2021年《概率论与数理统计》考研复习笔记与辅导讲义
概率论与数理统计知识点总结(免费超详细版)(精编文档).doc

【最新整理,下载后即可编辑】《概率论与数理统计》第一章 概率论的基本概念 §2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生 B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk k nk k A P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk k nk k A P A P 11)()( (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃ §4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A 包含k 个基本事件,即}{}{}{2]1ki i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率 (2) 条件概率符合概率定义中的三个条件1。
《概率论与数理统计》讲义笔记【高斯课堂】(页眉页脚已除)

5. 某保险公司把被保险人分为 3 类:“谨慎的”、“一般的”、“冒失的”,统计资料表明,这 3 种人在一年内发生事故的概率依次为 0.05, 0.15, 0.30 ;如果“谨慎的”被保险人占 20% , “一般的占 50% ,“冒失的”占 30% ,问: (1) 一个被保险人在一年内出事故的概率是多大? (2) 若已知某被保险人出了事故,求他是“谨慎的”类型的概率。
P(B1
A)
P(B1) P(A P( A)
B1)
0.6 0.01 0.014
3 7
6
题 3.盒中有 4 个红球,6 个黑球,今随机地取出一球,观察颜色后放回,并加上同色球 2 个, 再从盒中第二次抽取一球,求:
⑴第二次取出的是黑球的概率; ⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率。 解:⑴设事件 A 为“第二次取出的是黑球” B1为第一次取出是红球, B2 为第一次取出是黑球
常见题型 大题
1. 条件概率、乘法公式
题 1.投一颗骰子,事件 A 为“点数大于 3 ”,事件 B 为“点数为 5 ”。则 P(B A) _______。
解: P(AB) P(B) 1 6
P(A) 1 2
1
P(B
A)
P( AB) P( A)
6 1
1 3
2
区别:
P(B)
样本空间为点数 1,
2,
A. A 是必然事件
B. P B A 0
C. A B
D. P A P B
4. 仓库中有10 箱同种规格的产品,其中 2 箱、3 箱、5 箱分别由甲、乙、丙三个厂生产,三 个厂的正品率分别为 0.7, 0.8, 0.9 ,现在从这10 箱产品中任取一箱,再从中任取一件
考研数学《概率论与数理统计》知识点总结

第一章概率论的基本概念第二章随机变量及其分布第三章多维随机变量及其分布第四章随机变量的数字特征⎪⎪⎪⎭⎝nn n n c c c 21第五章大数定律及中心极限定理第六章样本及抽样分布定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数,记为Q2或M,称为样本中位数.分位数,记为Q1,称为第一四分位数.分位数,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-或X>Q3+,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.第七章参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为α1)-单个总体X~N(μ,σ2),两个总体X~N(μ1,σ12),Y~N(μ2,σ22).第八章假设实验。
概率论与数理统计第二章笔记

概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
概率论与数理统计复习笔记(精编文档).doc

【最新整理,下载后即可编辑】概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A∪B (和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理)(3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若 k Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p . 关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),(归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征,}{},{j ji j j i p p y Y P y Y x X P •=====,}{},{•=====i ji i j i p p x X P y Y x X P一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x) 数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛)函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n p n p (1- p) 3.X~ π(λ) λ λ 4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则 X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准 (1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计复习要点知识点doc

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======U IIU二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21Λ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
《概率论与数理统计》笔记(考研特别)

《概率论与数理统计》笔记(考研版)一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.应用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元).这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
硕士研究生《概率论与数理统计》复习题

2021级硕士研究生?概率论与数理统计?复习题一、填空题1、随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,条件概率8.0)(=A B P ,求)(B A P 。
2、 设两事件A ,B 满足条件)()(B A P AB P =,且)10()(<<=p p A P ,那么)(B P = 。
3、 设B A ,为两事件,4.0)(,6.0)(,7.0)(===A B P B P A P ,求)(B A P ⋃ 。
4、 在区间)1,0(中随机的取两个数,那么这两个数之差的绝对值小于21的概率为 。
5、 设随机变量⎪⎪⎭⎫ ⎝⎛-p pX 110~,10<<p ,当____=p 时,)(X D 取得最大值. 6、 设Y X ,为随机变量,0)()(==Y E X E ,2)()(22==Y E X E ,X 与Y 的相关系数21=XY ρ ,那么=+2)(Y X E _________。
7、 设随机变量X 和Y 的相关系数为0.9,假设12-=X Z ,那么Y 与Z 的相关系数为_________。
8、 设随机变量Y X ,相互独立,其中X 在[-2,4]上服从均匀分布,Y 服从参数为3的泊松分布,那么)2(Y X D -= 。
9、 621,,,X X X 为来自正态总体)1,0(N 的简单随机样本,设26542321)()(X X X X X X Y +++++=假设使随机变量CY 服从2χ分布,那么常数=C 。
10、 设总体)9.0,(~2μN X ,样本容量为9,样本均值5=x ,那么未知参数μ的95%的置信区间是_________。
11、设总体),(~2σμN X ,2σ,要使μ的置信度为α-1)10(<<α且置信区间的长度不大于l ,那么样本容量≥n 。
12、设总体),(~2σμN X ,2σ未知,2,S X 分别为样本均值和样本方差,样本容量为n ,检验00:μμ=H ,01:μμ≠H (0μ)的双侧拒绝域=W ___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年《概率论与数理统计》考研复习笔记与辅导讲义第1章随机事件和概率一、考研辅导讲义1.随机现象与样本空间(1)随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.(2)样本空间随机现象的一切可能的基本结果,组成的集合,称是由基本结果构成的样本空间,记作,又称样本点.(3)随机事件样本空间的子集称为随机事件,简称事件,常用大写字母A,B,C等表示.注:①随机事件是由样本空间中的样本点组成,由一个样本点组成的子集是最简单件,称为基本事件.②随机事件既然由样本点组成,因此,随机事件是由基本事件组成.③如果一次试验的结果为某一基本事件出现,就称该基本事件出现或发生.如果组成事件A的一个基本事件出现或发生,也称事件A出现或发生.④把Ω看成一事件,则每次试验必有Ω中某一基本事件(即样本点)发生,也就是每次试验Ω必然发生,称Ω为必然事件.⑤把不包含任何样本点的空集看成一个事件,称为不可能事件.(4)随机变量表示随机现象结果的变量称为随机变量,常用大写字母X,Y,Z,或者ξ,η等表示.2.事件间的关系(1)包含关系如果事件A发生必然导致事件B发生,则称事件B包含事件A,或称事件A包含于事件B,记为或.(2)事件相等若与同时成立,则称事件A与事件B相等,记作A=B.(3)互斥事件(互不相容事件)若事件A与事件B满足关系,即A与B同时发生是不可能事件,则称事件A和事件B为互斥或互不相容,即两互斥事件没有公共样本点.注:事件的互斥可以推广到有限多个事件或可数无穷多个事件的情形:①若n个事件中任意两个事件均互斥,即,i≠j,i,j =1,2,…,n,则称这n个事件是两两互斥或两两互不相容.②如果可数无穷多个事件…中任意两个事件均互斥,即,i≠j,i,j=1,2,…,n,…,则称这可数无穷个事件是两两互斥或两两互不相容.【例】对任意两个互不相容的事件A与B,必有().A.如果P(A)=0,则P(B)=0B.如果P(A)=0,则P(B)=1C.如果P(A)=1,则P(B)=0D.如果P(A)=1,则P(B)=1【答案】C查看答案【解析】.(4)对立事件如果事件A与事件B有且仅有一个发生,则称事件A与事件B为对立事件或互逆事件,记为或.注:①如果A与B为对立事件,则A,B不能同时发生,且必有一个发生,即A、B满足A∪B=Ω且.②在样本空间中,集合是由所有不属于事件A的样本点构成的集合.【例】设随机事件A和B满足条件,则().A.B.C.D.【答案】A查看答案【解析】,所以即而,故,也就有即A∪B=Ω.3.事件间的运算(1)事件的交(积)如果事件A与事件B同时发生,则称这样的一个事件为事件A与事件B的交或积,记为A∩B或AB,即集合A∩B是由同时属于A与B的所有公共样本点构成.注:事件的交可以推广到有限多个事件或可数无穷多个事件的情形:(2)事件的并如果事件A与事件B至少有一个发生,则称这样一个事件为事件A与事件B的并或和,记为A∪B,即集合A ∪B是由属于A与B的所有样本点构成.注:事件的并可推广到有限多个事件或可数无穷多个事件的情形:(3)完备事件组如果有限个事件满,且,则称为Ω的一个完备事件组或完全事件组.注:可以推广完备事件组到可数无穷多个事件的情形:且.(4)事件的差事件A发生而事件B不发生的事件称为事件A与事件B的差,记为A-B.即在样本空间中集合A-B是由属于事件A而不属于事件B的所有样本点构成的集合.显然.(5)事件的运算规律交换律结合律分配律对偶律【例】A,B,C为任意三随机事件,则事件(A-B)∪(B-C)等于事件().A.A-CB.A∪(B-C)C.(A∪B)-CD.(A∪B)-BC【答案】D查看答案【解析】因,故.而图1-14.概率的概念及基本性质(1)概率的公理化定义设为一个样本空间,F为的某些子集组成的一个事件域.如果对任一事件F,定义在F上的一个实值函数满足:①非负性公理:若F,则,②正则性公理:③可列可加性公理:若互不相容,则,则称为事件A的概率,称三元素F为概率空间.(2)概率性质①;②若两两互斥,则有③;④,则P(A)≤P(B);⑤0≤P(A)≤1【例】若A,B为任意两个随机事件,则().【2015数一、数三】A.B.C.D.【答案】C查看答案【解析】由于,按概率的基本性质,有且,从而.(3)事件独立性设A,B两事件满足等式P(AB)=P(A)P(B),则称A与B相互独立.注:对n个事件,如果对任意k(1<k≤n),任意满足等式则称为相互独立的事件.事实上,n个事件相互独立需要个等式成立.(4)相互独立的性质①A与B相互独立A与或与B或与相互独立.将相互独立的n个事件中任何几个事件换成它们相应的对立事件,则新组成的n个事件也相互独立.【例】设,,为三个随机事件,且与相互独立,与相互独立,则与相互独立的充分必要条件是().[数三2017研]A.与相互独立B.与互不相容C.与相互独立 D.与互不相容【答案】C查看答案【考点】相互独立【解析】由,得.【例】已知随机事件A,B,C中,满足P(AB)=1.则事件().A.相互独立B.两两独立,但不一定相互独立C.不一定两两独立D.一定不两两独立【答案】A查看答案【解析】讨论事件的独立性,可等价的考虑A,B,C的独立性.因为P(AB)=1.可知P(A)=P(B)=1,而概率等于1的事件与所有的事件相互独立.所以成立:P(AB)=P(A)P(B);P(AC)=P(A)P(C);P (BC)=P(B)P(C).又因P(AB)=1.所以事件AB与C也相互独立,P(ABC)=P(AB)P(C)=P(A)P(B)P(C).总之A,B,C相互独立.②当0<P(A)<1时,A与B独立P(B|A)=P(B)或成立.③若相互独立,则必两两独立,反之,若两两独立,则不一定相互独立.④当相互独立时,它们的部分事件也是相互独立的.【例】设随机事件A与B相互独立,且,则().A.0.1B.0.2C.0.3D.0.4【答案】B查看答案【解析】因为事件A,B相互独立,则.故于是,则.(5)概率的运算公式①加法公式P(A∪B)=P(A)+P(B)-P(AB);P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P (ABC).②减法公式P(A-B)=P(A)-P(AB);③乘法公式当P(A)>0时,P(AB)=P(A)P(B|A);当>0时,有④全概率公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,有【例】甲袋中有2个白球3个黑球,乙袋中一半白球一半黑球.现从甲袋中任取2球与从乙袋中任取一球混合后,再从中任取一球为白球的概率为().A.B.C.D.【答案】C查看答案【解析】设事件A为最后取出的球为白球,事件B为球来自甲袋,显然,为球来自乙袋.且B,构成一个Ω的完备事件组,由全概率公式,因为最后三个球中二个球是从甲袋中来.所以取出的球来自甲袋概率为,当然.,这是因为已知取出的球来自甲袋的条件下,取出的为白球的概率,就相当于从甲中取出一白球的概率,甲中5个球2个为白,故,同理.因为乙中半白半黑,总之⑤贝叶斯公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,且P (A)>0有【例】设A、B为随机概率,若,则的充分必要条件是().[数一2017研]A.B.C.D.【答案】A查看答案【考点】概率公式计算【解析】因为,得,化简得.A项,,因为,所以.5.古典概型、几何概型、条件概率及伯努利试验(1)古典型概率当试验结果为有限n个样本点,且每个样本点的发生具有相等的可能性,称这种有限等可能试验为古典概型.此时如果事件A由个样本点组成,则事件A的概率称P(A)为事件A的古典型概率.【例】袋中有1个红球,2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.求P{X =1︱Z=0};解:由于本题是有放回地取球,则基本事件总数为.(2)几何型概率当试验的样本空间是某区域(该区域可以是一维,二维或三维等等),以L(Ω)表示样本空间Ω的几何度量(长度、面积、体积等等).L(Ω)为有限,且试验结果出现在Ω中任何区域的可能性只与该区域几何度量成正比.称这种拓广至几何度量上有限等可能试验为几何概型.此时如果事件A的样本点表示的区域为,则事件A的概率称这种P(A)为事件A的几何型概率.【例】在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为______.【答案】【解析】本题是几何型概率.不妨假定随机地取出两个数分别为X和Y.显然X与Y是两个相互独立的随机变量.如果把(X,Y)看成平面上的一个点的坐标,则由于0<X<1,0<Y<1,所以(X,Y)为平面上正方形0<X<1,0<Y<1中的一个点.而X与Y两个数之差的绝对值小于的点(X,Y)对应于正方形中的区域.图1-2在区间(0,1)中随机选取的所有可能的两个数X和Y.这些(X,Y)点刚好是图1-3单位正方形中满足的点的区域,就是图中阴影标出的区域D.根据几何型概率(3)条件概率设A,B为两事件,且P(A)>0,称为在事件A发生的条件下事件B发生的条件概率.【例】设A、B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则().【2016数三】【答案】A查看答案【解析】根据条件得P(AB)=P(B),则【例】设A,B,C是随机事件,A与C互不相容,P(AB)=,P=,则P(AB|)=______.【答案】【解析】由条件概率的定义知,P(AB︱)=,其中P()=1-P (C)=1-=,P(AB)=P(AB)-P(ABC)=-P(ABC),由于A,C互不相容,即AC=Ø,ABC AC,得P(ABC)=0,代入得P(AB)=,故将P()=和P(AB)=,代入公式,得P(AB)==.(4)伯努利试验如果试验E只有两个可能的结果:A及,并且P(A)=p,(其中0<p<1),把E独立地重复n次的试验就构成了一个试验,这个试验称作n重伯努利试验,又称n次独立重复试验,并记作B.一个伯努利试验的结果可以记作ω=(ω1,ω2,…,ωn)其中的ωi(1≤i≤n)的全体就是这个伯努利试验的样本空间Ω,对于ω=(ω1,ω2,…,ωn)∈Ω,如果ωi(1≤i≤n)中有k个为A,则必有n-k个为,于是由独立性即得如果要求“n重伯努利试验中事件B出现k次”这一事件的概率为【例】设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为.【2016数三】【答案】【解析】根据题意,取球次数恰好为4,则前三次恰好取到三种颜色中的两种,第四次取到剩下一种颜色的球.故前三次中取到的两种颜色取到的次数分别为1次和2次.综上,取球次数恰好为4的概率为【例】在伯努利试验中,每次试验成功的概率为p,则在第n次成功之前恰失败了m次的概率为______.图1-3【答案】【解析】为了分析试验的结构,可以作图形分析:“第n次成功之前失败了m次”这事件意味着第n次成功前有(n-1)次成功和m次失败.总共做了(n +m)次试验.最后一次是成功,前n+m-1次试验中有m次失败和(n-1)次成功,故事件的概率应为。