B 样条曲线
B样条曲线

P4 P2
P0
F282.c 二次 B-样条曲线
4.三次B样条曲线 分段三次B样条曲线由相邻四个顶点 定义,其表达式为: P(t)=F0,3(t)•B0+F1,3(t)•B1+F2,3(t)•B2
+F3,3(t)•B3 (0≤t≤1) 可见,由 n 个顶点定义的完整的三次 B样条曲线是由 n-3 段分段曲线连接 而成的。很容易证明,三次B样条曲
角点共线的方法。
Q4
Q1
P1
。
P0
Q2
Q0
P2 Q3
• 四角点共线
若要使B样条曲线段之间切接入一段直线,可运用四
角点共线的方法。 Q5
Q1
Q2 。P1
P0
Q0
P2
P3
。
Q3 Q4
6.5 Bézier曲面和B样条曲面
6.5.1 Bézier曲面
Bézier曲面及控制网格演示动画
曲面的形状、位置由边界上的四个角点决定。中间角点只 反映曲面的凹凸程度。
三段曲线的形状。
角点重叠和角点共线(*)
• 二重角点
若要使B样条曲线与特征多边形相切,可运用二重角
点的方法。 P0
Q0 Q(0-1)
P1
Q1
Q2
P2
Q3
Q4
• 三重角点
若要使B样条曲线产生一个尖点1
P2 P3
Q1
P0
P4
Q5
Q0
Q6
• 三角点共线
若要使B样条曲线产生反向弧切接的效果,可运用三
✓用di1、di2、di3、di4(i=1,2,3,4 )构建四条V向曲线C1、C2、C3和C4(图中虚线);
✓参数v在[0,1] 之间取
b样条曲线曲率简易求解算法

b样条曲线曲率简易求解算法摘要:I.引言- 介绍b 样条曲线- 阐述曲率在曲线设计中的重要性II.b 样条曲线的定义与性质- 定义b 样条曲线- 介绍b 样条曲线的性质III.曲率的计算方法- 详细介绍b 样条曲率的计算方法- 解释各参数的含义及计算过程IV.曲率简易求解算法- 介绍曲率简易求解算法- 阐述算法的原理与步骤V.算法实现与分析- 给出算法实现代码- 分析算法的效率与准确性VI.结论- 总结文章内容- 指出算法的局限性与改进方向正文:I.引言b 样条曲线是一种具有广泛应用的曲线类型,广泛应用于计算机图形学、数值分析、建模等领域。
在曲线设计中,曲率是一个重要的参数,它反映了曲线在某一点处的弯曲程度。
因此,如何高效地计算b 样条曲率成为曲线处理领域的一个研究热点。
本文将介绍一种曲率简易求解算法,并对算法的原理与实现进行详细分析。
II.b 样条曲线的定义与性质b 样条曲线是一种以基函数和控制点加权求和表示的曲线,具有局部性和加权特性。
b 样条曲线可以表示为:C(u) = Σ[Ni(u) * Pi]其中,Ni(u) 是基函数,Pi 是控制点,u 是参数值。
b 样条曲线的性质包括:1) 局部性,即在某一区间内,曲线可以用基函数和控制点的有限和表示;2) 加权特性,即不同控制点对曲线的贡献程度不同,权重由基函数决定。
III.曲率的计算方法b 样条曲率的计算方法主要依赖于de Boor 算法,该算法利用b 样条曲线的性质,通过递归方式计算曲率。
具体计算过程如下:1) 计算第一阶导数C"(u):C"(u) = Σ[Ni(u) * Ni(u)]2) 计算第二阶导数C""(u):C""(u) = Σ[Ni(u) * (Ni(u) + Ni(u+1))]其中,Ni(u) 表示第i 个基函数在参数u 处的取值,Ni(u+1) 表示第i 个基函数在参数u+1 处的取值。
B样条曲线

Bezier曲线
给定P0、P1、P2、P3,三次曲线的参数形式如下:
三次曲线的动态图如下:
对于三次曲线,可由线性贝塞尔曲线描述的中介点 Q0、Q1、Q2,和由二次曲线描述的点R0、R1所建 构。P0、P1、P2、P3四个点在平面或在三维空间中 定义了三次方贝塞尔曲线。曲线起始于P0走向P1, 并从P2的方向来到P3。一般不会经过P1或P2;这两 个点只是在那里提供方向资讯。P0和P1之间的间距, 决定了曲线在转而趋进P3之前,走向P2方向的“长 度有多长”。
Bezier曲线
更高阶的贝塞尔曲线,可以用以下公式表示:用表示由点 P0、P1、…、Pn所决定的贝塞尔曲线。则有:
高阶曲线的动态图如下:
要“画”出贝塞尔曲线,一般需要进行 较多的计算,然后绘制出来。
Bezier曲线 Bezier曲线的一般化形式:
即:
其中多项式:
又称作 n 阶的伯恩斯坦基底多项式,定义 00 = 1。
B样条曲线
Bezier曲线改变一点曲线整体受影响
B样条曲线
B样条曲ቤተ መጻሕፍቲ ባይዱ的优点:
易于进行局部修改; 更逼近特征多边形;
是低阶次的曲线。
B样条曲线改变一点曲线局部受影响
B样条曲线
均匀B样条曲线的参数表达式为:
式中为n次B样条基函数,其形式为:
其中
B样条曲线
B样条曲线的C语言实现
#include<graphics.h> #include<conio.h> float px[10]={50,90,150,120,220,300,380,320,450,500}; float py[10]={100,60,50,150,240,100,100,200,250,130}; void B_spline() { float a0,a1,a2,a3,b0,b1,b2,b3; int k,x,y; float i,t,dt,n=10; setcolor(15); dt=1/n; for(k=0;k<10;k++) { if(k==0) moveto(px[k],py[k]); lineto(px[k],py[k]); } setcolor(4); for(k=0;k<10-3;k++) { if(getch()==17)exit();
第三节 B-样条曲线

关于递推定义的系数
t − ti ti + k − t N i ,k +1 (t ) = N i ,k (t ) + N i +1,k (t ),i = 0,1,..., n ti + k −1 − ti ti + k − ti +1
ti ti
ti+1 ti+1 ti+1
t
t t
N i ,k −1 (t ) N i +1,k −1 (t ) N 'i ,k (t ) = (k − 1) − ti + k −1 − ti ti + k − ti +1
N i ,k (t )在l重节点处至少为k −1 − l次参数连续。
2012-3-5
28
问题:3阶B样条曲线生成
N i ,k (t )在区间[ti , ti + k ]上有定义,称后者为前者的支撑区间。
2012-3-5 20
3阶B-样条基函数图形
N i ,3 (t )
N i ,3 (t )的图形
2012-3-5
21
3阶B样条曲线示例
t2
T=[t0,t1,…,tn+1,tn+2,tn+3]
2012-3-5
t n +1
16
2012-3-5
续前页:
当t ∈ [ti , ti +1 )时: t − ti N i ,3 (t ) = N i , 2 (t ) tii+ 2 − ti +
t − ti t − ti ti + 2 − t = ( N i ,1 (t ) + N i +1,1 (t )) ti + 2 − ti ti +1 − ti ti + 2 − ti +1
第七章 B样条曲线

V2k、V3k和V4k四个点, 该四点构成u向的一个特
d1
征多边形,定义一条新 2
的曲线P(u,vk);
d11
v
d14
d13
C1 d22
d23
C2 d32
d21
d31
u
d24 d33 C3 d4
2
d41
d34
d44 d43
C4
v
C1
C2 C3
V1k
V2k V3k
u
C4
V4k
✓当参数vk在[0,1] 之间取不同值时, P(u,vk)沿箭头方向扫描,即得到由 给定特征网格dij(i=1,2,3,4 j=1,2,3,4) 定义的双三次均匀B样条曲面片 P(u,v)。
t [0,1]
1
2
3
4
5
t
四段二次(三阶)均匀B样条基函数
曲线的起点和终点值:
pi
(0)
1 2
(Pi
Pi 1 ),
pi
(1)
1 2
(Pi1
Pi2 )
均匀二次B样条曲线起点和终点处的导数:
pi(0) Pi1 Pi , pi(1) Pi2 Pi1
P1
P2
P0
P3
四个控制点的二次周期性B样条曲线
第七章 B样条曲线曲面
Bezier曲线有许多优越性,但有几点不足: 一、控制多边形的顶点个数决定了Bezier曲线的
阶次; 二、不能作局部修改; 三 、Bezier曲线的拼接比较复杂。
• 1972年,Gordon、Riesenfeld等人发展了 1946年Schoenberg提出的样条方法 , 提出 了B样条方法,在保留Bezier方法的优点, 克服了Bezier方法的弱点。
B样条曲线在图形学中的应用

02
边界表示
截面线表示
• 利用B样条曲线表示三维模型的边界曲面
• B样条曲线用于表示三维模型的截面线
• 可以提高模型重建的精度和效率
• 可以用于模型的参数化设计和编辑
B样条曲线在三维曲线与曲面绘制中的应用
曲面绘制
• B样条曲线用于表示三维曲面的参数化表示
• 可以用于曲面的细分、拼接等操作
曲线绘制
• 利用B样条曲线表示三维曲线
• 可以实现高质量的图像修复
• 可以实现有效的图像去噪效
效果
果
B样条曲线在图像压缩与编码中的
应用
01
图像压缩
• 利用B样条曲线进行图像的降维表示
• 可以实现高效的图像压缩效果
02
图像编码
• B样条曲线用于表示图像中的关键点信
息
• 可以提高图像编码的效率和可靠性
06
B样条曲线在其他领域中的应用
B样条曲线在建筑设计中的应用
图像分割
边缘检测
• 利用B样条曲线逼近图像中的纹理和颜色信息
• B样条曲线用于表示图像中的边缘信息
• 可以实现精确的图像分割效果
• 可以提高边缘检测的准确性和鲁棒性
B样条曲线在图像修复与去噪中的应用
图像修复
图像去噪
• 利用B样条曲线进行图像的局
• B样条曲线用于表示图像中的
部修复和填充
平滑区域
• 可以实现平滑、连贯的曲线效果
B样条曲线在三维动画与游戏设计中的应用
模型动画
角色动画
01
02
• B样条曲线用于表示三维模
• 利用B样条曲线表示角色的
型的运动轨迹和形状变化
骨骼关节运动轨迹
b样条曲线

t ti t ik 1 t i
Ni,k1 (t)
tik t tik ti1
Ni1,k1 (t),
k 2
该递推公式表明:欲确定第i个k阶B样条Ni,k(t),需要用 ti ,ti+1 ,…ti+k 共k+1个节点,称区间[ti , ti+k]为Ni,k(t)的支撑区间。
曲线方程中,n+1个控制顶点Pi (i=0,1,…n) 要用到n+1个k阶B样条 基 Ni,k(t) 。 支 撑 区 间 的 并 集 定 义 了 这 一 组 B 样 条 基 的 节 点 矢 量 T=[t0 ,t1 ,…tn+k ]。
Ni 1,k 1(t )
其中Pi的调和函数Ni是在区间ti<=t<ti+k的k阶多项式,这个多项式 是分段的,每一段多项式不相同。不为0的这k段是将区间ti<=t<ti+k 分k个部分,即ti<=t<ti+1、ti+1<=t<ti+2、……、ti+k-1<=t<ti+k, 每个区间对应一段k阶多项式。在t的其余区间为0。
3.3.2 B样条曲线的性质
1. 局部性
k 阶B样条曲线上参数为 t [ti , ti1] 的一点P(t)至多与k个控制顶点
Pj(j=i-k+1,…i)有关,与其它控制顶点无关;移动该曲线的第i个控 制顶
点Pi至多影响到定义在区间(ti,ti+k) 上那部分曲线的形状, 对曲线的 其余
1 Ni,1(t) 0
ti t ti1 Otherwise
Ni,k (t)
t ti tik 1 ti
Ni,k1(t)
计算机图形学实验报告B样条曲线

千里之行,始于足下。
计算机图形学实验报告B样条曲线B样条曲线是计算机图形学中常用的一种曲线表示方法。
它通过插值曲线的控制点来定义曲线的形状,并且具有较好的平滑性。
本次实验中,我们使用C++语言实现了B样条曲线的生成和显示,并进行了相应的实验和分析。
实验目的:1.了解B样条曲线的原理和算法;2.掌握B样条曲线的生成和显示方法;3.通过实验观察和分析B样条曲线的性质。
一、B样条曲线的原理B样条曲线是一种基于控制点的插值曲线,它通过一系列连续的基函数(B 样条基函数)来插值控制点,从而生成曲线。
B样条曲线的基本原理如下:1.选择一组控制点P0,P1,…,PN-1;2.定义一组节点向量U={u0,u1,…,um},其中u0<=u1<=…<=um;3.通过插值曲线的标准等式,通过计算线性组合来计算曲线上每个点的坐标。
二、B样条曲线的算法1.计算节点向量U;2.定义B样条基函数;3.计算曲线上每个点的坐标。
三、实验步骤和结果1.计算节点向量U:在实验中,我们选择均匀节点向量,即ui=i,其中i=0,1,…,m。
这样的节点向量比较简单,而且能够生成比较平滑的曲线。
第1页/共3页锲而不舍,金石可镂。
2.定义B样条基函数:B样条基函数是用来插值曲线的重要部分,它可以通过递归定义来实现。
在实验中,我们使用了三次B样条基函数,其递归定义如下:N(i,1)(u)={1,u∈[ui,ui+1];0,否则}N(i,k)(u)=[(u-ui)/(ui+k-1-ui)]*N(i,k-1)(u)+(ui+1-u)/(ui+k-ui+1)*N(i+1,k-1)(u)3.计算曲线上每个点的坐标:通过计算线性组合来计算曲线上每个点的坐标。
具体计算方法如下:P(u)=sum(B(i,k)(u)*Pi,i=0 to n-1),其中B(i,k)(u)=N(i,k)(u)/sum(N(j,k)(u))四、实验结果和分析在实验中,我们通过改变控制点的位置和数量,生成了不同的B样条曲线,并进行了显示和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k个
基函数:以上节点矢量定义分段的Bernstein基函数
2020/3/29
42
分段Bezier曲线
• 各曲线段相对独立性:移动曲线段内的一个控制顶点只 影响该曲线段的形状,对其它曲线段的形状没有影响
• Bezier曲线的算法都可以原封不动地采用 • 其它类型的B样条曲线可通过插入节点的方法转换成分
在每一个区间上至多只有k个基函数非零,它们是:
N i k 1 , k ( t ) N i , k 2 , k ( t )N , i , k ( . t ) ..,
Ni,k(t)在每个 [ti,ti区 k)上 间都是次k 数 1的不 多高 项于 式 从而在整个分 参段 数多 轴项 上式 是
2020/3/29
2020/3/29
20
3阶B-样条基函数图形
N i,3 (t)
Ni,3(t)的图形
2020/3/29
21
3阶B样条曲线示例
t2
tn1
T=[t0,t1,…,tn+1,tn+2,tn+3]
2020/3/29
22
知其然,知其所以然…
• 阶数与次数 • 顶点数 • 节点矢量与定义区间 • 段数 • 控制点及其影响域
30
均匀B-样条曲线
• 均匀节点矢量:所有节点区间长度为大于0的常数 • 均匀B-样条基:在均匀节点矢量上定义的B-样条基 • 均匀B-样条曲线:在均匀B-样条基上定义的曲线
2020/3/29
31
例:三次均匀B样条曲线(1)
t 参数节点向量Tn,4
i
n4 i0
满足:ti
1
ti
0
(i 0,1,..., n 3), 其上可定义3次均匀B 样条曲线
Pi N
i0
tik t tik ti1
i,k (t),t [tk
Ni1,k1(t),i
1, tn1]
0,1,..., n
2020/3/29
24
B-样条基函数的性质
• 局部性 • 权性 • 连续性
2020/3/29
25
B-样条基函数的局部性
Ni,k(t)只在区 [ti,间 tik)上取正值,在其 上它 为区 零间 。
40
3次准均匀B-样条示例
2020/3/29
41
B样条曲线到分段Bezier曲线的转换
• 节点矢量:两端节点具有重复度k,所有内节点重复
度为k-1 注: (k1)mn'
{0,0,...,0,1,1,...,1,2,..., m 1,m 1,..., m1, m , m,...,m}
k个
k 1个
k 1个
局限性:全局控制
2020/3/29
2
B-样条曲线概念
控制顶点
Pi
控制多边形
n
P(t) Pi Nik (t) i0
B-样条基函数
B-样条曲线
2020/3/29
3
控制顶点作用的局部化
• 0次(1阶)曲线
ti
ti+1
0次基函数:Ni,1
(t
)
1 0
2020/3/29
t [ti , ti1) 其它
t
Ni,1(t) Ni,k (t)
1 0
t
tik
1
t [ti ,ti1) 其它
ti ti
N i ,k 1 (t )源自tik t tik ti1
N i 1,k 1 (t ),i
0,1,..., n
2020/3/29
6
关于递推定义的系数
Ni,k1(t)
t ti tik 1 ti
Ni,k (t)
Ni,2 (t)
Ni
,
的图形
2
P0
P1
t0 t1 t2
ti
Pn tn1 tn2
2020/3/29
15
3阶B-样条基函数
• K=3时的基函数
Ni,3 (t )
t ti ti2 ti
Ni,2 (t)
ti3 t ti3 ti1
Ni1,2 (t)
t [ti ,ti3)
t ti ti2 ti
常令: 1,t00构造三次 B样 均条 匀曲 : 线
n
P(t) PiNi,4(t),t[3,n1] i0
2020/3/29
32
三次均匀B样条曲线(2)
此时:Tn,4 {0,1,..., n 4}
1 t [i ,i 1)
Ni,1(t) 0
其它
根据如下的基函数递推公式计算Ni,4 (t):
Ni,k
1次?2次?…?
4
续
• 1次曲线(2阶)
Ni,2 (t)
Ni
的图形
,2
2次基函数:Ni,2(t)
2020/3/29
2次?3次?…,k+1次基函数?
t
5
B-样条基函数的定义
• de Boor-Cox定义: (约定:0/0=0)
t 给定参数t轴上的节点分割Tn,k
i
n k ,则如下的
i0
Ni,k称为Tn,k上的k阶(k 1次)B样条基函数
36
练习:
• 推导出 [t j ,t j1] 区间上3次均匀B样条曲 线的矩阵表达式。
2020/3/29
37
准均匀B-样条曲线(1)
• 节点矢量:在首末端点处有k次重复度,中间节
点区间长度为大于0的常数,即:
{0,0,...,0,1,2,..., n k 1, n k 2, nk2,...,n k2}
(t)
t k
i 1
N i ,k 1 (t )
i
k
k 1
t
N i 1,k 1 (t ),i
0,1,..., n
2020/3/29
33
三次均匀B样条曲线(3)
注N i: ,k(t)N 0,k(ti) 基函数的平移性
2020/3/29
计算N0,4 (t)
34
三次均匀B样条曲线(4)
则,在[t j ,t j1)(3 j n)上的曲线段为:
• 已知6个控制顶点,请定义出节点矢量均 匀的2次B样条曲线,并回答以下问题。
1. 定义区间是什么? 2. 曲线分为几段? 3. 给出第二段曲线的表达式
2020/3/29
29
B-样条曲线的分类
根据节点矢量的不同形式分类
均匀B样条曲线 准均匀B样条曲线
分段Bezier曲线 非均匀B样条曲线
2020/3/29
第三节 B-样条曲线
本节内容: ▪ B-样条曲线定义 ▪ B-样条曲线性质 ▪ B-样条曲线的离散生成 ▪ 有理B-样条曲线
2020/3/29
1
分段参数多项式曲线分析
• Hermit曲线
– 分段插值曲线 – 全局控制曲线 – 多项式次数与顶点数相关
• Bezier曲线
– 全局控制曲线 – 多项式次数与顶点数相关 – 拼接要求不易满足
2020/3/29
8
支撑区间…
2020/3/29
9
曲线段及控制点
[t0,t1] [t1,t2] [t2,t3] [t3,t4] [t4,t5] [t4,t5]
2020/3/29
10
B-样条曲线的定义
t n 1个控制点 Pi
n i0
及参数节点向量Tn,k
nk
i i0 (ti ti1)
确定如下的k阶(k 1次)B样条曲线:
Ni,3 (t )
t ti ti2 ti
Ni,2 (t)
ti3 t ti3 ti1
Ni1,2 (t)
t ti ti2 ti
( t ti ti1 ti
Ni,1(t)
ti2 t ti2 ti1
N i 1,1 (t ))
ti3 t ti3 ti1
( t ti1 ti2 ti1
Ni1,1(t)
ti3 t ti3 ti2
N i 2,1 (t ))
t ti ti2 t ti3 t t ti1 ti2 ti ti2 ti1 ti3 ti1 ti2 ti1
2020/3/29
18
续前页:
当t [ti2 ,ti3)时:
N i,3 (t )
ti3 t ti3 ti1
tik t tik ti1
Ni1,k (t),i
0,1,..., n
ti ti
2020/3/29
ti+1
t
ti+1
t
ti+1
t
ti+k-1 ti+k-1 ti+k-1
ti+k
ti+k
7
基函数的影响范围
[t0,t1] [t1,t2] [t2,t3] [t3,t4] [t4,t5]
Ni,k(t)的支撑区间为:[ti,ti+k]
j
Ni,k (t) N j,1(t) 1
i jk 1
2020/3/29
27
B-样条基函数的连续性
N 'i,k
(t)
(k
1)
Ni ,k 1 (t ) tik1 ti
Ni1,k1(t)
tik
ti1
Ni,k (t)在l重节点处至少为k 1 l次参数连续。
2020/3/29
28
问题:3阶B样条曲线生成
n
P(t) Pi Ni,k (t),t [tk1, tn1] 共n-k+2段 i0
B-样条曲线示例
2020/3/29
11
1阶B-样条基函数
K=1时的基函数
1 Ni,1(t) 0