制药废水组成及特性
制药废水处理技术

工艺流程见图1。
• 预处理
• 预处理单元主要包括:格栅、斜板沉淀池 和凋节水解池,其中调节水解池设置潜水 搅拌,保证水质混合均匀。由于原水为制 药废水,水解酸化时可能产生有害气体, 为避免产生二次污染,调节池集中排气, 经活性炭吸附后外排。
• HDIC(厌氧多循环反应器)将EGSB和IC两种工艺 相结合,在已有的IC反应器基础上增加EGSB出 水回流,并设置了内回流和沼气回流,强化了反 应器内循环,使得液体上升流速增大,容积负荷 高且产气量大;颗粒污泥的沉降速度远大于液体 的上升流速,颗粒污泥不会因为液体的紊动而流 失,保证了反应器内的污泥浓度;反应器的启动 时间短,高径比大,占地面积小。由于厌氧出水 水质一般达不到排放标准,仍需后接好氧处理。
器下的反应室产生的沼气,使得在分离器 之上的悬浮物沉淀下来;能够适应HDIC
反应器上升流速高的要求,不影响气、液、 固分离效果。将HDIC反应器隔成两个反 应室,使得反应器的实际处理能力大大增
强,抗冲击负荷能力提高,保证了运行的 稳定性。
③布水系统是厌氧反应器的关键配置,它 对于污泥与进水充分接触、最大限度地利 用反应器的污泥是十分重要的。布水系统 兼有配水和水力搅动作用,为了保证这两 个作用的实现,需要满足如下原则:进水 装置的设计使分配到各点的流量相同;进 水管不易堵塞;尽可能满足污泥床水力搅 拌的需要,保证进水有机物与污泥迅速混 合,防止局部产生酸化现象。
• ④控制系统是厌氧反应器的必要配置,它 通过对HDIC的进水量、回流量、温度、pH、
沼气产量等的监控,可保证系统高效稳定
运行,避免反应器因水质的波动受到冲击
而长时间不能恢复正常运行;同时使整个 运行管℃,因此在HDIC反 应器进水处设换热装置,利用水–水换热器 加热。
02 制药废水种类、特点、工艺

制药废水种类、工艺、特点、处理工艺广州绿日环保科技有限公司二〇一六年十一月五日需要更专业资料及服务欢迎来电咨询,将第一时间给你最优质的服务。
一、制药废水的特点制药废水通常属于较难处理的高浓度有机污水之一, 因药物产品不同、生产工艺不同而差异较大, 其特点是组成复杂, 有机污染物种类多、浓度高, COD Cr值和BOD5 值高且波动性大, 废水的BOD5 / COD Cr值差异较大, NH3-N 浓度高, 色度深, 毒性大, 固体悬浮物SS 浓度高。
而且制药厂通常是采用间歇生产, 产品的种类变化较大, 造成了废水的水质、水量及污染物的种类变化较大。
制药工业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。
近几年来, 我国各类医药化工及保健品制造业迅猛发展, 而在制药过程中排放的大量有毒有害废水严重危害着人们的健康。
寻求工艺合理, 运行稳定, 维护管理方便, 能最大限度地体现社会、经济、环境效益的工艺技术, 是亟待研究的方向和思路。
1、药品分类特点1. 药品按特点分类药品按其特点可分为抗生素、有机药物、无机药物和中草药4大类。
目前我国生产的常用药物达2 000种左右,不同种类的药物采用的原料种类和数量各不相同。
此外,不同药物的生产工艺及合成路线又区别较大。
在医药的生产过程中往往需要将生物、物理和化学等诸多工艺进行综合,因此产生的制药废水的组成十分复杂。
2. 药品按工艺分类制药工业按其生产工艺过程可分为生物制药和化学制药两种。
所谓的生物制药是通过微生物的生命活动,将粮食等有机原料进行发酵、过滤,并将药品提炼而生成的工艺过程;化学制药则是采用化学方法使其他有机物质或无机物质发生化学反应生成其他物质的合成制药方法。
3.其他分类另外,还有一类采用物理或化学的方法从动植物中提取或直接形成药物的制药生产方式,其药物产品即国内生产厂家众多的中成药,国外也称作天然药物,此类药物近年发展较快,也是我国制药行业优先发展的重点。
制药废水组成及特性

制药工业废水主要包括四种:抗菌素工业废水;合成药物生产废水;中成药生产废水;各类制剂生产过程得洗涤水与冲洗废水。
中药废水得水质特点就就是含有糖类、苷类、有机色素类、蒽醌、鞣质体、生物碱、纤维素、木质素等多种有机物;废水SS高,含泥沙与药渣多,还含有大量得漂浮物;COD浓度变化大,一般在2 000-6 000 mg/L之间,甚至在100-11 000 mg/L之间变化;色度高,在500倍左右;水温25-60℃。
化学制药废水得水质特点就就是废水组成复杂,除含有抗生素残留物、抗生素生产中间体、未反应得原料外,还含有少量合成过程中使用得有机溶剂。
COD浓度大,一般在4 000~4 500 mg/L之间。
每吨抗生素平均耗水量在万吨以上,但90%以上就就是冷却用水,真正在生产工艺中不可避免产生得污染废水仅占5%左右,这部分工艺废水都罐水,洗塔水,树脂再生液及洗涤水,地面冲洗水等,排放严重超标,主要就就是COD、BOD,平均超标100倍以上,其她还有氮、硫、磷、酸、碱、盐。
每吨抗生素产生得高浓度有机废水,平均为150 -200m3,发酵单位低得品种,其废水量成倍增加,这种废水得COD含量平均为15 000 mg/L左右,抗生素行业废水排放量约为350万m3左右,造成水环境得严重污染,每年得排污费及罚款至少2 000万元以上。
就就是发酵过滤后得提炼废水;其次还有发酵废液,洗1制药废水得来源生物法制药得废水可分为提取废水、洗涤废水与其她废水。
废水中污染物得主要成分就就是发醉残余得营养物,如糖类、蛋白质、脂类与无机盐类(Ca2+、Mg2+,K+,Na+,SO42-,HPO42-,Cl-,C2O4等),其中包括酸、碱、有机溶剂与化工原料等[1-2]。
1、1提取废水提取废水就就是经提取有用物质后得发酵液,所以有时也叫发酵废水。
含大量未被利用得有机组分及其分解产物,为该类废水得主要污染源。
另外,在发酵过程中由于工艺需要采用一些化工原料,废水中也含有一定得酸、碱与有机溶剂等。
制药废水组成及特性

制药工业废水主要包括四种:抗菌素工业废水;合成药物生产废水;中成药生产废水;各类制剂生产过程的洗涤水和冲洗废水。
中药废水的水质特点是含有糖类、苷类、有机色素类、蒽醌、鞣质体、生物碱、纤维素、木质素等多种有机物;废水SS高,含泥沙和药渣多,还含有大量的漂浮物; COD浓度变化大,一般在2 000-6 000 mg/L之间,甚至在100-11 000 mg/L之间变化;色度高,在500倍左右;水温25-60℃。
化学制药废水的水质特点是废水组成复杂,除含有抗生素残留物、抗生素生产中间体、未反应的原料外,还含有少量合成过程中使用的有机溶剂。
COD浓度大,一般在4 000~4 500 mg/L之间。
每吨抗生素平均耗水量在万吨以上,但90%以上是冷却用水,真正在生产工艺中不可避免产生的污染废水仅占5%左右,这部分工艺废水都罐水,洗塔水,树脂再生液及洗涤水,地面冲洗水等,排放严重超标,主要是COD、BOD,平均超标100倍以上,其他还有氮、硫、磷、酸、碱、盐。
每吨抗生素产生的高浓度有机废水,平均为150 -200 m3,发酵单位低的品种,其废水量成倍增加,这种废水的COD含量平均为15 000 mg/L左右,抗生素行业废水排放量约为350万m3左右,造成水环境的严重污染,每年的排污费及罚款至少2 000万元以上。
是发酵过滤后的提炼废水;其次还有发酵废液,洗1制药废水的来源生物法制药的废水可分为提取废水、洗涤废水和其他废水。
废水中污染物的主要成分是发醉残余的营养物,如糖类、蛋白质、脂类和无机盐类(Ca2+、Mg2+,K+,Na+,SO42-,HPO42-,Cl-,C2O4等),其中包括酸、碱、有机溶剂和化工原料等[1-2]。
1.1提取废水提取废水是经提取有用物质后的发酵液,所以有时也叫发酵废水。
含大量未被利用的有机组分及其分解产物,为该类废水的主要污染源。
另外,在发酵过程中由于工艺需要采用一些化工原料,废水中也含有一定的酸、碱和有机溶剂等。
制药行业废水的特点及工艺流程

制药行业废水的特点及工艺流程制药行业的废水特点及工艺流程:制药行业是一个高度发达的行业,其废水的特点主要包括高有机物质浓度、高氮、高磷、高COD(化学需氧量)和BOD(生物需氧量)以及有毒有害物质的存在。
这些特点对废水处理工艺的选择和运行都有一定的要求。
一、制药废水的特点:1.高有机物浓度:制药废水中有机物浓度较高,大部分是有机酸、酯类、酮类、腈类、醇类等有机物质。
3.高COD和BOD:制药废水的化学需氧量(COD)和生物需氧量(BOD)较高,主要是由于有机物质的存在造成的。
4.有毒有害物质:制药废水中存在着各种有毒有害物质,如重金属离子、有机卤化物、有机溶剂、抗生素等。
二、制药废水处理的工艺流程:制药废水处理的工艺流程一般包括预处理、生物处理、深度处理等多个环节。
1.预处理:预处理主要是通过物理方法对废水进行初步处理,包括筛网、砂滤等。
筛网用于去除废水中的固体杂质和浮沉物,砂滤则在去除一些悬浮物的同时,也能去除一部分有机物质。
2.生物处理:生物处理是制药废水处理的核心环节,主要是利用微生物降解有机物。
常用的生物处理方法有活性污泥法、生物膜法、固定化床法等。
活性污泥法是最常用的方法之一,通过加入适量的微生物,使其在好氧或厌氧条件下将有机物分解成较低分子量的物质。
生物膜法则利用生物膜将废水中有机物降解为无害物质。
3.深度处理:深度处理主要是对废水中的一些难降解物质以及有害物质进行进一步处理。
常见的深度处理方法有吸附法、氧化法和离子交换法等。
吸附法利用吸附剂去除废水中的有机物质和重金属离子。
氧化法则通过化学氧化或光化学氧化降解废水中的有机物质。
离子交换法是利用离子交换树脂去除废水中的无机离子,如氨氮、硝酸盐、磷酸盐等。
4.中水回用:在废水处理过程中,可以考虑对废水进行中水回用。
中水回用既能减少水资源的浪费,同时也能降低对环境的负荷。
综上所述,制药废水处理需要综合考虑废水的特性,选择合适的工艺流程进行处理。
制药废水

制药废水处理方案
总述:针对制药废水,山东国瑞环保提供制药废水处理方案,制药废水回用方案。
系统采用MBR生物反应器处理制药废水,出水清澈,SS含量低,水质中的有机污染物、磷酸盐、细菌、病毒、寄生虫卵等均被截留在MBR生物反应器内,具有运行稳定、结构紧凑、维护简单等优势。
制药工业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。
制药废水通常属于较难处理的高浓度有机污水之一,因药物产品不同、生产工艺不同而差异较大,加之间歇性排放,其特点是组成复杂,有机污染物含量高、浓度高,色度深,毒性大,固体悬浮物SS 浓度高。
随着我国医药工业的发展,制药废水已逐渐成为重要的污染源之一,对环境保护造成了严重影响。
本系统采用MBR工艺(膜生物反应器)对制药废水进行处理回用,MBR工艺是膜技术与污水生物处理技术有机结合的一种新型、高效的废水处理工艺,发源于20世纪70年代的美国。
对于制药生产废水,采用传统的生化处理工艺很难达到预期的处理效果,用MBR生物反应器处理工艺,是目前较好的选择。
★工艺特点:
1、出水水质好
本系统出水清澈,SS含量低,水质中的有机污染物、磷酸盐、细菌、病毒、寄生虫卵等均被截留在MBR生物反应器内。
2、运行稳定
由于MBR生物反应器中污泥浓度高,在负荷变化大的情况下,本系统的去除效果变化小,处理出水稳定。
3、性价比高
本系统处理工艺流程短,占地小,结构紧凑、简单,运行稳定灵活, 操作管理、维护简单,节约工程投资。
★适用范围:制药企业、生物制药公司、药厂。
制药行业废水COD超标

制药废水的COD超标处理
一.废水特性:
制药废水:制药厂在生产中成药或西药时所产生的废水。
制药废水主要包括抗生素生产(生物制药)废水、合成药物生产(化学制药)废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。
药物的生产:是通过化学合成工艺和药用植物中分离提纯得到原料药,其因药物种类不同,生产工艺不同且流程复杂,原辅材料种类多,物料净收率较低,副产品多,导致制药废水具有成分差异大,组分复杂,污染物量多,COD 高,BOD5和CODcr 比值低且波动大,可生化性很差,难降解物质多,毒性强,间歇排放,水量水质及污染物的种类波动大等特点。
二.废水处理:
①预处理:混凝法、气浮法、微电解、Fenton试剂、催化氧化等;
②厌氧工艺:UASB、两相厌氧消化、EGSB等;
③好氧工艺:生物接触氧化法、CASS、SBR、活性污泥法等
三.废水工艺流程:
四.常见案例
江西某制药厂每天生产废水和厂区内的生活废水的水量一共500吨,经过工艺处理之后,出水COD200mg/L超标,标准是100mg/L以下。
对此取了出水水样添加COD降解剂做了个实验:
1)实验数据:(工艺处理后的加药实验)
由实验数据可得,投加希洁cod降解剂1000ppm即可使废水达标,工程师决定溶成10%的溶液,利用加药罐和泵去调节投加量,这样可省下了不少的劳动力,出水也达标了。
中药类制药废水

一、中药类制药废水来源及水质特点1、来源中药生产过程中产品的提纯与净化都离不开水。
中成药生产过程的浸泡、洗药、煮药、蒸煮、提取、蒸发浓缩、离心过滤、出渣、干燥工段都需要以水为载体。
2、水质特点中药制药废水中主要含有各种天然的有机物,其主要成分为糖类、有机酸、苷类、蒽醌、木质素、生物碱、但宁、鞣质、蛋白质、淀粉及它们的水解物等。
制药废水中含有许多生物难降解的环状化合物、杂环化合物、有机磷、有机氯、苯酚及不饱和脂肪类化合物。
这些物质的去除或转化是制药废水COD去除的重要途径。
中药材废水主要污染物为高浓度有机废水的污染,对于中药制药工业,由于药物生产过程中不同药物品种和生产工艺不同,所产生的废水水质及水量有很大的差别,而且由于产品更换周期短,随着产品的更换,废水水质、水量经常波动,极不稳定。
中药废水的另一个特点是有机污染物浓度高,悬浮物,尤其是木质素等比重较轻、难于沉淀的有机物含量高,色度较高,废水的可生化性较好,多为间歇排放,污水成分复杂,水质水量变化较大。
二、处理方法1、预处理调节池:废水流经细隔栅池,有效去除细小纤维素等不溶性悬浮物,减轻后续生化处理的负荷;同时,考虑到中成药生产废水排放的不连续和水质变化大的特点,在细隔栅池的后面设置了一个调节池,以均衡水质水量,有效削减冲击负荷,便于后续的处理。
2、处理工艺2.1、UASB厌氧反应器采用钢筋混凝土结构或采用钢板结构,多为地上式,常温消化,废水进入UASB厌氧反应器中,进行厌氧反应处理。
UASB反应器是一种高效的厌氧生物反应器,它由进配水系统、反应区、气-固-液三相分离器、出水系统和排泥系统组成。
配水系统将高浓度的中药废水均匀的分配到UASB反应器底部,废水中的有机物与污泥床中的高浓度颗粒污泥充分接触,反应产生的沼气和上升的污水一起搅动污泥层,部分颗粒污泥随气流和水流的向上运动与自身重力而形成悬浮污泥区,剩余的有机物在此获得进一步的降解。
UASB反应器内的容积负荷高、颗粒污泥沉速大、结构紧凑、构造简单、运行方便等特点,使它特别适用于处理高、中浓度的中药有机工业废水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制药工业废水主要包括四种:抗菌素工业废水;合成药物生产废水;中成药生产废水;各类制剂生产过程得洗涤水与冲洗废水。
中药废水得水质特点就是含有糖类、苷类、有机色素类、蒽醌、鞣质体、生物碱、纤维素、木质素等多种有机物;废水SS高,含泥沙与药渣多,还含有大量得漂浮物; COD浓度变化大,一般在2000—6 000mg/L之间,甚至在100-11 000 mg/L之间变化;色度高,在500倍左右;水温25—60℃、化学制药废水得水质特点就是废水组成复杂,除含有抗生素残留物、抗生素生产中间体、未反应得原料外,还含有少量合成过程中使用得有机溶剂。
COD浓度大,一般在4 000~4 500 mg/L之间、每吨抗生素平均耗水量在万吨以上,但90%以上就是冷却用水,真正在生产工艺中不可避免产生得污染废水仅占5%左右,这部分工艺废水都罐水,洗塔水,树脂再生液及洗涤水,地面冲洗水等,排放严重超标,主要就是COD、BOD,平均超标100倍以上,其她还有氮、硫、磷、酸、碱、盐。
每吨抗生素产生得高浓度有机废水,平均为150 -200 m3,发酵单位低得品种,其废水量成倍增加,这种废水得COD含量平均为15 000 mg/L左右,抗生素行业废水排放量约为350万m3左右,造成水环境得严重污染,每年得排污费及罚款至少2000万元以上、就是发酵过滤后得提炼废水;其次还有发酵废液,洗1制药废水得来源生物法制药得废水可分为提取废水、洗涤废水与其她废水、废水中污染物得主要成分就是发醉残余得营养物,如糖类、蛋白质、脂类与无机盐类(Ca2+、Mg2+,K+,Na+,SO42—,HPO42—,Cl-,C2O4等),其中包括酸、碱、有机溶剂与化工原料等[1—2]。
1.1提取废水提取废水就是经提取有用物质后得发酵液,所以有时也叫发酵废水、含大量未被利用得有机组分及其分解产物,为该类废水得主要污染源。
另外,在发酵过程中由于工艺需要采用一些化工原料,废水中也含有一定得酸、碱与有机溶剂等。
1。
2洗涤废水洗涤废水来源于发酵罐得清洗、分离机得清洗及其它清洗工段与洗地面等,水质一般与提取废水(发酵残液)相似,但浓度较低。
1、3其她废水生物制药厂大多有冷却水排放、一般污染段浓度不大,可直接排放,但最好回用。
有些药厂还有酸、碱废水,经简单中与可达标排放、在生物制药废水中,维生素C生产废水有机污染也十分严重,综合废水得COD含量可达为8000~10000 mg/L,含甲醇、乙醇、甲酸、蛋白质、古龙酸、磷酸盐等物质,废水偏酸性。
2制药废水水质特征生物制药废水一般成分复杂,污染物浓度高,含有大量有毒、有害物质、生物抑制物(包括一定浓度得抗生素)、难降解物质等,带有颜色与气味,悬浮物含量高,易产生泡沫等。
2.1 COD浓度高以抗生素废水为例,其中主要为发醉残余基质及营养物、溶媒提取过程得萃余液、经溶媒回收后派出得蒸馏釜残液、离子交换过程排出得吸附废液、水中不溶性抗生素得发酵滤液、染菌倒灌液等、2.2 SS浓度高其中主要为发酵得残余培养基质与发酵产生得微生物丝菌体。
如庆大霉素SS为8000 mg/L左右,对厌氧EGSB工艺处理极为不利。
2、3存在难生物降解物质与有抑菌作用得抗生素等毒性物质对于抗生素类废水来说,由于发酵中抗生素得率较低(0.1%~3%)、分离提取率仅为60%~70%,大部分废水中得抗生素残留浓度均较高。
2、4硫酸盐浓度高如链霉素废水中得硫酸盐含量为3000 mg/L左右,最高可达5500 mg/L;土霉素为2000 mg/L左右;庆大霉素为4000 mg/L。
2、5水质成分复杂中间代谢产物、表面活性剂(破乳剂、消沫剂等)与提取分离中残留得高浓度酸、碱、有机溶剂等化工原料含量高。
该类成分易引起pH波动大、色度高与气味重等不利因素,影响厌氧反应器中甲烷菌正常得活动[3-4]。
3国内制药废水得处理工艺现状制药工业废水通常属于较难处理得高浓度按照医药产品种类区分,我国制药工业主要为生物制药、化学制药与中草药生产。
生物制药就是采用微生物对各种有机原料进行发酵、过滤、提炼,从而生产各种抗生素、氨基酸及一些药物中间体、化学制药就是采用化学反应工艺,将有机原料与无机原料等制成药物中间体及合成药剂。
中草药生产就是对中草药材进行加工、提取制剂或中成药, 生产工艺主要包括原料得前处理与提取制剂[1]。
制药工业生产得发展带来了排废得增加,制药工业得“三废" 污染危害主要来自原料药生产。
由于生产工序繁琐,生产原料复杂,直接造成产品转化率低而“三废”产生量大。
药剂生产过程中残余得原料、产品与副产品如果不加妥善处置,将有几十倍乃至几千倍于药物产品得“三废”物质产生,其中尤以废水对环境得污染最为严重[2]、1。
1、2制药废水得组分及性质制药工业废水属于较难处理得高浓度有机污水之一,因药物产品不同、生产工艺不同而差异较大。
此外,制药厂通常就是采用间歇生产,产品得种类变化较大,造成了废水得水质、水量及污染物得种类变化较大[3]。
生物制药废水中主要含菌丝体、残余营养物质、代谢产物与有机溶剂等,目前生物制药工艺主要用于生产抗生素。
废水主要来自发酵滤液、提取得萃余液、蒸馏釜残液、吸附废液与导管废液等。
废水得有机物浓度很高,COD可高达5000~20000mg/L, BOD可达2000~10000mg/L,SS浓度则可达到5000~23000mg /L,TN达到600~1000mg/L。
废水中得菌丝体、代谢产物等物质属于高浓度有机物与有抑菌作用得抗生素物质,当抗生素浓度大于100mg/L时会抑制好氧菌得生物活性。
化学制药得主要生产工艺都就是化学反应,原料复杂、反应步骤多造成产品转化率低而原料损失严重、这类废水中含有种类繁多得有毒有害化学物质,如甾体类化合物、硝基类化合物、苯胺类化合物、哌嗪类与氟、汞、铬铜及有机溶剂乙醇、苯、氯仿、石油醚等有机物、金属与废酸碱等污染物。
由于合成制药工业得原料较为复杂,一个制药企业得产品种类又往往并非一种,因此合成制药企业得废水所含污染物情况更为复杂。
中药生产得洗涤、煮药、提纯分离、蒸发浓缩、制剂等工序中所排出得废水包括清洗废水、分离水、蒸发冷凝水、药液流失水等、废水中主要就是中药煎煮出得各种天然生物有机物,如有机酸、蒽醌、木质素、生物碱、单宁、鞣质、蛋白质、糖类、淀粉等[4]。
其水质波动性较大,另外水中有时还含有中药制作中使用得酒精等有机溶剂。
—2—1.1、3制药废水得危害制药行业由于药剂产品、生产方法与使用原料得不同,使生产废水水质各异。
但就是总体来说,制药废水具有有机污染物量高、毒性物质多、有机溶媒量大、难生物降解物质多、盐份-3- 得特点,就是一种危害很大得工业废水。
未经处理或处理未达到放标准而直接进入环境,将造成严重得危害[4]。
(1)消耗水中得溶解氧有机物在水体中进行生物氧化分解时,都会消耗水中得溶氧。
倘若有机物含量过大,生物氧化分解所消耗氧得速率超过体复氧速率时,将使水体缺氧或脱氧,从而造成水域中好氧水生物死亡,使厌氧微生物繁殖,缺氧消化产生甲烷、硫化氢、醇、氨、胺等物质,进一步抑制水生生物,使水域发臭、(2)破坏水体生态平衡药剂及其合成中间体往往具有一定得杀菌或抑菌作用,从影响水体中细菌、藻类等微生物得新陈代谢,并最终破坏整个生生态系统得平衡。
当水中含青霉素、四环素与氯霉素各为克分子,氨苯磺胺为10—2~10-3克分子浓度时,即可抑制绿藻得长;而对硝基苯乙醚、对胺基苯乙醚与间三氟甲级苯胺各自0。
05、0、1与2。
5mg/L时,即具抑菌与杀菌作用。
磺胺类药物对化作用得影响就是敏感得,磺胺嘧啶在5mg/L时,就能强烈抑制化作用,从而阻碍有机物得完全氧化[5]、(3)药剂代谢产物对环境得污染危害目前世界上对于这方面研究得不多,但已有所察觉。
在制废水中特别要警惕其中得污染物与亚硝胺类物质得形成之间得系。
已报道土霉素、哌嗪、不啉与氨基匹林等在酸性介质中,可与亚硝酸钠作用产生二甲基亚硝胺。
制药废水中不乏这两种体,含氮得有机物在净化过程中都要经过NO2-这一步骤,而NO2—-N达到47PPM时,就能抑制硝化作用得开始,造成亚硝胺体NO2—-N得积累。
为此,防止与减少有仲胺结构得有机污染物入水体,对于减少环境中亚硝胺类致癌物得形成有着重要意义—166-[1]潘志彦,陈朝霞,王泉源等.制药业水污染防治技术研究进展[J],水处理技术.2004,28(2):68-71。
[2]楼菊青、制药废水处理进展综述[J],重庆科技学院学报(自然科学版).2006,8(4):13-15.[3]马文鑫,陈卫中,任建军等、制药废水预处理技术探索[J],环境污染与防治,2001,1,23(2):87-89.[4]吴郭虎,李鹏,王曙光等.混凝法处理制药废水得研究[J],水处理技术、2000,26(1):53-55.[5]潘志强、土霉素、麦迪霉素废水得化学气浮处理[J],工业水处理,1991,11(1):24-26。
[6]徐扣珍,陆文雄,宋平等。
焚烧法处理氯霉素生产废水[J],环境科学1998,19(4):69-71、[7]杨军,陆正禹,胡纪萃等。
抗生素工业废水生物处理技术得现状与展望[J],环境科学,1997,18(5):83—85.[8]王淑琴,李十中。
反渗透法处理土霉素结晶母液得研究[J],城市环境与城市生态,1999,12(1):25—27、[9]国家环保局科技处,清华大学环境工程系、我国几种工业废水治理技术研究(第三分册)—高浓度有机废水[M],北京:化学工业出版社1988、[10]李道棠,赵敏钧,杨虹等.深井曝气-ICEAS技术在抗菌素制药废水处理中得应用[J],给水排水,1996,22(3):21-24。
[11]谭智,汪大肇,张伟烈。
深井曝气处理高浓度制药废水[J],环境污染与防治,1993,15(6):6-8.[12]简英华。
ORBAL氧化沟处理合成制药废水[J],重庆环境科学,1994,16(1):22-24.[13]HEUKELEKIAN H、Industrial and Engineering Chemi stry[J],1949,41(7):1535.[14]谷成,刘维立、高浓度有机废水处理技术得发展[J],城市环境与城市生—167-态1999,12(3):54-56。
[15]李再兴,杨景亮,刘春艳等、阿维菌素对厌氧消化得影响研究[J],中国沼气,2001,19(1):13-15。
[15]林锡伦、上流式厌氧污泥床(UASB)工艺处理高浓度发酵药物混合有机废水[J],环境污染与防治,1990,12(3):20-22、[16]陈玉,刘峰,王建晨等上流式厌氧污泥床(UASB)处理制药废水得研究[J],环境科学,1994,15(1):50-52、[17]杨军,陆正禹,胡纪萃等.林可霉素生产废水得厌氧生物处理工艺[J],环境科学,2001,22(2):82—86、[18]王蕾,俞毓馨。