大数据挖掘商业案例
数据挖掘案例分析--啤酒与尿布

前言“啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长!商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。
在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是我们小组乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。
购物篮分析的算法很多,比较常用的有A prior/ æ’ p r i ə/算法、FP-tree结构和相应的FP-growth算法等等,上次课我们组的邓斌同学已经详细的演示了购物篮分析的操作流程,因此在这里我不介绍具体的购物篮分析算法,而是在已经获得的结果的基础上剖析一下数据身后潜藏的商业信息。
目前购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分,客户购买了这些软件产品后就等于有了购物篮分析的工具,比如我们正在使用的Clementine。
缘起“啤酒与尿布”的故事可以说是营销界的经典段子,在打开Google搜索一下,你会发现很多人都在津津乐道于“啤酒与尿布”,可以说100个人就有100个版本的“啤酒与尿布”的故事。
故事的时间跨度从上个世纪80年代到本世纪初,甚至连故事的主角和地点都会发生变化——从美国跨越到欧洲。
认真地查了一下资料,我们发现沃尔玛的“啤酒与尿布”案例是正式刊登在1998年的《哈佛商业评论》上面的,这应该算是目前发现的最权威报道。
大数据通过数据挖掘技术应用的案例分析

大数据通过数据挖掘技术应用的案例分析随着互联网的普及,数据的规模不断增大,大数据的时代已经到来。
如何利用这些海量的数据,掌握信息,提高效率,成为当前科技领域的重要课题。
在这个领域,数据挖掘技术是至关重要的一环,它可以让我们通过大数据的洪流,深度挖掘出有价值的信息,从而为企业带来更多的商业价值。
本文将介绍几个大数据应用案例,探讨数据挖掘技术的实际应用。
案例一:天猫双十一数据分析天猫是中国最大的电商平台之一,每年的双十一成为了消费者购物的狂欢节。
在这样的一个大流量的场景中,数据挖掘技术可以发挥重要的作用。
对于天猫来说,通过对消费者的分析,掌握他们的购物偏好、需求及购买力等信息,格外重要。
针对双十一活动,天猫进行了多个方面的数据挖掘。
首先是用户画像的挖掘,即对各个消费者的行为数据进行分析,挖掘他们的购物心理,掌握购物偏好,进行更有的推荐;其次是商品消费大数据分析,通过对商品的销售数据进行分析,找出最受欢迎的商品,进行更优质的推广。
此外还可以通过大数据分析来制定精准的营销计划,调配资源,提高商品成交率。
案例二:零售巨头沃尔玛的大数据应用沃尔玛是世界上最大的零售商之一,除了传统的销售模式之外,沃尔玛还利用独特的大数据技术,通过数据的分析来优化生产、供应链等方面。
例如,对销售数据和消费者的行为数据进行分析,可以预测出某一时间段内销售额的变化,助于制定销售策略;再如对供应链数据进行分析,可以及时发现供应链中的问题,对此加以解决;最后,基于自身的数据优势,沃尔玛还着眼于提高用户体验,实现了用户画像和个性化推荐等应用。
案例三:社交网站中的数据挖掘应用社交网站中有着大量的用户数据,数据挖掘技术的应用可以为企业创造更多的价值。
例如,美国的LinkedIn就利用职业履历等信息为企业提供高质量的招聘及推荐服务;Facebook通过营销平台等应用实现了个性化的广告投放;Twitter则是针对舆情进行了大量的研究,为政府、企业和社会大众提供相关的分析报告。
大数据分析案例分析

大数据分析案例分析I. 引言如今,数据已经成为各个领域的重要资源。
大型企业和组织每天都会产生海量的数据,因此如何利用这些数据来获取有价值的信息已成为一个重要课题。
在这篇文章中,我们将通过分析两个大数据分析案例来展示大数据分析对于企业和组织的重要性以及它所能带来的巨大利益。
II. 案例一:在线零售商的客户行为分析一家在线零售商想要了解其客户的购买习惯以及他们所关注的产品领域,以此来优化其运营策略。
为了实现这一目标,他们采集了大量的购买记录、浏览历史和客户反馈数据,并利用大数据分析工具来对这些数据进行分析。
首先,他们使用聚类分析来将客户划分为不同的群体。
通过聚类分析,他们发现了一些隐藏在数据背后的规律,比如有些客户更喜欢购买价格较高的奢侈品,而另一些客户则更倾向于购买折扣商品。
这一发现帮助该零售商更有效地进行产品推广和定价策略。
其次,他们利用关联分析来发现商品之间的关联性。
通过分析数据,他们发现一些商品经常同时被购买,比如手机配件和手机壳。
基于这一发现,他们可以通过一揽子的销售策略来推销这些相关商品,从而提高销售额。
最后,他们通过文本挖掘分析客户的反馈数据,以了解客户对于产品的评价和意见。
通过分析这些评论,他们可以及时发现并解决产品质量问题,提高客户满意度。
通过这些大数据分析方法,该在线零售商成功地了解了客户的购物习惯和需求,优化了产品推广和定价策略,并提高了客户满意度和销售额。
III. 案例二:医疗保险公司的风险预测一家医疗保险公司想要通过大数据分析来预测客户的风险程度,从而制定更精确的保险策略。
为了实现这一目标,他们收集了大量的客户健康状况、医疗历史和理赔记录等数据,并利用大数据分析工具进行分析。
首先,他们使用分类模型来预测客户是否存在潜在的健康风险。
通过分析不同变量与客户健康状况之间的关联性,他们可以判断客户的健康风险程度,并据此制定不同的保险策略。
其次,他们利用时间序列分析来预测客户未来可能发生的医疗事件。
数据挖掘技术的商业智能应用案例

数据挖掘技术的商业智能应用案例在当今信息爆炸的时代,企业面临着海量的数据和信息,如何从中挖掘出有价值的信息成为了商业成功的关键。
数据挖掘技术作为一种有效的分析工具,正在被越来越多的企业所采用。
本文将介绍几个商业智能领域中数据挖掘技术的应用案例,以展示其在商业决策和业务优化中的价值。
案例一:零售业的销售预测零售业一直面临着供应链管理的挑战,如何准确预测需求成为了提高销售效益的关键。
通过数据挖掘技术,零售商可以利用历史销售数据、商品特征和市场趋势等信息,建立销售预测模型。
通过该模型,零售商可以准确预测不同时间段、不同地区的销售情况,并及时调整采购计划和库存管理,从而最大程度地满足客户需求,降低库存成本。
案例二:金融业的风险管理金融业作为高风险和高回报的行业,需要对风险进行有效控制。
数据挖掘技术可以帮助金融机构分析客户行为模式、评估信用风险和检测欺诈行为。
通过分析大量的历史数据和实时交易数据,金融机构可以构建客户信用评级模型、异常检测模型和预测模型,及时发现潜在的风险并采取相应的措施,确保资金安全和业务稳定。
案例三:电子商务的个性化推荐随着电子商务的迅猛发展,用户面临了海量的商品和信息选择。
如何给用户提供个性化的推荐成为了电商企业的竞争优势。
数据挖掘技术可以通过分析用户的历史购买记录、浏览行为和社交网络信息,生成用户画像,并根据用户的个性化需求和行为特征,进行精准的商品推荐。
通过提供个性化的购物体验,电商企业可以提高用户满意度和购买转化率,增加销售额。
案例四:制造业的质量控制在制造业中,产品质量是企业的生命线。
数据挖掘技术可以帮助制造企业分析生产过程中的传感器数据、生产参数和质检数据,发现潜在的质量问题和生产异常。
通过建立质量预测模型和异常检测模型,制造企业可以及时发现和解决质量问题,提高产品质量和生产效率,降低不良品率和成本。
综上所述,数据挖掘技术在商业智能领域中有着广泛的应用。
通过挖掘大数据中隐藏的有价值信息,企业可以实现更精确的销售预测、风险控制、个性化推荐和质量控制,提升业务水平和竞争力。
零售企业大数据应用案例分享

零售企业大数据应用案例分享2019年,随着技术的不断发展和互联网经济的蓬勃发展,大数据应用在各个行业都取得了显著的成果。
零售行业作为其中之一,借助大数据分析实现了许多商业上的突破和创新。
本文将分享几个零售企业大数据应用案例,展示大数据对零售行业的价值和影响。
第一个案例是某知名连锁超市借助大数据分析优化商品布局。
该超市每年的销售额一直呈现稳步增长,然而在某一时期却出现了销售额下滑的情况。
为了解决这个问题,该超市将大数据技术引入经营管理中。
他们结合采购系统数据、POS系统数据等,进行深入分析。
通过对顾客购买习惯、购买渠道、购买频次等数据的挖掘,确立了新的商品布局策略。
比如,某商品在销售额下滑的时期被从门口移到高销售区域后,销售额明显回升。
通过对大数据的运用,该超市大幅度提高了销售额,提升了运营效益。
第二个案例是某电商平台通过大数据分析精确营销,提升用户转化率。
在过去,用户往往遇到大量不需要的广告推送,导致用户体验差、转化率低。
该电商平台运用了大数据分析技术,通过对海量用户数据的挖掘,分析出用户的兴趣、需求、购买行为等信息。
在此基础上,他们针对不同用户制定了个性化的推广策略,将广告与用户需求高度匹配。
这种精准的广告投放,提高了用户的点击率和转化率,进一步提升了平台的销售额和盈利能力。
第三个案例是一家新兴的时尚零售品牌利用大数据分析抢占市场份额。
这家品牌在市场竞争日趋激烈的情况下,急需寻找一种创新的方法来提升品牌知名度和销售额。
他们决定运用大数据分析来了解目标消费群体的喜好、潜在需求等信息。
通过对社交媒体、消费者评论等数据的分析,他们确定了不同细分市场的需求,并积极推出相应的产品和服务。
这种以数据为导向的创新,让该品牌成功抢占了市场份额并稳定了品牌地位。
在以上三个案例中,我们可以看到大数据应用为零售企业带来了巨大的益处。
通过对海量数据的分析和挖掘,企业能够更好地了解用户需求、优化商品布局、精确推送广告等,从而提升销售额、用户转化率,获得市场竞争优势。
五个真实的数据挖掘故事

五个真实的数据挖掘故事数据君推荐互联网, 分析视角, 数据发布, 营销观点超过321人围观1条评论*利用大数据后,农夫山泉会发生管理变革吗?YES*中国能制作出类《纸牌屋》的电视局吗?NO*大数据可以给阿迪达斯带来利润吗?YES*网易数据工程师可以当“媒婆”?YES*中国政府未来会开放数据吗?YES*正在到来的数据革命改变政府、商业和我们的生活……《纸牌屋》文_本刊记者周恒星赵奕伏昕昝慧昉李春晖编辑_杨婧房煜王琦就在制作这期“大数据专题”时,编辑部发生热烈讨论:什么是大数据?编辑记者们旁征博引,试图将数据堆砌的商业案例剔除,真正的、实用性强的数据挖掘故事留下。
我们报道的是伪大数据公司?我们是否成为《驾驭大数据》一书的作者Bill Franks 所称的“大数据骗局”中的一股力量?同样的质疑发生在阿里巴巴身上。
有消息称,3月23日,阿里巴巴以7000万美元收购了一家移动开发者数据统计平台。
这引发了专家们热烈讨论,它收购的真是一家大数据公司吗?这些质疑并非没有道理。
中国确实没有大数据的土壤。
“差不多先生”、“大概齐”的文化标签一直存在。
很多时候,各级政府不太需要“大数据”,形成决策的关键性数据只有一个数字比率(GDP)而已;其二,对于行业主管机构来说,它们拥有大量原始数据,但它们还在试探、摸索数据开放的尺度,比如说,是开放原始数据,还是开放经过各种加工的数据?是转让给拥有更高级计算和储存能力的大型数据公司,还是将数据开源,与各种各样的企业共享?其三,数据挖掘的工具价值并没有完全被认同。
在这个领域,硬件和软件的发展并不十分成熟。
即便如此,没有人否认数据革命的到来,尤其在互联网行业。
阿里巴巴的马云将大数据作为战略方向,百度的李彦宏用“框计算”来谋划未来。
即便是CBA(中国男子篮球职业联赛)也学起了NBA(美国男篮职业联赛)五花八门的数据统计、分析与挖掘。
在过去两年间,大量的资本投资一些新型数据工具公司,根据美国道琼斯风险资源(Dow Jones VentureSource)的数据,在过去的两年时间里,11.7亿美元流向了119家数据库软件公司。
大数据应用案例

四大经典大数据应用案例解析什么是数据挖掘(Data Mining)?简而言之,就是有组织有目的地收集数据,通过分析数据使之成为信息,从而在大量数据中寻找潜在规律以形成规则或知识的技术。
在本文中,我们从数据挖掘的实例出发,并以数据挖掘中比较经典的分类算法入手,给读者介绍我们怎样利用数据挖掘的技术解决现实中出现的问题。
数据挖掘是如何解决问题的?本节通过几个数据挖掘实际案例来诠释如何通过数据挖掘解决商业中遇到的问题。
下面关于“啤酒和尿不湿”的故事是数据挖掘中最经典的案例。
而Target 公司通过“怀孕预测指数”来预测女顾客是否怀孕的案例也是近来为数据挖掘学者最津津乐道的一个话题。
一、尿不湿和啤酒很多人会问,究竟数据挖掘能够为企业做些什么?下面我们通过一个在数据挖掘中最经典的案例来解释这个问题——一个关于尿不湿与啤酒的故事。
超级商业零售连锁巨无霸沃尔玛公司(Wal Mart)拥有世上最大的数据仓库系统之一。
为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行了购物篮关联规则分析,从而知道顾客经常一起购买的商品有哪些。
在沃尔玛庞大的数据仓库里集合了其所有门店的详细原始交易数据,在这些原始交易数据的基础上,沃尔玛利用数据挖掘工具对这些数据进行分析和挖掘。
一个令人惊奇和意外的结果出现了:“跟尿不湿一起购买最多的商品竟是啤酒”!这是数据挖掘技术对历史数据进行分析的结果,反映的是数据的内在规律。
那么这个结果符合现实情况吗?是否是一个有用的知识?是否有利用价值?为了验证这一结果,沃尔玛派出市场调查人员和分析师对这一结果进行调查分析。
经过大量实际调查和分析,他们揭示了一个隐藏在“尿不湿与啤酒”背后的美国消费者的一种行为模式:在美国,到超市去买婴儿尿不湿是一些年轻的父亲下班后的日常工作,而他们中有30%~40%的人同时也会为自己买一些啤酒。
产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫不要忘了下班后为小孩买尿不湿,而丈夫们在买尿不湿后又随手带回了他们喜欢的啤酒。
数据挖掘关联案例

数据挖掘关联案例全文共四篇示例,供读者参考第一篇示例:数据挖掘关联案例数据挖掘是一种通过从大型数据集中发现模式、关系或规律来提取知识和信息的过程。
在当今信息爆炸的时代,数据量呈指数级增长,数据挖掘成为了一种重要的技术手段。
通过数据挖掘,我们可以从海量数据中分析并提取出有价值的信息,帮助企业做出决策、改善生产效率、提升用户体验等。
关联分析是数据挖掘中的一项重要技术,通过发现数据集中的相关性规律,揭示事物之间的内在联系。
下面我们来看几个关于数据挖掘关联案例的实例。
1. 超市购物篮分析超市购物篮分析是一个经典的关联分析案例。
通过对超市的销售数据进行挖掘,可以找到一些有用的规律,比如客户购买某种商品的同时还会购买另一种商品,从而可以为超市制定更合理的促销策略。
通过数据挖掘可以分析到,顾客购买尿布的同时往往也会购买婴儿食品,这提示超市可以将这两种商品放在一起销售,提高销售额。
2. 电商推荐系统在电商领域,数据挖掘的关联分析也扮演了重要的角色。
电商平台通过用户的浏览、购买行为数据,可以挖掘出用户的偏好和行为习惯,进而为用户推荐更加符合其需求的商品。
当用户浏览了一款手机之后,系统可以根据其他用户的购买行为推荐相关配件或其他品牌的手机,提高用户的购买转化率。
3. 医疗预测模型在医疗领域,数据挖掘也有着广泛的应用。
医疗数据量大,包含着疾病的发展规律和治疗方案等信息。
通过对医疗数据进行关联分析,可以发现一些疾病之间的关联性,提前预测患者的病情发展,制定更加科学的治疗方案。
通过对慢性病患者的数据进行分析,可以找到某些疾病之间存在的相关性,从而更好地指导医生的诊治工作。
4. 金融风控在金融领域,风险控制是至关重要的一环。
借助数据挖掘技术,金融机构可以对用户的信用评分、贷款风险等进行预测和评估,避免不良风险的出现。
通过挖掘用户的消费、还款等数据,可以发现用户的借贷偏好和风险特征,制定更加有效的风险控制策略。
数据挖掘关联分析在各个领域都有着广泛的应用,可以帮助企业更好地了解用户需求,优化决策流程,提高生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.前言随着中国加入WTO,国金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。
金融业正在快速发生变化。
合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。
节约资金、更完善的服务诱使客户转投到竞争对手那里。
即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。
在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢?数据挖掘<Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。
其表现形式为概念<Concepts)、规则(Rules>、模式(Patterns>等形式。
用统计分析和数据挖掘解决商务问题。
金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。
客户细分―使客户收益最大化的同时最大程度降低风险市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。
为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。
他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。
数据挖掘实现客户价值的最大化和风险最小化。
SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易、呼叫中心以及相关分支机构的客户数据。
采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。
客户流失―挽留有价值的客户在银行业和保险业,客户流失也是一个很大的问题。
例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。
为了留住最有价值的客户,您需要开展有效的保留活动。
然而,首先您需要找出最有价值的客户,理解他们的行为。
可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。
接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。
交叉销售在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。
由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。
研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。
企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。
从客户的交易数据和客户的自然属性中寻找、选择最有可能捆绑在一起销售的产品和服务,发现有价值的产品和服务组合,从而有效地向客户提供额外的服务,提高活期收入并提升客户的收益率。
通过侦测欺诈、减少欺诈来降低成本。
为了与欺诈活动作斗争,首先您需要预测欺诈在何时、何地发生。
数据挖掘技术侦测在欺诈中常见的模式,预测欺诈活动将在哪里发生。
对于银行业的公司来说,欺诈活动频繁发生的一个领域是自动取款机<ATM)。
数据挖掘帮助公司预测欺诈性的ATM交易。
银行可以来预测欺诈最有可能在哪个地理位置上发生。
接着该信息就被传送给ATM网络的成员机构,由这些机构通知客户,让客户确定交易是否正当,从而避免发生更多的欺诈行为。
有了这些信息,他们可以更快地冻结或采取其它必要的手段。
开发新客户金融机构可以使用数据挖掘技术提高市场活动的有效性。
银行部门对给出反馈的活动对象进行分析,使之变成新的客户。
这些信息也可应用到其它客户,以提高新的市场活动的反馈率。
降低索赔保险公司都希望减少索赔的数量。
可以使用聚类分析,根据现有客户的特征档案来找出哪些客户更有可能提出索赔请求。
这些档案是通过对客户提取200至300个不同的变量而产生出来的。
接着,您就可以针对那些可能提出较少索赔请求的客户开展获取活动。
信用风险分析传统的风险管理已无法有效控制跨区域、跨部门、跨行业的多种风险,利用科学的数据分析系统提高欺诈的防,降低信用风险尤为重要。
客户科学评估造成风险的因素,有效规避风险,建立完善的风险防机制。
2.客户流失随着金融体制改革的不断深化和金融领域的对外开放,我国金融行业的竞争日趋激烈。
《2006年金融服务指数研究报告》显示,在我国金融业逐步对外资行业开放的今天,中国金融业的服务质量虽然有稳步提升,但总体仍需提高,中资银行面临着极大的优质客户流失的危险。
这将对银行经营和效益产生极大的影响。
除了提高服务质量,银行要加强营销活动,保留优质客户,首先面临的第一个问题就是,谁可能流失?应该针对哪些客户进行客户保留活动?针对所有的客户开展保留活动,成本太大。
合理的做法是应用数据挖掘技术,研究流失客户的特征,从而对流失进行预测、并对流失的后果进行评估,采取客户保留措施,防止因客户流失而引发的经营危机,提升公司的竞争力。
具体来说,客户流失是指客户终止与企业的服务合同或转向其它公司提供的服务。
客户流失分析是以客户的历史通话行为数据、客户的基础信息、客户拥有的产品信息为基础,通过适当的数据挖掘手段,综合考虑流失的特点和与之相关的多种因素,从中发现与流失密切相关的特征,在此基础上建立可以在一定时间围预测用户流失倾向的预测模型,为相关业务部门提供有流失倾向的用户和这些用户的行为特征,以便相关部门制定恰当的营销策略,采取针对性措施,开展客户挽留工作。
客户流失需要解决的问题1)哪些现有客户可能流失?客户流失的可能性预测。
主要对每一个客户流失倾向性的大小进行预测。
2)现有客户可能在何时流失?如果某一客户可能流失,他会在多长时间流失。
3)客户为什么流失?哪些因素造成了客户的流失,客户流失的重要原因是什么。
主要对引起客户流失的诸因素进行预测和分析。
4)客户流失的影响?客户流失对客户自身会造成什么影响?客户流失对公司的影响如何?对可能流失客户进行价值评估,该客户的价值影响了运营商将要付出多大的成本去保留该客户。
5)客户保留措施?针对公司需要保留的客户,制定客户和执行保留措施。
客户流失的类型为了避免由客户流失造成的损失,必须找出那些有流失危险和最有价值的客户,并开展客户保留活动。
客户流失现象可以分为以下三种情况:1)公司客户转移:客户转移至本公司的不同业务。
主要是增加新业务,或者费率调整引发的业务转移,例如从活期存款转移至零存整取,从外汇投资转移至沪深股市投资。
这种情况下,虽然就某个业务单独统计来看存在客户流失,并且会影响到公司的收入,但对公司整体而言客户没有流失。
2)客户被动流失:表现为金融服务商由于客户欺诈等行为而主动终止客户与客户的关系。
这是由于金融服务商在客户开发的过程中忽视了客户质量造成的。
3)客户主动流失:客户主动流失可分为两种情况。
一种是客户不再使用任何一家金融服务商的业务;另一种是客户选择了另一家服务商,如客户将存款从一家银行转移到另一家银行。
客户主动流失的原因主要是客户认为公司不能提供他所期待的价值,即公司为客户提供的服务价值低于另一家服务商。
这可能是客户对公司的业务和服务不满意,也可能是客户仅仅想尝试一下别家公司提供而本公司未提供的新业务。
这种客户流失形式是研究的主要容。
如何进行客户流失分析?对于客户流失行为预测来说,需要针对客户流失的不同种类分别定义预测目标,即明确定义何为流失,进而区别处理。
预测目标的准确定义对于预测模型的建立是非常重要的,它是建立在对运营商的商业规则和业务流程的准确把握的基础之上。
在客户流失分析中有两个核心变量:财务原因/非财务原因,主动流失/被动流失。
对不同的流失客户按该原则加以区分,进而制定不同的流失标准。
例如,非财务原因主动流失的客户往往是高价值的客户,他们会正常支付服务费用并容易对市场活动有所响应,这种客户是企业真正需要保留的客户。
而对于非财务原因被动流失的客户,预测其行为的意义不大。
研究哪些客户即将流失,是一个分类问题。
将现有客户分为流失和不流失两类,选择适量的流失客户和未流失客户的属性数据组成训练数据集,包括:客户的历史通话行为数据、客户的基础信息、客户拥有的产品信息等。
Clementine提供人工神经网络、决策树、Logistic回归等模型用于建立客户流失的分类模型。
关于流失用户特征的分析,是一个属性约减和规则发现问题。
Clementine提供关联分析方法,可以发现怎样的规则导致客户流失。
也可以利用Clementine的决策树方法,发现与目标变量<是否流失),关系最为紧密的用户属性。
由于不同类型的客户可能具有不同的流失特征。
因此,在进行深入的客户流失分析时,需要先进行客户细分,再对细分之后的客户群分别进行挖掘。
在预测客户流失时一个很重要的问题是流失的时间问题,即一个客户即将要流失,那么它可能什么时候会流失。
生存分析可以解决这类问题。
生存分析不仅可以告诉分析人员在某种情况下,客户可能流失,而且还可以告诉分析人员,在这种情况下,客户在何时会流失。
生存分析以客户流失的时间为响应变量进行建模,以客户的人口统计学特征和行为特征为自变量,对每个客户计算出初始生存率,随着时间和客户行为的变化,客户的生存率也发生变化,当生存率达到一定的阈值后,客户就可能流失。
分析客户流失对客户自身的影响时,主要可以考虑客户的流失成本和客户流失的受益分析。
客户流失成本可以考虑流失带来的人际关系损失等因素,通过归纳客户的通话特征来表征。
减少客户流失的一个手段就是增加客户的流失成本。
客户流失的受益分析就是判断客户流失的动机,是价格因素还是为了追求更好的服务等。
这方面容丰富,需作具体分析。
分析客户流失对公司的影响时,不仅要着眼于对收入的影响,而且要考虑其它方面的影响。
单个的客户流失对公司的影响可能是微不足道的,此时需要研究流失客户群对公司收入或业务的影响。
这时候可能需要对流失客户进行聚类分析和关联分析,归纳客户流失的原因,有针对性的制定防止客户流失的措施。
在预测出有较大流失可能性的客户后,分析该客户流失对公司的影响。
评估保留客户后的收益和保留客户的成本。
如果收益大于成本,客户是高价值客户,则采取措施对其进行保留。
至于低价值客户,不妨任其流失甚至劝其流失。
总之在利用数据挖掘研究客户流失问题时,需要明确并深入理解业务目标,在明确的业务目标的基础上准备数据、建模、模型评估,最后将模型部署到企业中。