(完整版)拉伸法测钢丝杨氏模量
用拉伸法测钢丝杨氏模量――实验报告

用拉伸法测钢丝杨氏模量――实验报告本实验使用拉伸法测定钢丝的杨氏模量。
实验过程包括测量原始尺寸和断裂强度,计算应力和应变,绘制应力-应变曲线,利用斜率计算杨氏模量。
一、实验原理1.杨氏模量:杨氏模量也称弹性模量,是研究力学学科中的一项重要物理量,它描述了物体在受力时,单位应力下的应变程度。
可以表示为弹性模量E,其计算公式为E=σ/ε,其中σ为应力,ε为单位应变。
2.拉伸法:拉伸法是测定材料弹性性质的常用方法之一。
先将试样加在拉伸机上,通过施加相应的拉力,使试样发生拉伸变形,然后测量试样在不同应变下的应力,绘制应力-应变曲线,以求得该材料的杨氏模量。
二、实验步骤1.准备实验设备,将钢丝放在拉伸机上。
2.用卡尺测量钢丝的初始长度、直径和断裂长度,记录数据。
3.用拉伸机分别在不同的拉力下进行拉伸,记录拉力和试样的应变。
4.计算每个密度下的应力,应力=拉力/试样横截面积。
5.计算每个密度下的应变,应变=延长长度/原始长度。
6.根据应力-应变曲线,计算杨氏模量。
三、实验数据试样长度:5m原始直径:2.5mm断裂长度:8m钢丝密度:7.85g/cm³拉伸试验数据如下:|拉力F(N)|延长长度L(mm)|试样直径D(mm)||:-:|:-:|:-:||0|0|2.5||50|2|2.5||100|4|2.6||150|6|2.7||200|8|2.8||250|10|2.9||300|12|3.0||350|14|3.1||400|16|3.2||450|18|3.3||500|20|3.4||550|22|3.5||600|24|3.6||650|26|3.7||700|28|3.8||750|30|3.9||800|32|4.0|四、实验计算1.计算实验数据中的横截面积试样横截面积=π*(D/2)²=π*(2.5/2)²=4.91mm² 2.计算每个密度下的应力应力=F/S=700/4.91=142.6N/mm²应变=L/L0=28/5000=0.00564.绘制应力-应变曲线通过计算得出的应力和应变数据,可以绘制出钢丝在拉伸试验中的应力-应变曲线如下:[示例图:应力-应变曲线]5.计算杨氏模量根据应力-应变曲线可以看出,线性部分的斜率即为杨氏模量,计算可得杨氏模量的值为:E=Δσ/Δε=(320-170)/(0.004-0.003)=69000N/mm²五、实验结论通过本次实验,我们使用拉伸法测定了钢丝的杨氏模量,并且得出了结论:杨氏模量为69.0×10⁹N/mm²。
拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大原理和测量微小长度变化的方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
假设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),在受到外力\(F\)作用下伸长了\(\Delta L\)。
根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,其比例系数即为杨氏模量\(E\),数学表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\在本实验中,外力\(F\)由砝码的重力提供,横截面积\(S\)可通过测量金属丝的直径\(d\)计算得到(\(S =\frac{\pid^2}{4}\)),金属丝的原长\(L\)用米尺测量,而微小伸长量\(\Delta L\)则采用光杠杆法测量。
光杠杆装置由光杠杆、望远镜和标尺组成。
光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的沟槽内,后尖足置于金属丝的测量端。
当金属丝伸长(或缩短)\(\Delta L\)时,光杠杆的后尖足随之升降\(\Delta L\),从而带动平面镜转动一个角度\(\theta\)。
从望远镜中可以看到标尺像的移动,设标尺像移动的距离为\(n\),光杠杆常数(即两前尖足到后尖足连线的垂直距离)为\(b\),望远镜到光杠杆平面镜的距离为\(D\),则有:\\tan\theta \approx \theta =\frac{n}{D}\\\tan 2\theta \approx 2\theta =\frac{\Delta L}{b}\由上述两式可得:\\Delta L =\frac{nb}{2D}\将\(\Delta L\)代入杨氏模量的表达式,可得:\E =\frac{8FLD}{\pi d^2 n b}\三、实验仪器1、杨氏模量测定仪:包括底座、立柱、金属丝、光杠杆、砝码等。
拉伸法测钢丝的杨氏模量

实验过程中可能存在的误差来源包括测量误差、仪器误差、数据处理误差等。
误差分析
对每个误差来源进行了详细分析,并计算了其对最终结果的影响程度。
06 结论与展望
实验结论
实验精度
通过拉伸法测量钢丝的杨氏模量, 实验结果具有较高的精度,能够 满足工程和科研需求。
影响因素
实验过程中,温度、湿度、钢丝 的纯度等因素对实验结果有一定 影响,需要采取相应措施进行控 制。
实验技术改进
为了进一步提高实验精度和效率,需要不断改进 实验技术和设备,提高测量结果的可靠性和准确 性。
应用领域拓展
随着科技的不断发展,杨氏模量在各个领域的应 用越来越广泛,需要不断拓展其应用领域,为各 行业的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
振动抑制
在机械和车辆工程中,钢丝的杨氏模量对振动抑制效果有重要影响,通 过合理选择材料的杨氏模量可以有效降低振动和噪音。
03
精密仪器制造
在精密仪器制造中,钢丝的杨氏模量对仪器的精度和稳定性有重要影响,
需要选择具有高杨氏模量的材料以确保仪器的性能。
未来研究方向和展望
1 2 3
新型材料
随着新材料技术的不断发展,未来需要研究新型 材料的杨氏模量特性,以满足不同领域的需求。
01
02
03
位移传感器
使用高精度位移传感器测 量钢丝在拉伸过程中的位 移变化,确保测量结果的 准确性。
力传感器
选用高灵敏度的力传感器 测量拉伸力,以获取准确 的应力-应变曲线。
数据采集系统
配备稳定的数据采集系统, 实时记录实验数据,便于 后续数据处理和分析。
04 实验步骤
杨氏模量的测定(拉伸法) 演示文稿

l(cm)
Z(mm)
1 d(mm)
2
3
4
5
6
5.逐差法计算△A以及相应的 . . 以及相应的E. 以及相应的
1 ∆A = [( A3 − A0 ) + ( A4 − A1 ) + ( A5 − A2 )] 3
E=
8 FlD
π d ∆AZ
2
其中
F = 3 × 0.320 × 9.8( N )
6.E的不确定度的计算. . 的不确定度的计算 的不确定度的计算. 可按下式计算E 值的标准不确定度u 可按下式计算 值的标准不确定度 c.E
8m glD E= 2 πd ( Am − A )Z 0
两个支点
砝码质量m已知 , 砝码质量 已知, 只需 已知 测量钢丝长度l、钢丝 直径d、光杠杆长度Z、 直径 、光杠杆长度 、 加砝码前后望远镜中标 尺 的 读 数 Am 和 A0 即 可 。
Z
“力” 力 点
3. D值的测量 . 值的测量
关于D值的测量,传统的方法用米尺去直接测量, 关于 值的测量,传统的方法用米尺去直接测量,但这 值的测量 样做误差较大. 样做误差较大 . 现用长春第一光学仪器厂生产的尺读望远 镜,D值的测量可用公式 值的测量可用公式
砝码重 增重 减重 平均
(kg)
A i ’ (cm )
A i ” (cm )
A i (cm )
0 1 2 3 4 5 6 0.320 0.640 0.960 1.280 1.600 1.920
【实验内容】
4.长度及直径测量 .
单次测量金属丝原长l 用米尺 用米尺), ( 单次测量金属丝原长 (用米尺 ,Z(在白纸上压出三个 压痕后,用游标卡尺量出前点到后两点连线的垂直距离, 压痕后,用游标卡尺量出前点到后两点连线的垂直距离, 多次测量金属丝直径d(螺旋测微器, 次 即为Z ),多次测量金属丝直径 (螺旋测微器,6次)
(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量实验目的1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量;2. 掌握有效数字的读取、运算以及不确定度计算的一般方法.3. 掌握用逐差法处理数据的方法;4. 了解选取合理的实验条件,减小系统误差的重要意义.实验仪器YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干.1.标尺2.锁紧手轮3.俯仰手轮4.调焦手轮5.目镜6.内调焦望远镜7.准星8.钢丝上夹头9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝.实验原理设一粗细均匀的钢丝,长度为L 、横截面积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即F L ES L ∆= 或 //F SE L L=∆ 式中E 称为杨氏模量,单位为N·m -2,在数值上等于产生单位应变的应力.由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题.本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动.设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度).由图可知2tan Ld θ∆=,1011tan 2s s s d d θ-∆== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有θtan ≈θ2d L∆=,θ2tan θ2≈1101d s d s s ∆=-=由此可得 212d L s d ∆=∆ 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式:1228mgLd E D d s=π∆其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E .实验内容1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度;2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次;3. 用游标卡尺测量光杠杆常数d 2一次;4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度;5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果.实验步骤1. 杨氏模量测定仪的调整(1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直;(2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直.(3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在支架上. 调整到平面镜法线和望远镜轴线等高共轴.(4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节平面镜倾角,直到在平面镜中看到镜筒或标尺的像.(6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝.杠杆架反射镜固定平台砝码光杠杆结构图θθ光杠杆望远镜标尺s 0s 1d 1d 2ΔLθθΔs2. 用千分尺在不同方向、位置测量钢丝的直径D ,共测6次,测量前应先记录千分尺的零点读数;3. 用钢卷尺测量镜面到标尺的距离d 1;4. 在砝码钩上放上测量时要加的全部(共加7次)砝码(不包括预加的本底砝码)的一半(3-4块),细心调节平面镜倾角,使望远镜中看到的标尺像在零刻线附近,以保证在轴线附近的范围内测量.4. 去掉刚才所加的砝码,开始测量,记录初始值0s ',逐个增加砝码,记录每一步的读数i s ',再逐个减去砝码,记录每一步同一砝码数对应的读数i s '';5. 测量光杠杆常数d 2.可将光杠杆的三个脚放在数据记录纸上按下三个印,作连接前两脚的连线和后脚到该连线的垂线,用游标卡尺测量这一距离.6. 整理实验数据,交指导老师签字,整理仪器,完成实验.注意事项1. 实验系统调好后,一旦开始正式测量,在实验过程中不能再对系统任一部分进行任何调整,否则,所有数据将重新再测;2. 加减砝码时要轻拿轻放,槽口要相互错开,避免砝码钩晃动,在系统稳定后读数;3. 同一荷重(相同砝码数)下的两个读数要记在一起.增重与减重对应同一荷重下读数的平均值才是对应荷重下的最佳值,它消除了摩擦(圆柱体与圆孔之间的摩擦)与滞后(加减砝码时钢丝伸长与缩短滞后)等引起的系统误差.4. 实验完成后,应将砝码取下,防止钢丝疲劳.数据记录表一 L 、d 1、d 2测量数据表 单位: mm表二 钢丝直径D 的测量数据表千分尺零点读数 =仪ε mm 单位: mm表三 Δs 的测量数据表 单位:mm数据处理1.计算每增加一块砝码(1kg)的钢丝伸长量Δs 的最佳值及不确定度 (1) Δs 的最佳值(用逐差法))(41041s s s -=∆;)(41152s s s -=∆;)(41263s s s -=∆;)(41374s s s -=∆;)(414321s s s s s ∆+∆+∆+∆=∆(2) 计算 的实验标准差: ()Ss ∆= (3) 计算 平均值的实验标准差: ()S s ∆=(4) 标尺的示值极限误差: Δm=0.5mm(5) 合成不确定度:()u s ∆==2.D 的最佳值及不确定度的计算(1) D 的最佳值: ∑==6161i i D D(2) 计算D 的实验标准差: ()S D =(3) 计算 D 平均值的实验标准差: ()S D = (4) 千分尺的的示值极限误差:Δm =0.004mm(5) 计算D 的合成不确定度: ()u D ==3. E 的最佳值的计算和不确定度的计算 (1) E 的最佳值的计算: sd D mgLd E ∆=2218π(2) E 的合成不确定度的计算取u (d 2)=0.02mm ,u (d 1)=5mm , u (L )=5mm ,及2和3中的不确定度得到E S S u D D u L L u d d u d d u E u ⋅⎪⎭⎫⎝⎛∆∆+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=222222211)()(2)()()()((3) E 的相对不确定度的计算,将实验值与 E 的公认值 E 0=2.05×1011 N ·m -2比较,计算其相对不确定度:()100%EE E E =⨯。
大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

三、实验中注意:实验测量中,发现增荷和减荷时读数相关差较大,当荷重按比例增加时,?n不按比例增加,应找出原因,重新测量。这种情况可能发生的原因有:
1、金属丝不直,初始砝码太轻,没有把金属丝完全拉直。
2、杨氏弹性模量仪支柱不垂直,使金属丝下端的夹头不能在金属框内上下自由滑动,摩擦阻力太大。
1
3、加减砝码时动作不够平衡,导致光杠杆足尖发生移动。
1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。所以它不能很真实地反映出材料内部结构的变化。②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
8LD?n??F?KF 2?dbE
8LD
?d2bE由此式作?n?F图线,应得一直线。从图线中计算出直线的斜率K,再由K?
即可计算出E。
3
篇二:大学物理实验用拉伸法测金属丝的杨氏模量
用拉伸法测金属丝的杨氏模量
材料在外力作用下产生形变,其应力与应变的比值叫做弹性模量,它是反映材料抵抗形变能力的物理量,杨氏模量是固体材料的纵向弹性模量,是选择机械构件的依据之一,也是工程技术中研究材料性质的常用参数。测定弹性模量的方法很多,如拉伸法、振动法、弯曲法、光干涉法等,本实验采用拉伸法测定金属丝的杨氏弹性模量,研究拉伸正应力与应变之间的关系。
拉伸法测金属丝杨氏弹性模量

(2)调节平台的上下位置,使随金属丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。
(3)加1Kg砝码在砝码托盘上,将金属丝拉直,检查 夹具B是否能在平台的孔中上下自由地滑动,金属丝 是否被上下夹子夹紧.
2.光杠杆及望远镜尺组的调节
(1)外观对准——调节光杠杆与望远镜、标尺中部 在同一高度上。 (2)镜外找像——缺口、准星、平面镜中标尺 像.三者在一条水平 线上。 (3)镜内找像 ——先调节目镜使叉丝清晰,再调节 调焦距看清标尺像,直到无视差为准。 (4)细调对零——对准标尺像零刻线附近的任一刻
4 n4 9 n9
n7 n2
5 n5 10 n10
n8 n3
n9 n4
n10 n5
5
2
A t0 .9 55i 1
N iN 5 1
,
B仪,
因 n1N
5
所 以 n5 1N
N
2 2
AB
nnn
返回
实验内容
1.杨氏模量测定仪的调整
i1
31
B 仪
nnn
n 2A2B
杨氏模量 E计 8FL算D
d2bn
不确定度计算:
EEFF2LL2D D24dd2bb2nn2
E
E E
E
用拉伸法测量金属丝杨氏模量
1. 实验简介 2. 实验目的 3. 实验原理 4. 逐差法处理数据 5. 实验内容 6. 注意事项 7. 数据记录与处理 8. 课后思考题
实验简介
材料受外力作用时必然发生形变,杨氏模量(也称弹性模量)是 反映固体材料弹性形变的重要物理量,在一般工程设计中是一个 常用参数, 是选定机械构件材料的重要依据之一。常用金属材
大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。
在数据处理中,掌握逐差法和作图法两种数据处理的方法实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。
实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL )其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。
根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。
实验原理图如右图:当θ很小时,l L /tan ∆=≈θθ,其中l 是光杠杆的臂长。
由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:Db =≈θθ22tan故:)2(D b lL =∆,即是)2(D bl L =∆那么SlbDLFE 2=,最终也就可以用这个表达式来确定杨氏模量E 。
实验内容: 1.调节仪器(1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。
(2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。
(3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。
光杠杆的镜面(1)和刀口(3)应平行。
使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。
(4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。
2.测量(1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉伸法测钢丝杨氏模量
实验目的
1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量;
2. 掌握有效数字的读取、运算以及不确定度计算的一般方法.
3. 掌握用逐差法处理数据的方法;
4. 了解选取合理的实验条件,减小系统误差的重要意义.
实验仪器
YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干.
1.标尺
2.锁紧手轮
3.俯仰手轮
4.调焦手轮
5.目镜
6.内调焦望远镜
7.准星
8.钢丝上夹头
9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝.
实验原理
设一粗细均匀的钢丝,长度为L 、横截面
积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即
F L E
S L ∆= 或 //F S
E L L
=∆ 式中E 称为杨氏模量,单位为
N·m -2,在数值上等于产生单位应变的应力.
由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题.
本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放
在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动.
设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此
时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度).
由图可知
2
tan L
d θ∆=
,1011tan 2s s s d d θ-∆== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有
θtan ≈θ2d L
∆=
,θ2tan θ2≈1
101d s d s s ∆=-=
由此可得 2
1
2d L s d ∆=
∆ 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式:
1
228mgLd E D d s
=
π∆
其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E .
实验内容
1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度;
2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次;
3. 用游标卡尺测量光杠杆常数d 2一次;
4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度;
5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果.
实验步骤
1. 杨氏模量测定仪的调整
(1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直;
(2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直.
(3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在
支架上. 调整到平面镜法线和望远镜轴线等高共轴.
(4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节
平面镜倾角,直到在平面镜中看到镜筒或标尺的像.
(6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝.
杠杆架
反射镜
固定平台
砝码
光杠杆结构图
θ
θ
光杠杆
望远镜
标尺
s 0
s 1
d 1
d 2
ΔL
θ
θ
Δs
2. 用千分尺在不同方向、位置测量钢丝的直径D ,共测6次,测量前应先记录千分尺的零点读数;
3. 用钢卷尺测量镜面到标尺的距离d 1;
4. 在砝码钩上放上测量时要加的全部(共加7次)砝码(不包括预加的本底砝码)的一半(3-4块),细心调节平面镜倾角,使望远镜中看到的标尺像在零刻线附近,以保证在轴线附近的范围内测量.
4. 去掉刚才所加的砝码,开始测量,记录初始值0
s ',逐个增加砝码,记录每一步的读数i s ',再逐个减去砝码,记录每一步同一砝码数对应的读数i s '';
5. 测量光杠杆常数d 2.可将光杠杆的三个脚放在数据记录纸上按下三个印,作连接前两脚的连线和后脚到该连线的垂线,用游标卡尺测量这一距离.
6. 整理实验数据,交指导老师签字,整理仪器,完成实验.
注意事项
1. 实验系统调好后,一旦开始正式测量,在实验过程中不能再对系统任一部分进行任何调整,否则,所有数据将重新再测;
2. 加减砝码时要轻拿轻放,槽口要相互错开,避免砝码钩晃动,在系统稳定后读数;
3. 同一荷重(相同砝码数)下的两个读数要记在一起.增重与减重对应同一荷重下读数的平均值才是对应荷重下的最佳值,它消除了摩擦(圆柱体与圆孔之间的摩擦)与滞后(加减砝码时钢丝伸长与缩短滞后)等引起的系统误差.
4. 实验完成后,应将砝码取下,防止钢丝疲劳.
数据记录
表一 L 、d 1、d 2测量数据表 单位: mm
表二 钢丝直径D 的测量数据表
千分尺零点读数 =仪ε mm 单位: mm
表三 Δs 的测量数据表 单位:mm
数据处理
1
.计算每增加一块砝码(1kg)的钢丝伸长量Δs 的最佳值及不确定度 (1) Δs 的最佳值(用逐差法)
)(41041s s s -=∆;)(41152s s s -=∆;)(41263s s s -=∆;)(4
1
374s s s -=∆;
)(4
1
4321s s s s s ∆+∆+∆+∆=∆
(2) 计算 的实验标准差: ()S
s ∆= (3) 计算 平均值的实验标准差: (
)S s ∆=(4) 标尺的示值极限误差: Δm=0.5mm
(5) 合成不确定度:
()
u s ∆==
2.D 的最佳值及不确定度的计算
(1) D 的最佳值: ∑==6
1
61i i D D
(2) 计算D 的实验标准差: ()S D =(3) 计算 D 平均值的实验标准差: ()S D = (4) 千分尺的的示值极限误差:Δm =0.004mm
(5) 计算D 的合成不确定度: ()u D ==3. E 的最佳值的计算和不确定度的计算 (1) E 的最佳值的计算: s
d D mgLd E ∆=22
1
8π
(2) E 的合成不确定度的计算
取u (d 2)=0.02mm ,u (d 1)=5mm , u (L )=5mm ,及2和3中的不确定度得到
E S S u D D u L L u d d u d d u E u ⋅⎪⎭⎫
⎝⎛∆∆+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝
⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=2
222
22211)()(2)()()()(
(3) E 的相对不确定度的计算,将实验值与 E 的公认值 E 0=2.05×1011 N ·m -2比较,计算其相对不确定度:
()100%E
E E E =
⨯。