁的焊件与焊料加热到一定温度,焊料熔化并湿润焊件表面,在其界面上发

生金属扩散并形成结合层,从而实现金属的焊接;焊件表面的清洁,焊件的加热是达到其扩散的基本条件。

二、焊接的工具与材料

工具:

1、电烙铁(常用的是直热式)

2、调温及恒温烙铁(不受电源电压、环境温度的影响;升温时间快;烙铁不会过热)

3、吸锡器

工具的选用:烙铁头的温度的高低,可以用热电偶或表面温度计测量,一般可根据助焊剂发烟状态粗略估计,温度低,冒烟小。

焊件及工作性质烙铁头温度(室温220V)选用烙铁

一般印刷电路,安装导线20W内热式,30W外热式,

恒温式

集成电路250℃---400℃20W 内热式,恒温式

焊片,电位器,2-8W电阻,大电解功率管350℃---450℃

35-50W内热式,调温式

50-75W外热式

8W以上大电阻,φ2以上导线等较大的元器件400℃---550℃

100W内热式,150-200W外

热式

金属板550℃---630℃300W以上外热式观察法估计烙铁温度

烟细长,持续时

间长,>20S 烟稍大,持续时

间10-15S

烟大,持续时间

短,约7-8S

烟很大,持续时

间短,3-5S

估计温度小于200℃230-250℃300-350℃大于350

焊接达不锡焊温度PCB及小型焊点导线焊接、预热

等较大焊点

粗导线、板材及

大焊点

注意:烙铁通电后一定要立刻蘸上松香,否则表面会生成难镀锡的氧化层。

三、焊料

1、一般电子产品装配中主要使用锡铅焊料。成分一般是含锡量为60%-65%锡铅合金。

2、焊剂一般是优质松香添加一定活化剂。

四、手工锡焊基本操作

1、焊接操作姿势

一般烙铁离开鼻子的距离应不小于30CM,通常以40CM时为宜,因为烟气对人体有害。

电烙铁拿法有三种:A,反握法,适于大功率烙铁的操作;B,正握法,适于中等功率的烙铁或带弯头的电烙铁的操作;C,握笔法,焊件时多采用的一种方法。

使用烙铁一定要稳妥放在烙铁架上,并注意导线等物不要碰烙铁头。

2、焊接五步

A、准备施焊:准备好锡丝和烙铁,特别强调烙铁头要保持干净,即可以沾上烛焊锡;(俗

称吃锡)

B、加热焊件:将烙铁接触焊点,注意先要保持烙铁加热焊件各部分,例如PCB板上引脚

和焊盘都使之受热,其次要注意让烙铁头的扁平部分(较大部分)接触较大的焊件,

烙铁头的侧面或边缘部分接触较小的焊件,以保持焊件均匀受热;

C、熔化焊料:当焊件加热到能熔化焊料的温度后将锡丝置于焊点,焊料开始熔化并湿润

焊点;

D、移开焊锡:当熔化一定量的焊锡后交将锡线移开;

E、移开烙铁:当焊锡完全湿润焊点后移开烙铁,注意移开烙铁的方向应该是大约45度的

方向;

这一过程,对一般焊点大约2-3秒。

3、手工焊锡要点:

A、掌握好加热时间:锡焊时可以采用不同的加热速度,在大多数情况下延长加热时间对

电子产品装配都是有害的,一般为2-3秒;这是因为:

1)焊点的结合层由于长时间加热会超过合适的厚度引起焊点性能劣化;

2)塑料等材料受热过多会变形、老化;

3)元器件受热后性能变化甚至失效;

4)焊点表面由于助焊剂挥发,失去保护而氧化。

B、保持合适的温度:一般经验是烙铁头温度比焊料熔化温度高50℃较为适宜。

C、用烙铁头对焊点施力是有害的:烙铁头把热量传给焊点主要靠增加接触面积,用烙铁

头对焊点加力对加热是无用的,很多情况下会造成焊件的损伤。

4、锡焊操作要领

A、焊件表面处理

手工烙铁焊接中遇到的焊件都要进行表面的清理工作,去除焊接面上的锈迹,油污,

灰尘等杂质。手工操作中常用机械刮磨和酒精,丙酮擦洗等。

B、预焊

预焊就是将要加锡的元器件引线或导线的焊接部位预先加上锡;

C、不要用过量的助焊剂

过量的松香会造成焊点周围要清洗的工作量,延长加热时间;

D、保持烙铁头的清洁,要随时用一块湿布或湿海绵擦烙铁头;

E、焊锡锡量要合适:过量的焊锡在高密度的电路中,很容易造成不易觉察的短路。

F、焊件要固定:焊接凝固之前不要使焊件移动或震动,特别是用镊子夹住焊件时一定要

等焊锡凝固再移去镊子,如在冷凝过程受到外力(焊件移位)会造成“冷焊”,外观现

象是表面无光泽呈豆渣状,焊点内部结构疏松,易有气隙和裂缝,造成导电性能差。

G、烙铁撤离有讲究:烙铁撤离时的角度和方向对焊点的形成有一定的关系。

五、导线的焊接

1、常用连接导线焊接前的处理

A:剥绝缘层,多股导线要将线芯拧成螺旋状。

B:预焊:对多股导线最为重要,导线的预焊称为“沾锡”,导线沾锡时要边上锡边旋转,旋转方向要与拧合的方向一致,注意导线绝缘层不能浸入锡炉内,造成软线变硬。

2、导线焊接末端处理

A、绕焊:把经过上锡的导线端头在接线端子上缠一圈,用钳子接紧后进行焊接,绝缘层

不能接触端子,导线一定要紧贴端子表面;

B、钩焊:将导线端子弯成钩形,钩在接线端子上并用钳子夹紧后施焊;

C、搭焊:把经过沾有锡的导搭到接线端子上施焊,仅用于临时连接。

3、导线与导线的连接

导线之间的焊接以绕焊为主,

1)去掉一定长度绝缘皮;

2)端子上锡,并穿上合适套管

3)绞合,施焊

4)趁热套上套管,冷却后将套管固定在头处。

4、屏蔽线末端处理

六、元器件的引线的成型

1、所有元器件引线均不得从根部弯曲,因为根部容易折断,一般应留1.5mm以上。

2、弯曲一般不要成直角,圆弧半径应大于引线直径的1-2倍。

3、要尽量将有字符的元器件面置于容易观察的位置。

七、瓷片电容,发光二极管,中周等元件的焊接

这类元件的共同弱点是加热时间过长会失效,其中瓷片电容和中周等元件是内部接点开焊,发光二极管则管芯损坏,施焊时要快,有时可采用辅助散热措施,可避免过热失效。

b

a

八、常见焊点缺陷及原因分析

1、 导线端子焊接缺陷示例

2、 常见焊点缺陷及分析,典型焊点外观及检查:

1)外形以焊接导线为中心,匀称,成裙形拉开;

2)焊料连接面呈半弓形凹面,焊料与焊件交界处平滑,接触角度可能小; 3)表面有光泽且平滑; 4)元裂纹/针孔/夹潭; 检查点:

1) 无漏焊; 2)无焊料拉尖; 3)焊料引起导线间短路; 4) 导线及元器件绝缘的损伤; 5)布线整形; 6)焊料飞溅

检查时除目测外还要用指触,镊子拨动,拉线等方法检查有无导线断线,焊盘剥离等缺陷。

焊料面成凸形

浪费材料,且可能性包藏缺陷

焊丝撤离过迟

(a )虚焊

(a )外皮烧焦

(a )断丝

(a )芯线过长

(a )焊锡上吸

(a )甩丝

(a )焊锡锡过外皮

(a )芯线散开

焊料过多

焊料未形成平滑面

机械强度不足

焊丝撤离过早

焊点中夹有松香

强度不足,导通不良,有可能时通时断

1、 加焊剂过多,或已

失效;

2、 焊接时间不足,加

热不足; 3、 表面氧化膜未去

焊点发白,无金属

光泽,表面较粗糙 1、 焊盘易剥落强度降低; 2、 造成元件失效损坏

烙铁功率过大,加热时

间过长

表面呈豆腐渣状颗粒,有时可有裂纹

强度低,导电性不好

焊料凝固时焊件抖动

焊料与焊件交界面接触角过大,不

平滑

强度低,不通或时通时断 1、 焊件清理不干净;

2、 助焊剂不足或质

量差; 3、 焊件未充分加热

焊锡未流满焊盘 强度不足 1、 焊料流支性不好; 2、 助焊剂不足或质

量差;

3、 加热不足

焊料过少 松香焊

过 热

冷 焊

虚 焊

不 对 称

出现尖端外观不佳,容易造成短路

现象

加热不足;焊料不合格

导线或元器件引

线可移动

导通不良或不导通1、焊锡未凝固前引

线移动造成空隙

2、引线未处理好(润

湿不良或不润湿)

相邻导线搭接电气短路1、焊锡过多

2、烙铁施焊撤离方

向不当

目测或放大镜可

见有孔

焊点容易腐蚀焊盘与孔引线间隙太

引线根部有时有

焊料隆起,内部藏

有空洞

暂时导通但长时间容易引

起导通不良

引线与孔间隙过大或

引线润湿性不良

焊点剥落断路焊盘镀层不良

松动

桥接

针孔

气泡

剥离

拉尖

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

手工焊接实验报告

手工焊接实验报告 篇一:手工焊实训报告 XX大学 手工焊实训总结 年级专业: 学生姓名:学号:指导教师:焊接 XX大学 完成时间: 2012 年月日 1 2 3 4 篇二:手工电弧焊实习报告 学校实习安排

本次实习主要安排在新疆土哈油田建设有限公司进行,以顶班上岗为主,通过实习使学生全面了解企业单位的各方面工作,强化安全意识,规范操作要领,做到安全生产与文明生产。 我在吐哈油建公司实习以有几个月了,公司首先对我门进行了手工焊接的培训,培训期间遇到了很多问题和困难在几个月的时间内体验到当今电焊界普遍所应用的方法,总的来说这次实习活动是一次有趣且必将影响今后学习和工作的重要实践经验。 手工电弧焊是一门实践性的技术课,是学生学习焊接技术工艺方法和技术,完成工程基本训练的重要必修课。实习不仅可以让我们获得焊接的基础知识,了解焊接的一般操作,而且还可以提高自己的焊接技能和动手能力,而且加强了理论联系实际的锻炼,提高了我们的实践能力,培养了我们的素质。实习是一次我们学习、锻炼的好机会。通

过这次几个月充实的实习我懂得了很多……… 在这几个月内,大家每天都要加强学习焊接技术,并在很短的实习时间里,完成从对各项焊工作业的过程,我们在老师们耐心细致地指导下,很顺利的完成各自的实习内容,并且基本上都达到了老师预期的实习要求,圆满地完成了实习。在实习期间,通过学习焊接的操作,我们做出了自己的工件,虽然这几个月的焊接实习是对我们的一个很大的考验,我们都喜不自禁,感到很有成就感。 在实习中,安全是第一位,这是每个老师给我们的第一忠告。实习是培养学生实践能力的有效途径,又是我们工科类大学生非常重要的也特别有意义的实习课,也是我们一次,离开课堂严谨的环境,感受到车间的气氛,亲手掌握知识的机会。 实习要求

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

焊接原理

焊接原理 一、锡焊、是将表面清洁的焊件与焊料加热到一定温度,焊料熔化并湿润焊件表面,在其界面上发 生金属扩散并形成结合层,从而实现金属的焊接;焊件表面的清洁,焊件的加热是达到其扩散的基本条件。 二、焊接的工具与材料 工具: 1、电烙铁(常用的是直热式) 2、调温及恒温烙铁(不受电源电压、环境温度的影响;升温时间快;烙铁不会过热) 3、吸锡器 工具的选用:烙铁头的温度的高低,可以用热电偶或表面温度计测量,一般可根据助焊剂发烟状态粗略估计,温度低,冒烟小。 焊件及工作性质烙铁头温度(室温220V)选用烙铁 一般印刷电路,安装导线20W内热式,30W外热式, 恒温式 集成电路250℃---400℃20W 内热式,恒温式 焊片,电位器,2-8W电阻,大电解功率管350℃---450℃ 35-50W内热式,调温式 50-75W外热式 8W以上大电阻,φ2以上导线等较大的元器件400℃---550℃ 100W内热式,150-200W外 热式 金属板550℃---630℃300W以上外热式观察法估计烙铁温度 观 察 时 间 烟细长,持续时 间长,>20S 烟稍大,持续时 间10-15S 烟大,持续时间 短,约7-8S 烟很大,持续时 间短,3-5S 估计温度小于200℃230-250℃300-350℃大于350 焊接达不锡焊温度PCB及小型焊点导线焊接、预热 等较大焊点 粗导线、板材及 大焊点 注意:烙铁通电后一定要立刻蘸上松香,否则表面会生成难镀锡的氧化层。

三、焊料 1、一般电子产品装配中主要使用锡铅焊料。成分一般是含锡量为60%-65%锡铅合金。 2、焊剂一般是优质松香添加一定活化剂。 四、手工锡焊基本操作 1、焊接操作姿势 一般烙铁离开鼻子的距离应不小于30CM,通常以40CM时为宜,因为烟气对人体有害。 电烙铁拿法有三种:A,反握法,适于大功率烙铁的操作;B,正握法,适于中等功率的烙铁或带弯头的电烙铁的操作;C,握笔法,焊件时多采用的一种方法。 使用烙铁一定要稳妥放在烙铁架上,并注意导线等物不要碰烙铁头。 2、焊接五步 A、准备施焊:准备好锡丝和烙铁,特别强调烙铁头要保持干净,即可以沾上烛焊锡;(俗 称吃锡) B、加热焊件:将烙铁接触焊点,注意先要保持烙铁加热焊件各部分,例如PCB板上引脚 和焊盘都使之受热,其次要注意让烙铁头的扁平部分(较大部分)接触较大的焊件, 烙铁头的侧面或边缘部分接触较小的焊件,以保持焊件均匀受热; C、熔化焊料:当焊件加热到能熔化焊料的温度后将锡丝置于焊点,焊料开始熔化并湿润 焊点; D、移开焊锡:当熔化一定量的焊锡后交将锡线移开; E、移开烙铁:当焊锡完全湿润焊点后移开烙铁,注意移开烙铁的方向应该是大约45度的 方向; 这一过程,对一般焊点大约2-3秒。 3、手工焊锡要点: A、掌握好加热时间:锡焊时可以采用不同的加热速度,在大多数情况下延长加热时间对 电子产品装配都是有害的,一般为2-3秒;这是因为: 1)焊点的结合层由于长时间加热会超过合适的厚度引起焊点性能劣化; 2)塑料等材料受热过多会变形、老化; 3)元器件受热后性能变化甚至失效; 4)焊点表面由于助焊剂挥发,失去保护而氧化。 B、保持合适的温度:一般经验是烙铁头温度比焊料熔化温度高50℃较为适宜。 C、用烙铁头对焊点施力是有害的:烙铁头把热量传给焊点主要靠增加接触面积,用烙铁 头对焊点加力对加热是无用的,很多情况下会造成焊件的损伤。 4、锡焊操作要领 A、焊件表面处理 手工烙铁焊接中遇到的焊件都要进行表面的清理工作,去除焊接面上的锈迹,油污,

手工焊接工艺流程

焊接工艺 概述 随着电子元器件的封装更新换代加快,由原来的直插式改为了平贴式,连接排线也由FPC 软板进行替代,电子发展已朝向小型化、微型化发展,手工焊接难度也随之增加,在焊接当中稍有不慎就会损伤元器件,或引起焊接不良,所以一线手工焊接人员必须对焊接原理,焊接过程,焊接方法,焊接质量的评定,及电子基础有一定的了解。 一、焊接原理: 锡焊是一门科学,他的原理是通过加热的烙铁将固态焊锡丝加热熔化,再借助于助焊剂的作用,使其流入被焊金属之间,待冷却后形成牢固可靠的焊接点。 当焊料为锡铅合金焊接面为铜时,焊料先对焊接表面产生润湿,伴随着润湿现象的发生,焊料逐渐向金属铜扩散,在焊料与金属铜的接触面形成附着层,使两则牢固的结合起来。 二、助焊剂的作用 助焊剂是一种焊接辅助材料,其作用如下: ●去除氧化膜。 ●防止氧化。 ●减小表面张力。 ●使焊点美观。 三、焊锡丝的组成与结构 我们使用的有铅SnPb(Sn63%Pb37%)的焊锡丝和无铅SAC(96.5%SN 3.0%AG0.5%CU)的焊锡丝里面是空心的,这个设计是为了存储助焊剂(松香),使在加焊锡的同时能均匀的加上助焊剂。当然就有铅锡丝来说,根据SNPB的成分比率不同有更多中成份,其主要用途也不同。 焊锡丝的作用:达到元件在电路上的导电要求和元件在PCB板上的固定要求。 四、焊接工具 1、电烙铁 ①外热式电烙铁 一般由烙铁头、烙铁芯、外壳、手柄、插头等部分所组成。烙铁头安装在烙铁芯内,用

以热传导性好的铜为基体的铜合金材料制成。烙铁头的长短可以调整(烙铁头越短,烙铁头的温度就越高),且有凿式、尖锥形、圆面形、圆、尖锥形和半圆沟形等不同的形状,以适应不同焊接面的需要。 ②内热式电烙铁 由连接杆、手柄、弹簧夹、烙铁芯、烙铁头(也称铜头)五个部分组成。烙铁芯安装在烙铁头的里面(发热快,热效率高达 85 %~%%以上)。烙铁芯采用镍铬电阻丝绕在瓷管上制成,一般 20W 电烙铁其电阻为 2.4kΩ左右, 35W 电烙铁其电阻为 1.6kΩ左右。一般来说电烙铁的功率越大,热量越大,烙铁头的温度越高。焊接集成电路、印制线路板、 CMOS 电路一般选用 20W 内热式电烙铁。使用的烙铁功率过大,容易烫坏元器件(一般二、三极管结点温度超过 200℃时就会烧坏)和使印制导线从基板上脱落;使用的烙铁功率太小,焊锡不能充分熔化,焊剂不能挥发出来,焊点不光滑、不牢固,易产生虚焊。焊接时间过长,也会烧坏器件,一般每个焊点在 1.5 ~ 4S 内完成。 ③其他烙铁 1 )恒温电烙铁 恒温电烙铁的烙铁头内,装有磁铁式的温度控制器,来控制通电时间,实现恒温的目的。在焊接温度不宜过高、焊接时间不宜过长的元器件时,应选用恒温电烙铁,但它价格高。 2 )吸锡电烙铁 吸锡电烙铁是将活塞式吸锡器与电烙铁溶于一体的拆焊工具,它具有使用方便、灵活、适用范围宽等特点。不足之处是每次只能对一个焊点进行拆焊。 3 )汽焊烙铁 一种用液化气、甲烷等可燃气体燃烧加热烙铁头的烙铁。适用于供电不便或无法供给交流电的场合。 2、其它工具 ①尖嘴钳它的主要作用是在连接点上网饶导线、元件引线及对元件引脚成型。 ②偏口钳又称斜口钳、剪线钳,主要用于剪切导线,剪掉元器件多余的引线。不要用偏口钳剪切螺钉、较粗的钢丝,以免损坏钳口。 ③镊子主要用途是摄取微小器件;在焊接时夹持被焊件以防止其移动和帮助散热。 ④旋具又称改锥或螺丝刀。分为十字旋具、一字旋具。主要用于拧动螺钉及调整可调元器件的可调部分。 ⑤小刀主要用来刮去导线和元件引线上的绝缘物和氧化物,使之易于上锡。 五、手工焊接过程

手工焊接通用工艺规程

. . . 1目的 1.1.1.1本工艺规程规定了手工焊接工艺相关的焊接工具与材料、操作方 法和检验方法。 2适用范围 2.1.1.1本工艺规程适用于产品的手工焊接工艺的指导。 3适用人员 3.1.1.1本工艺规程适用于手工焊接专职工艺人员、手工焊接操作人员、 手工焊接检验人员。 4名词/术语 4.1.1.1手工焊接系统:指手工焊接操作所使用的焊接电烙铁或其它焊接 设备。 4.1.1.2焊接时间:从烙铁头接触焊料到离开焊料的时间,即焊料处于加 热过程中时间。 4.1.1.3拆焊:返工、返修或调试情况下,使用专用工具将两被焊件分离 的手工焊接工艺操作方法。 4.1.1.4主面:总设计图上定义的一个封装与互连结构(PCB)面(通常 为包含元器件功能最复杂或数量最多的那一面)。 4.1.1.5辅面:与主面相对的封装与互连结构(PCB)面。 4.1.1.6冷焊点:是指呈现很差的润湿性、外表灰暗、疏松的焊点。 4.1.1.7焊料受拢:焊料在焊接过程中发生移动而形成的应力纹。 4.1.1.8反润湿:熔化的焊料先覆盖表面然后退缩成一些形状不规则的焊 料堆,其间的空档处有薄薄的焊料膜覆盖,未暴露基底金属或表 面涂敷层。

5焊接工艺规范5.1焊接流程 检验 焊前准备焊接设备 参数确认 施焊清洗转下道工序 手工清洗/设备 清洗 返工/返修 /报废 Y N 5.2焊接原理 5.2.1.1手工焊接中的锡焊的原理是通过加热的烙铁将固态焊锡丝加热 熔化,再借助于助焊剂的作用,使其流入被焊金属之间,待冷却 后形成牢固可靠的焊接点;锡焊是通过润湿、扩散和冶金结合这 三个物理、化学过程来完成的,被焊件未受任何损伤;图6-1是 放大1000倍的焊点剖面。 图6-1 焊点剖面 5.3手工焊接操作方法 5.3.1电烙铁的握法 5.3.1.1电烙铁的基本握法分为三种(图6-2):

激光焊接基本原理讲解-共14页

一、激光基本原理 1、 LASER 是什么意思 Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅的英语开头字母 2、激光产生的原理 激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。 为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。含有钕 (ND的 YAG 结晶体发生的激光是一种人眼看不见的波长为 1.064um 的近红外光。这种光束在微弱的受激发情况下,也能实现连续发振。 YAG 晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。 3、激光的主要特长 a 、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光 (波长、频率 b 、方向性――激光传播时基本不向外扩散。 c 、相干性――激光的位相 (波峰和波谷很有规律,相干性好。 d 、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。 二、 YAG 激光焊接

激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。 常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。前者主要用于单点固定连续和薄件材料的焊接。后者主要用于大厚件的焊接和切割。 l 、激光焊接加工方法的特征 A 、非接触加工,不需对工件加压和进行表面处理。 B 、焊点小、能量密度高、适合于高速加工。 C 、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、 特种材料。 D 、不需要填充金属、不需要真空环境 (可在空气中直接进行、不会像电子束那样在空气中产生 X 射线的危险。 E 、与接触焊工艺相比 . 无电极、工具等的磨损消耗。 F 、无加工噪音,对环境无污染。 G 、微小工件也可加工。此外,还可通过透明材料的壁进行焊接。 H 、可通过光纤实现远距离、普通方法难以达到的部位、多路同时或分时焊接。 I 、很容易改变激光输出焦距及焊点位置。 J 、很容易搭载到自动机、机器人装置上。

电焊机工作原理及电焊机组成结构

电焊机工作原理介绍? 电焊机(electric welding machine)实际上就是具有下降外特性的变压器,将220V和380V交流电变为低压的直流电,电焊机一般按输出电源种类可分为两种,一种是交流电源的;一种是直流电的。直流的电焊机可以说也是一个大功率的整流器,分正负极,交流电输入时,经变压器变压后,再由整流器整流,然后输出具有下降外特性的电源,输出端在接通和断开时会产生巨大的电压变化,两极在瞬间短路时引燃电弧,利用产生的电弧来熔化电焊条和焊材,冷却后来达到使它们结合的目的。焊接变压器有自身的特点,外特性就是在焊条引燃后电压急剧下降的特性。 电焊机的特点 焊接由于灵活简单方便牢固可靠,焊接后甚至与母材同等强度的优点广乏用于各个工业领域,如航空航天,船舶,汽车,容器等! 一、电焊机优点:电焊机使用电能源,将电能瞬间转换为热能,电很普遍,电焊机适合在干燥的环境下工作,不需要太多要求,因体积小巧,操作简单,使用方便,速度较快,焊接后焊缝结实等优点广乏用于各个领域,特别对要求强度很高的制件特实用,可以瞬间将同种金属材料(也可将异种金属连接,只是焊接方法不同)永久性的连接,焊缝经热处理后,与母材同等强度,密封很好,这给储存气体和液体容器的制造解决了密封和强度的问题。 二、电焊机缺点:电焊机在使用的过程中焊机的周围会产生一定的磁场,电弧燃烧时会向周围产生辐射,弧光中有红外线,紫外线等光种,还有金属蒸汽和烟尘等有害物质,所以操作时必须要做足够的防护措施。焊接不适合于高碳钢的焊接,由于焊接焊缝金属结晶和偏析及氧化等过程,对于高碳钢来说焊接性能不良,焊后容易开裂,产生热裂纹和冷裂纹。低碳钢有良好的焊接性能,但过程中也要操作得当,除锈清洁方面较为烦琐,有时焊缝会出现夹渣裂纹气孔咬边等缺陷,但操作得当会降低缺陷的产生。 三、交流电焊机电焊机组成结构 交流电焊机又称弧焊变压器,是一种特殊的降压变压器,它是由降压变压器、阻抗调节器、手柄和焊接电弧等组成。为了使焊接顺利进行,这种变压器电源能按焊接过程的需要而具有如下特点: 1. 交流电焊机具有电压陡降的特性 一般的用电设备都要求电源的电压不随负载的变化而变化,其电压是恒定的,如为380V(单相)或220V。虽然接入焊接变压器的电压是一定的,如为380V或220V,但通过这种变压器后所输出的电压可随输出电流(负载)的变化而变化,且电压随负载增大而迅速降低,此称为陡降特性或称下降特性。这就适应了焊接所需各种的电压要求: (1) 初级电压:即接入电焊机的外电压。 由于弧焊变压器初级线圈两端要求的电压为单项380V,因此一般交流电焊机接入电网的电压为单项380V。 (2) 零电压:为了保证焊接过程频繁短路(焊条与焊件接触)时,要求电压能自动降至趋近于零,以限制短路电流不致无限增大而烧毁电源。 (3) 空载电压:为了满足引弧与安全的需要,空载(焊接)时,要求空载电压约为60 ~80V,这既能顺利起弧,又对人身比较安全。 (4) 工作电压:焊接起弧以后,要求电压能自动下降到电弧正常工作所需的电压,即为工作电压,约为20~40 V,此电压也为安全电压。 (5) 电弧电压:即电弧两端的电压,此电压是在工作电压的范围内。焊接时,电弧的长短会发生变化:电弧长度长,电弧电压应高些;电弧长度短,则电弧电压应低些。因此,弧焊变压器应适应电弧长度的变化而保证电弧的稳定。 2. 交流电焊机具有焊接电流的可调节性 为了适应不同材料和板厚的焊接要求,焊接电流能从几十安培调到几百安培,并可根据工件的厚度和所用焊条直径的大小任意调节所需的电流值。电流的调节一般分为两级:一级是粗调,常用改变输出线头的接法(Ⅰ位置连接或Ⅱ位置连接),从而改变内部线圈的圈数来实现电流大范围的调节,粗调时应在切断电源的情况下进行,以防止触电伤害;另一级是细调,常用改变电焊机内“可动铁芯”(动铁芯式)或“可动线圈”(动圈式)的位置来达到所需电流值,细调节的操作是通过旋转手柄来实现的,当手柄逆时针旋转时电流值增大,手柄顺时针旋转时电流减小,细调节应在空载状态下进行。各种型号的电焊机粗调与细调的范围,可查阅标牌上的说明。 电焊机的工作原理叙述 工作原理电流电压经三相主变压器降压,由可控硅元件进行整流,并利用改变可控硅触发角相位来控制输出电流的大小。从整流器直流输出端的分流器上取出电流信号,作为电流负反馈信号,随着直流输出电流增加,负反馈也增加,可控硅导通角减小,输出电流电压降低,从而获得下降的外特性。推力电路是当输出端电压低于15V时,使输出电流增加,特别是短路时,形成外拖的外特性,使焊条不易粘住。引弧电路是每次起弧时,短时间增加给定电压,使引弧电流较大,易于起弧。 从以上叙述可以知道,电焊起弧的时候电路是处于短路状态,电压急剧下降,电流需要很大;起弧后要稳弧,这时候焊条和容池的溶液还是短路过渡状态,电压还是下降,电流还是大;过渡完毕后处于正常焊接状态,电压回

焊接机理完整版

焊接机理完整版 焊接机理完整版 润湿:在焊接过程中,我们把熔融的焊料在被焊金属表面上形成均匀、平滑、连续并且付着牢固的合金的过程,称之为焊料在母材表面的润湿。 润湿力:在焊接过程中,将由于清洁的熔融焊料与被焊金属之间接触而导致润湿的原子之间相互吸引的力成为润湿力。 焊料的润湿与润湿力 在自然界中有很多这方面的例子,举例来说,在清洁的玻璃板上滴一滴水,水滴可在玻璃板上完全铺开,这时可以说水对玻璃板完全润湿;如果滴的是一滴油,则油滴会形成一球块,发生有限铺开,此时可以说油滴在玻璃板上能润湿;若滴一滴水银,则水银将形成一个球体在玻璃板上滚动,这时说明水银对玻璃不润湿。焊料对母材的润湿与铺展也是一样的道理,当焊料不加助焊剂在焊盘上熔化时,焊料呈球状在焊盘上滚动,也就是焊料的内聚力大于焊料对焊盘的附着力,此时焊料不润湿焊盘;当加助焊剂时,焊料将在焊盘上铺开,也就是说此时焊料的内聚力小于焊料对焊盘的附着力,所以焊料才得以在焊盘上润湿和铺展。 熔化的焊料要润湿固体金属表面所具备的条件有两条: 1、液态焊料与母材之间应能互相溶解,即两种原子之间有良好的亲和力。 2、焊料和母材表面必须“清洁”。 这是指焊料与母材两者表面没有氧化层,更不会有污染。母材金属表面氧化物的存在会严重影响液态焊料对基体金属表面的润湿性,这是因为氧化膜的熔点一般都比较高,在焊接温度下为固态,会阻碍液态焊料与基体金属表面的直接接触,使液态焊料凝聚成球状,即形成不润湿状态。 表面张力:表面张力是化学中一个基本概念,表面化学是研究不同相共同存在的系统体系,在这个体系中不同相总是存在着界面,由于相界面分子与体相内分子之间作用力有着不同,故导致相界面总是趋于最小化.(能量守恒定率)

喷焊原理

喷焊的原理、工艺、方法简介 喷焊是对经预热的自溶性合金粉末涂层再加热至1000~1300℃,使颗粒熔化,造渣上浮到涂层表面,生成的硼化物和硅化物弥散在涂层中,使颗粒间和基体表面达到良好结合。最终沉积物是致密的金属结晶组织并与基体形成约0.05~0.1mm的冶金结合层,其结合强度约400MPa,抗冲击性能较好、耐磨、耐腐蚀,外观呈镜面。 与喷涂层相比,喷焊层的优点显著。但由于重熔过程中基体局部受热后温度达900℃,会产生较大热变形。因此,喷焊的使用范围有一定局限性。适于喷焊的零件和材料一般是:①受冲击载荷,要求表面硬度高,耐磨性好的易损零件,如抛砂机叶片,破碎机齿板,挖掘机铲斗齿等;②几何形状比较简单的大型易损零件,如轴、柱塞、滑块、液压缸、溜槽板等; ③低碳钢、中碳钢(含碳0.4%以下)、含锰、钼、钒总量<3%的结构钢、镍铬不锈钢、铸铁等材料。 (1)喷焊用自熔性合金粉末 自熔性合金粉末是以镍、钴、铁为基材的合金,其中加入适量硼和硅元素,起脱氧造渣焊接熔剂的作用,同时能降低合金熔点,适于乙炔一氧焰对涂层进行重熔。 国产自熔性合金粉末品种较多,镍基合金粉末有较强的耐蚀性,抗氧化性可达650°C,耐磨性强;钴基合金粉末最大的特点是红硬性好,可在700℃保持较好的耐磨性和耐蚀性;铁基合金粉末耐磨粒磨损性优于其他两类。 (2)喷焊工艺 喷焊的工艺程序基本与喷涂相同,所不同者在喷粉工序中增加了重熔程序。喷焊有一步喷焊法和二步喷焊法。施工前应注意:①工件表面有渗碳层或氮化层,在预处理时必须清除; ②工件的预热温度为一般碳钢200~300℃,耐热奥氏体钢350~400℃。预热火焰用中性或弱碳焰。此外,喷涂层重熔后,厚度减小25%左右,喷熔后在热态测量时,应将此量考虑在内。 一步喷焊法。一步法即喷一段后即熔一段,喷、熔交替进行,使用同一支喷枪完成。可选用中、小型喷焊枪。在工件预热后先喷涂0. 2mm的保护层,并将表面封严,以防氧化,喷熔从一端开始,喷距10~30mm,有顺序地对保护层局部加热到熔融开始湿润(不能流淌)时再喷粉,与熔化反复进行,直至达到预定厚度,表面出现“镜面”反光,再向前扩展,达到表面全部覆盖喷焊层。如一次厚度不足,可重复加厚。一步法适用于小型零件或小面积喷焊。 二步喷焊法。二步法即先完成喷涂层再对其重熔。喷涂与重熔均用大功率喷枪,例如SpH-E喷、焊两用枪,使合金粉末充分在火焰中熔融,在工件表面上产生塑性变形的沉积层。喷铁基粉末时用弱碳火焰,喷镍基和钴基粉末时用中性或弱碳火焰。 喷粉每层厚度<0.2mm,重复喷涂达到重熔厚度,一般可在0.5~0. 6 mm时重熔。如果喷焊层要求较厚,一次重熔达不到要求时,可分几次喷涂和重熔。 重熔是二步法的关键工序,在喷涂后立即进行。用中性焰或弱碳化焰的大功率柔软火焰,

高频焊接原理

高频焊接原理 1 高频焊接的基本原理 所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢? 集肤效应是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。 邻近效应是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。 这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。 2 高频焊接设备的结构和工作原理 了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,排除钢板表面的氧化层和杂质,使钢板完全熔合成一体。 高频发生器过去的焊管机组上使用高频发生器是三回路的:高频发电机组;固体

电焊的工作原理

电焊的工作原理 电焊的基本工作原理是我们通过常用的220V电压或者380V的工业用电通过电焊机里的减压器降低了电压,增强了电流,利用电能产生的巨大热量融化钢铁,焊条的融入使钢铁之间的融合性更高,还有,电焊条的外层的药皮起了非常大的作用,不信你把药粉敲了看能焊接不:)。当然这种解释是通俗的。 【电焊的种类】 电焊的种类比较多,目前常用的有以下几种 1.电弧焊 电弧焊是目前应用最广泛的焊接方法。它包括有:手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。绝大部分电弧焊是以电极与工件之间燃烧的电弧作热源。在形成接头时,可以采用也可以不采用填充金属。所用的电极是在焊接过程中熔化的焊丝时,叫作熔化极电弧焊,诸如手弧焊、埋弧焊、气体保护电弧焊、管状焊丝电弧焊等;所用的电极是在焊接过程中不熔化的碳棒或钨棒时,叫作不熔化极电弧焊,诸如钨极氩弧焊、等离子弧焊等。 (1)手弧焊 手弧焊是各种电弧焊方法中发展最早、目前仍然应用最广的一种焊接方法。它是以外部涂有涂料的焊条作电极和填充金属,电弧是在焊条的端部和被焊工件表面之间燃烧。涂料在电弧热作用下一方面可以产生气体以保护电弧,另一方面可以产生熔渣覆盖在熔池表面,防止熔化金属与周围气体的相互作用。熔渣的更重要作用是与熔化金属产生物理化学反应或添加合金元素,改善焊缝金属性能。手弧焊设备简单、轻便,操作灵活。可以应用于维修及装配中的短缝的焊接,特别是可以用于难以达到的部位的焊接。手弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。 IGBT逆变电焊机工作原理及输出特性 本机采用三相交流380V电压经三相桥式整流、滤波后供给以新型IGBT为功率开关器件的逆变器进行变频(20KC)处理后,由中频变压器降压,再经整流输出可供焊接所需的电源,通过集成电路构成的逻辑控制电路对电压、电流信号的反馈进行处理,实现整机闭环控制,采用脉宽调制PWM为核心的控制技术,从

常见的焊接方法的工作原理及其特点

常见的焊接方法的工作原理及其特点: (1) 手工焊条电弧焊接: 工作原理:手工电弧焊由焊接电源、焊接电缆、焊钳、焊条、焊件、电弧构成回路,焊接时电弧在焊条与被焊件之间燃烧, 电弧热使工件和焊条同时熔化成熔池,焊条的药皮熔化或燃烧, 产生渣气,保护熔池;当电弧向前移动时, 熔池冷却凝固而新的熔池不断产生, 形成连续的焊缝。 优点:设备简单,操作灵活,适应性强。 缺点:生产效率低,劳动强度大,对焊工要求高,质量不易保证。 (2)埋弧自动焊接 工作原理:焊接动作由机械装置自动完成,电弧在颗粒状焊剂层下燃烧,连续送进的焊丝在焊剂覆盖下和母材、焊剂一起熔化,形成焊缝的一种方法。 优点:生产效率高,焊缝质量稳定,节能,劳动条件好 缺点:无法进行立焊、横焊或仰焊;灵活性较差,无法焊接不规则焊缝;无法焊接1mm以下的薄板。 (3) 非熔化极氩弧焊: 工作原理:以非熔化极(钨极)作为电极,工件作为另一个电极,电弧在非熔化极和工件之间燃烧,使焊材及母材熔化成液态形成熔池,同时外加惰性气体作为电弧介质并保护电弧及焊接区的一种焊接方法。 优点:氩气保护,可焊接易氧化、氮化、化学活泼性强的有色金属、不锈钢和各种合金;钨极电弧稳定,可焊接薄件;焊缝成分可控,无飞溅,成形美观。 缺点:焊缝厚度浅,熔敷速度小,生产率较低;钨极承载电流的能力较差,过大的电流会引起钨极熔化和蒸发,其微粒有可能进入熔池,造成污染(夹钨);惰 气体性气体(氩气、氦气)较贵,和其它电弧焊方法(如手弧焊、埋弧焊、CO 2 保护焊等)相比,生产成本较高。 (4)熔化极气保焊 工作原理:熔化极气体保护焊采用可熔化的焊丝与被焊工件之间的电弧作为热源来熔化焊丝与母材金属,并向焊接区输送保护气体,使电弧、熔化的焊丝、熔池及附近的母材金属免受周围空气的有害作用。连续送进的焊丝金属不断熔化并过渡到熔池,与熔化的母材金属融合形成焊缝金属,从而使工件相互连接起来。 优点:流密度大,热量集中,熔敷率高,焊接速度快。熔深大,适用焊接较厚的焊件(板厚为8~25mm);可获得低氢含量的焊缝。 缺点:弧光强,烟气大。 (5) 激光焊: 工作原理:利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池,冷却结晶形成焊缝。 优点:热源集中,无电极,无污染,接头HAZ小 缺点:焊接位置要求精准;焊缝快速凝固,易产生气孔,激光设备贵,成本高。

高频焊接的基本原理

高频焊接的基本原理 所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢? 集肤效应是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。 邻近效应是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。 这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。 2 高频焊接设备的结构和工作原理 了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,排除钢板表面的氧化层和杂质,使钢板完全熔合成一体。 3高频焊接质量控制的要点 影响高频焊接质量的因素很多,而且这些因素在同一个系统内互相作用,一个因素变了,其它的因素也会随着它的改变而改变。所以,在高频调节时,光是注意到频率,电流或者挤压量等局部的调节是不够的,这种调整必须根据整个成型系统的具体条件,从与高频焊接有关联的所有方面来调整。 影响高频焊接的主要因素有以下八个方面:第一,频率 高频焊接时的频率对焊接有极大的影响,因为高频频率影响到电流在钢板内部的分布性。选用频率的高低对于焊接的影响主要是焊缝热影响区的大小。从焊接效率来说,应尽可能采用较高的频率。100KHz的高频电流可穿透铁素体钢0.1mm, 400KHz则只能穿透0.04mm,即在钢板表面的电流密度分布,后者比前者要高近2.5倍。在生产实践中,焊接普碳钢材料时一般可选取350KHz~450KHz的频率;焊接合金钢材料,焊接10mm以上的厚钢板时,可采用50KHz~150KHz那样较低的频率,因为合金钢内所含的铬,锌,铜,铝等元素的集肤效应与钢有一定差别。国外高频设备生产厂家现在已经大多采用了固态高频的新技术,它在设定了一个频率范围后,会在焊接时根据材料厚度,机组速度等情况自动跟踪调节频率。第二,会合角 会合角是钢管两边部进入挤压点时的夹角。由于邻近效应的作用,当高频电流通过钢板边缘时,钢板边缘会形成预热段和熔融段(也称为过梁)这过梁段被剧烈加热时,其内部的钢水被迅速汽化并爆破喷溅出来,形成闪光,会合角的大小对于熔融段有直接的影响。 会合角小时邻近效应显著,有利提高焊接速度,但会合角过小时,预热段和熔融段变长,而

手工焊接实训(DOC)

手工焊接实训报告 姓名: 学号: 班级: 课程名称:

概要 通过本次实训进一步掌握数字万用表的组成与工作原理,了解万用表的功能,学会测量元器件的参数并且掌握判别元器件的好坏。掌握常见故障的处理方案与维修的基本技巧;掌握焊接技术。通过实习加强学生理论联系实际的能力,提高学生的动手能力;通过实习培养学生团结协作和刻苦耐劳精神。 第一章手工焊接基本工艺 1.1 元器件引线的成型 为确保使用者的人身安全,严禁使用塑料套破损、开裂的尖嘴钳带电操作;不允许用尖嘴钳装拆螺母、敲击它物;不宜在80℃以上的温度环境中使用尖嘴钳,以防止塑料套柄熔化或老化;为防止尖嘴钳端头断裂,不宜用它夹持网绕较硬、较粗的金属导线及其他硬物;尖嘴钳的头部是经过淬火处理的,不要在锡锅或高温的地方使用,以保持钳头部分的硬度。为了便于安装和焊接,提高装配质量和效率,加强电子设备的防震性,在安装前,根据安装位置的特点及技术方面的要求,要预先把原件引线弯成一定的形状。 元器件引线成型的常见形式有以下几种: (1)电阻引线的成型。要求弯曲点到原件端面的最小距离不小 于2mm,弯曲半径应大于或等于2倍的引线直径,以减小机械应力,防止引线折断或拔出。立式安装时高度大于等于2mm,卧式安装时高度等于0mm到2mm。 (3)扁平封装集成芯片引线成型。

(4)元器件安装孔距不合适或用于插装发热元件情况下的引线 成型要求半径大于等于2倍引线直径,元件与印制板有2mm到5mm的距离,多用于双面印制板或发热器件。 引线成型技术要求: (1)引线成型后,元件本体不就产生破裂,表面封装不应损坏,引线弯曲部分不允许出现模印、压痕和裂纹。 (2)引线成型后,其直径的减少或变形不应超过10%,其表面镀 层剥落长度不应大于引线直径的1/10. (3)若引线上有熔接点和元件本体之间不允许有弯曲点,熔接 点到弯曲点之间应保持2mm的间距。 (4)引线成型尺寸应符合安装的要求。无论是水平安装还是垂 直安装,无论是三极管还是集成电路,通常引线成型尺寸都有具体要求 1.2 搪锡技术 搪锡的目的:为了整机装配时顺利进行焊接工作,预先在元器件的引线、导线端头和各类线端子上挂上一层薄面均匀的焊锡。 1、常见的搪锡方法 导线端头和元器件引线的常见搪锡方法有:电烙铁搪锡、搪锡槽搪锡、超声波搪锡三种。 2、搪锡的质量要求 经过搪锡的元器件引线和导线端头,其根部与离搪锡处应有一定的距离,导线留1mm,元器件留2mm以上。

相关文档
最新文档