鲁奇加压气化炉的正常操作调整与故障处理

合集下载

鲁奇加压气化炉的运行与技术改进

鲁奇加压气化炉的运行与技术改进

鲁奇加压气化炉的运行与技术改进摘要:随着我国市场经济体制的深入发展,能源利用方式也面临着新的改革,不仅要满足市场需求,更要实现多样化创新以适应多方面需求。

煤化工业在此基础上得到了较快的发展,如合成氨、甲醇、煤制天然气、煤制油等产业,在不同程度上提出了碎煤加压气化工艺的需求。

鲁奇炉是在煤化工业中重要的设备,也被看作是煤气化炉中的发生器。

这种产自德国的工艺设备在世界范围内都得到了广泛地应用,上世纪五十年代,我国根据生产需求引入了鲁奇工艺,同时也开始了针对鲁奇工艺生产的探索和研究。

基于此,本文主要对鲁奇加压气化炉的运行与技术改进进行分析探讨。

关键词:鲁奇加压气化炉;运行;技术改进1、前言我国引入鲁奇工艺是在上世纪五十年代,第一代鲁奇炉从苏联引入之后在较长的一段时间内没有进行技术改造方面的探索。

这是因为建国初期的煤化工业几乎都是有苏联技术援建的,以碎煤加压气化为主要技术,国内几乎没有相关的技术人员。

经过长期的研究,碎煤加压气化技术得到了大幅度创新,但在工艺运行和技术改造方面都存在较大的空间。

2、鲁奇炉的设计结构和工艺原理目前,我国鲁奇加压炉的改造方向,主要用于氨气和煤气的生产,应用于化肥生产、城市煤气供应等方面。

虽然不同的生产企业对气化炉的结构改造不同,但在利用煤炭资源性质方面是相同,通过技术改造造成部件方面的差异,本文基于化肥生产过程进行研究。

2.1鲁奇炉简介鲁奇炉是德国鲁奇工程公司生产的煤气化装置,最早成形于十九世纪三十年代,鲁奇炉的是经过对多种煤炭资源测试试验后发明的煤气化装置。

在最初采用燃烧值较低的褐煤进行实验,并取得了成功,在十九世纪50年代到70年代,鲁奇工程公司进行了一系列的改造,其中鲁奇Ⅳ型汽化炉的技术已经相当成熟,目前在国内应用的鲁奇炉设备大多是这一型号。

MARK-Ⅳ型中设置了炉箅,对气化的强度提升高,残渣形成少,技术更加先进;MARK-Ⅳ型鲁奇炉结构其他主要部件包括炉体、煤锁、膨胀冷凝器、洗涤冷却器等。

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种高效率、低污染的燃烧设备,广泛应用于石油化工、炼油、化工等工业领域。

在长期的使用过程中,由于设备老化、技术不足等原因,炉内温度不稳定、燃烧效果差等问题逐渐显现。

为了提高加压气化炉的运行效率和燃烧效果,进行技术改造是必不可少的。

对于加压气化炉的运行问题,需要对设备进行全面的检查和维护。

检查设备的质量,包括炉体、燃烧器等设备的损坏和磨损情况。

如果发现有损坏的地方,要及时更换或修补,以保证设备的正常运行。

还需要检查设备的连接情况,包括燃气管线、排气管等,确保设备间的连接牢固,不会出现漏气现象。

对于加压气化炉的燃烧问题,可以通过改进燃烧器的结构来提高燃烧效果。

燃烧器是燃烧设备的关键部分,直接影响燃烧的效果。

通过优化燃烧器的设计,改善燃烧器的燃烧效果,可以提高加压气化炉的燃烧效率,减少燃烧产生的污染物。

可以通过增加燃料分配器和航道的数量,增加燃料的完全燃烧面积,提高燃烧的效果。

还可以增加燃烧器的燃烧器喷嘴和预混室的混合效果,使燃料和空气混合均匀,提高燃烧的效果。

加压气化炉还可以进行技术改造,以提高炉内温度的稳定性。

炉内温度不稳定会导致燃烧效果差,影响加压气化炉的运行效率。

为了解决这一问题,可以在炉内增加温度调节装置,例如增加炉内温度探测器和温度控制装置,通过监测和控制炉内的温度,使其能够自动调节炉内的温度,保持炉内温度的稳定性。

加压气化炉还可以进行能量回收技术的改造,以提高能量利用率。

加压气化炉是一种高能量消耗设备,废气中包含大量的热能,如果能够有效地回收这些热能,不仅可以提高加压气化炉的能量利用率,还可以减少二氧化碳等污染物的排放。

在加压气化炉的运行过程中,可以增加烟气余热回收装置,将废气中的热能转化为热水、蒸汽等形式,用于其他设备的供热或发电。

通过对鲁奇加压气化炉的运行问题进行全面的检查和维护,改进燃烧器的结构,增加温度调节装置以及进行能量回收技术的改造,可以大大提高加压气化炉的运行效率和燃烧效果,达到减少能源消耗和环境污染的目的。

鲁奇加压气化炉的正常操作调整与故障处理

鲁奇加压气化炉的正常操作调整与故障处理

煤斗向煤锁加煤的阀门,以前为插板式,第三代炉以
后改为圆筒型,不论改为何种结构形式的煤溜槽阀,
其关闭后都与煤锁上阀之间有一定的空间,该空间用
于煤锁上阀开、关动作,以使上阀关严。所以操作中
要注意:在一个加煤循环中,煤溜槽阀只能打开一次,
以防止多次开关上阀动作空间充满煤后造成上阀的无
法关严,而影响气化炉的运行。
灰锁上、下阀的严密性实验压力必须按要求是压力进行,
即实验时上、下阀承受的压差ΔP为1.0MPa,这样可以及时 发现阀门泄露,及时处理,以延长上、下阀的使用寿命。
可编辑ppt
7
5、灰锁膨胀冷凝器的冲洗与充水
对于灰锁设有膨胀冷凝器的气化炉,其充水与冲洗 的正确操作很重要。灰锁泄压后,应按规定时间对 膨胀冷凝器底部进行冲洗,以防止灰尘堵塞灰锁泄 压中心管。冲洗完毕后应将膨胀冷凝器充水至满位 后,充水时应注意不能过满或过少,过满时水会溢 入灰锁造成灰湿、灰锁挂壁,影响灰锁容积;过少 则在灰锁泄压时很快蒸发,造成灰锁干泄,导致灰 尘堵塞泄压中心管,使灰锁泄压困难,所以必须正 确掌握冲洗与充水量,以保证灰锁的正常工作。
导致工况恶化若气化炉的负荷过等问题。根据经
验,气化炉负荷一般应控制在85%~120%,最低负荷
一般不得低于50%。
可编辑ppt
4
2、汽氧比的调整
汽氧比是气化炉正常操作的重要调整参数之一。调整汽氧比,
实际上是调整炉内火层的反应温度,气化炉出口煤气成分也随
① 当灰锁压力泄压至2.0MPa时停止泄压,检查上阀严密 性,查看灰锁压力是否回升。若在规定时间内(5s)压力回 升大于0.1MPa,则说明上阀泄露,应充压后再次关闭;若在 5s内小于0.1MPa,说明上阀关闭严密。

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨
鲁奇加压气化炉是一种采用间歇式加压气化技术的燃烧设备,其优点是在燃烧过程中可以获得高效的热能转换,同时还能有效地进行废气处理。

然而随着时间的推移,设备的运行效率与性能将会降低,这时需要进行技术改造来提高设备的运行效率与性能。

首先,加装旋流式废气净化装置可以在提高燃烧效率的同时,也能有效地减少废气排放量。

旋流式废气净化装置采用惯性沉积与湍流碰撞相结合的方式对废气中的灰尘、烟雾等固体颗粒进行捕捉过滤,因此其过滤效率高且能力强,能够在一定程度上提高燃料利用率,同时还能保护环境。

其次,对炉内加热方式进行改善,尤其是对炉底的加热方式进行改良。

传统的燃烧方式采用电加热或者燃气加热,而这种方式的加热效率不高,因此可以尝试改用气体喷射式加热或者热电偶感应加热等加热方式。

这种改变可以提高炉内温度,加快热能传递速度,从而加快燃料的气化速度,提高燃烧效率。

除了上述改进技术之外,还可以对鲁奇加压气化炉的控制系统进行优化。

利用现代化控制技术对设备进行智能化、自动化控制,能够实现对加压气化炉的全面监测、实时调整与分析,提高运行效率与稳定性。

优化控制系统可以大大减少人力操作,降低运行成本,更好地保障设备的持久稳定运行。

总的来说,鲁奇加压气化炉在运行过程中,可以通过加装旋流式废气净化装置、改善炉内加热方式以及优化控制系统等方式进行技术改造,以提高设备的运行效率与性能,使其更好地适应现代化产业需求。

鲁奇加压气化炉的开停车操作

鲁奇加压气化炉的开停车操作
(2) 系统完整性检查 :气化炉开车前应对炉体内 部、煤锁、灰锁内部件的安装正确性进行检查,对 外部的按工艺流程进行管道走向、仪表、孔板等安 装方向进行检查,保证其安装正确。
(3) 仪表功能检查 :现代碎煤加压气化炉的自动 控制程度较高,因此,对仪表功能的检查至关重要。 检查的内容包括:煤锁灰锁各电磁阀遥控动作是否 正常;各仪表调节阀及电动阀的动作与控制室是否 对应;各指示仪表的调效、气化炉停车联锁功能是 否正常;炉篦的运转与调节是否正常。
二、气化炉的停车与再开车
加压气化炉根据停车原因、目的 不同,停车深度有所不同,停车可分 为:压力热备炉停车、常压热备炉停 车和交付检修(熄火、排空)停车。 根据停车原因、停车时间长短,选择 停车与再开车方式。
1、压力热备炉的停车与再开车
非气化炉本身问题引起的气化炉停车,在30min 内即可恢复生产时,气化炉选择压力热备炉停车。
⑥ 蒸汽通入气化炉后,灰锁开始操作,每 15min排放一次,由于加热煤层在炉内产生冷凝 液,若冷凝液排放不及时,将会造成煤层加热 不到反应温度,使通入空气后煤不能与氧气着 火,导致点火失败。故而应一方面尽量提高入 炉蒸汽温度,另一方面要特别重视炉内冷凝液 的排放。
3、气化炉点火及火层培养
蒸汽升温达到要求后即可进行点火操作。点火及
(3) 建立废热锅炉底部煤气水位及洗涤循环。用煤 气水分离工号供给的洗涤煤气水填充废热锅炉底部, 并启动煤气水洗涤循环泵使废热锅炉与洗涤冷却器 的循环建立;打通废热锅炉底部排往煤气水分离工 号的开车管线,使多余的煤气水排出。
(4) 打开废热锅炉低压蒸汽放空阀,向废锅的壳 程充入锅炉水建立液位 。向气化炉夹套充水,初次
一、气化炉的开车
气化炉开车过程的操作非常重要, 它直接关系到气化炉投入正常运行后 能否保持高负荷连续的每个步骤。

鲁奇气化炉正常操作、维护和事故处理档

鲁奇气化炉正常操作、维护和事故处理档

鲁奇气化炉正常操作、维护和事故处理档鲁奇气化炉正常操作、维护和事故处理1.鲁奇气化炉正常操作、维护1.1 正常操作说明单台气化炉及整个气化装置的操作设置了各种自动控制器及报警、联锁停车系统。

一些控制器的设定值必须根据下列变化行之有效时调整;——灰的性能大幅度变化。

——粗煤气中CO2含量超标。

——温度超指标。

——单台气化炉负荷大幅度变化。

(二)主要工艺参数说明:以下列出单台气化炉的主要工艺参数及其正常值或范围,详见2.1章工艺指标。

——粗煤气流量19500—38500Nm3/h(干)——气化剂蒸汽流量20000—36000kg/h——氧气流量3000—6000Nm3/h(纯度99.6%)——汽氧比 5.5~6.0Nm3——气化炉出口煤气压力 2.95MPa——炉蓖转速根据灰份及负荷调整——气化剂温度320~350℃——气化炉出口煤气温度≤420℃——灰锁温度320~350℃——气化炉顶部法兰温度150℃——洗涤冷却器出口温度201℃——废热锅炉出口煤气温度187℃——粗煤气(干气)中CO2含量30~35%(体积)——灰粒度稍有烧结——灰渣残碳量<6%1.2 气化炉操作指南注:本部分仪表都写的是第一系列的位号,第二、三系列和第一系列相同。

在正常操作中,主要工艺参数的控制参照2.1工艺指标一节,详细的控制及处理措施参照下述气化炉操作指南,其目的是为了帮助操作者找出偏离正常条件的原因及相应的处理措施。

a)混合管前后温差TDI-21CT007气化剂混合管前后温差高说明气化剂温度低。

气化剂温度低,最严重的情况可能由于气化剂中O2含量高而引起,这将导致渣块的形成和严重的影响炉篦的运行,此外,如果灰床低将会对炉篦带来损坏性影响,遇有这种情况应检查下述项目:1)检查汽氧比,如果低,增加蒸汽流量,提高汽氧比。

2)检查粗煤气中CO2含量,如偏低,提高汽氧比,相应提高了汽化剂温度。

3)检查灰粒度及灰质情况,如果有大块融渣形成,增加汽氧比,相应提高了气化剂温度。

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨【摘要】本文围绕鲁奇加压气化炉的运行与技术改造进行探讨。

在引言部分分析了该研究的背景和意义。

随后通过对鲁奇加压气化炉的原理及结构进行分析,揭示了其运行特点和存在的问题。

接着提出了针对这些问题的技术改造方案,并对改造效果进行评估。

结论部分总结了技术改造对鲁奇加压气化炉的影响,并展望了未来研究方向。

本文系统地深入探讨了如何通过技术改造来提升鲁奇加压气化炉的性能和效率,为相关行业提供了有益的参考和指导。

【关键词】鲁奇加压气化炉、运行、技术改造、研究背景、研究意义、原理、结构分析、运行特点、存在的问题、改造方案、改造效果评估、影响、未来研究方向1. 引言1.1 研究背景在过去的研究中,针对鲁奇加压气化炉的工作原理和结构进行了一定程度的探讨,但对于其运行特点、存在的问题以及技术改造方案等方面存在较多的研究空白。

通过对鲁奇加压气化炉的深入研究,可以更好地了解其在实际运行中的特点和存在的问题,进而提出有效的技术改造方案,提高鲁奇加压气化炉的运行效率和环保性能。

本文旨在对鲁奇加压气化炉的运行与技术改造进行深入探讨,为提高其运行效率、降低排放污染物、推动清洁能源转化提供理论支撑和技术指导。

1.2 研究意义鲁奇加压气化炉是一种重要的能源设备,其在工业生产中具有广泛的应用。

通过对鲁奇加压气化炉的运行与技术改造进行深入研究,可以提高其运行效率,减少能源消耗,降低对环境的污染,促进工业生产的可持续发展。

对鲁奇加压气化炉存在的问题进行分析和解决,可以提高设备的稳定性和安全性,延长设备的使用寿命,降低维护成本,为工业生产提供更加可靠的保障。

通过对鲁奇加压气化炉的技术改造方案和效果评估的研究,可以为其他类似设备的改造提供借鉴和参考,推动相关领域的技术创新和发展。

深入探讨鲁奇加压气化炉的运行与技术改造,具有重要的理论意义和实践价值,对提高工业生产的效率和质量,促进能源节约和环境保护具有积极的意义。

鲁奇气化炉长周期运行中出现的问题与处理探讨

鲁奇气化炉长周期运行中出现的问题与处理探讨

鲁奇气化炉长周期运行中出现的问题与处理探讨摘要:我国经济建设正处于工业化进程的关键阶段,为保证社会主义现代化建设的顺利进行,能源供应显得尤为重要。

在我国煤炭深加工的过程中,鲁奇气化炉的运用发挥着重要作用。

关键词:鲁奇气化炉;长周期;问题1 前言我国的能源结构是“多煤,少气,少油”,而这一能源结构就决定了我国化工的发展方向一煤炭深加工。

在国家发改委的支持下,煤炭资源开发利用和煤炭深加工成为推进经济发展一项重要手段。

鲁奇气化工艺作为煤气化的方式之一,具有煤种适应性强、技术成熟等优势,在国内已经广泛的应用。

但鲁奇气化工艺也有一定的局限因素,运行周期短,设备维修频繁。

如何在现有的工艺基础上改进设备和优化工艺操作,保证鲁奇气化炉长周期运行,已经成为制约鲁奇炉发展的重要因素。

2 气化炉长期运行出现的问题与处理措施2.1汽化剂管线漏点问题在气化炉的汽化剂入口法兰处,汽化剂中心管与此法兰面的焊缝出现裂纹泄漏,裂纹出现的原因可能为:①汽化剂中心管为不锈钢材质,温度310-340℃,外部套管为碳钢材质,温度在230℃左右,内外温差大,易产生热应力,导致焊缝出现裂纹。

②进入炉内的这段汽化剂中心管线仅在此处焊接固定,其他位置皆有空隙,运行时汽化剂高速通过中心管,中心管会发生振动。

采取的措施是将焊缝缺陷处彻底打磨后,然后进行人工堆焊,完成后进行着色探伤和试漏,检验合格后投用。

2.2汽化剂混合管上漏点问题汽化剂混合管上,在空气入口管与氧气入口管之间易出现裂纹(靠近空气/氧气入口管这一侧),导致汽化剂泄漏。

裂纹出现的原因可能为:裂纹前方为蒸汽(390-400℃),裂纹处为蒸汽与返炉CO2混合处,CO2(120℃)返炉通过空气管入口进入混合管,因管口没有喷头增加分布效果,只能随蒸汽流动沿着管口侧的混合管壁往后走,二者混合不均匀,造成管壁温度降低,产生应力腐蚀龟裂。

采取的措施为:①临时进行铆焊,消除漏点。

②利用停车检修机会,将裂纹重新刨开重新堆焊,探伤合格后投用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小负荷;增加汽氧比操作;短时增加炉篦转速以破坏 风洞;检查气化炉夹套是否漏水。当煤气中O2含量超过 1%(体积分数)时气化炉应停止处理。
② 气化剂分布不均 :气化剂分布不均由灰或煤堵塞炉
篦的部分气化剂通过或布气孔所造成,其现象及处理方 法与炉内沟流现象基本相同。以上措施无效时,气化炉 应停炉进行疏通清理。
(5) 炉篦、灰锁上、下阀传动轴漏气 原因:润滑油供油不足。 处理:检查润滑油泵是否正常供油;检查注油点 压力;检查润滑油管线是否畅通,调整油泵出口 压力,以满足各方面传动轴填料润滑要求。
①负荷高、汽氧比过大:其现象为气化炉出口温度高、 细灰、灰量小、此时应降低气化炉负荷,降低汽氧比。 ②炉内结渣严重:按炉内结渣现象进行处理。
③后序工号用气量大,使其炉内气流速度加快,床层 压降增大:此时应减少供气量,维持好气化炉的操作 压力;
④开车过程中压差高,在低压时通入气化剂量过大, 开车时加煤过多;应减少气化剂通入量,转动炉篦松 动床层。 ⑤炉篦布气堵塞:若发现此问题,气化炉停炉处理。
6、煤锁操作 (1) 煤锁上、下阀的严密性试验:煤锁上、下阀的工作 环境比灰锁条件好,但其严密性试验也很重要。只有 保证煤锁上、下阀关闭严密,才能保证煤锁向气化炉 正常供煤。煤锁上、下阀的严密性试验方法和要求与 灰锁上、下阀相同,可参照进行。 (2) 煤溜槽阀的开、关 :加压气化炉的煤溜槽阀是控制 煤斗向煤锁加煤的阀门,以前为插板式,第三代炉以 后改为圆筒型,不论改为何种结构形式的煤溜槽阀, 其关闭后都与煤锁上阀之间有一定的空间,该空间用 于煤锁上阀开、关动作,以使上阀关严。所以操作中 要注意:在一个加煤循环中,煤溜槽阀只能打开一次, 以防止多次开关上阀动作空间充满煤后造成上阀的无 法关严,而影响气化炉的运行。
② 原料煤的灰熔点。在灰熔点允许的情况下,汽氧比应尽可
能降低,以提高反应层的温度。煤中灰熔点发生变化时应及时 的调整汽氧比。
③ 煤气中CO2含量。煤气中CO2含量的变化对汽氧比变化最敏 感,在煤种相对稳定的情况下,煤气中CO2含量超出设计范围应 及时调整。
由于汽氧比的调整对气化过程影响较大,稍有不慎将会造成
7、不正常的现象判断与故障处理
(1) 炉内结渣 现象:排出灰中有大量渣块,炉篦驱动电机电流 (液压电动机驱动时为液压压力)超高,Байду номын сангаас气中 CO2含量偏低。 原因:①汽氧比过低;②灰熔点降低;③灰床过低; ④气化炉内发生沟流现象。 处理方法:①提高汽氧比,使汽氧比与灰熔点相适 应;②降低炉篦转速、使其与气化炉负荷相适应; ③提高汽氧比,气化炉负荷,短时提高炉篦转速以 破坏风洞。
(3) 炉内火层倾斜
现象:气化炉出口煤气温度高,灰渣中有未燃 烧的煤。
原因:原料煤粒度不均匀,炉内料层布料不均; 炉篦转速过低,排灰量不均。 处理:气化炉降负荷,短时加快炉篦转速,若无效 应熄火停车处理。
(4) 气化炉夹套与炉内压差高 夹套与炉内压差过高时 会造成夹套内鼓,当发现压差高时,应立即检查处理。 检查下列问题。
② 当灰锁压力充压至1.0MPa时,停止充压,检查下阀严 密性,检查方法和标准与上阀相同。
灰锁上、下阀的严密性实验压力必须按要求是压力进行, 即实验时上、下阀承受的压差ΔP为1.0MPa,这样可以及时 发现阀门泄露,及时处理,以延长上、下阀的使用寿命。
5、灰锁膨胀冷凝器的冲洗与充水
对于灰锁设有膨胀冷凝器的气化炉,其充水与冲洗 的正确操作很重要。灰锁泄压后,应按规定时间对 膨胀冷凝器底部进行冲洗,以防止灰尘堵塞灰锁泄 压中心管。冲洗完毕后应将膨胀冷凝器充水至满位 后,充水时应注意不能过满或过少,过满时水会溢 入灰锁造成灰湿、灰锁挂壁,影响灰锁容积;过少 则在灰锁泄压时很快蒸发,造成灰锁干泄,导致灰 尘堵塞泄压中心管,使灰锁泄压困难,所以必须正 确掌握冲洗与充水量,以保证灰锁的正常工作。
下问题。 灰锁上、下阀严密性实验。灰锁上、下阀能否关闭严密性
是灰锁操作的关键。一般关闭时应重复开、关几次,听到清 脆的金属撞击声时说明已关严。在泄压、充压的过程中应按 操作程序进行阀门的严密性实验,实验方法如下:
① 当灰锁压力泄压至2.0MPa时停止泄压,检查上阀严密 性,查看灰锁压力是否回升。若在规定时间内(5s)压力回 升大于0.1MPa,则说明上阀泄露,应充压后再次关闭;若在 5s内小于0.1MPa,说明上阀关闭严密。
炉内结渣或细灰,严重时会烧坏炉篦,所以,汽氧比的调整要 小心谨慎,幅度要小,并且每次调整后要分析煤气成分及观察 灰的状况。 氧气纯度发生变化时汽氧比也应相应的进行调整。
3、气化炉火层位置控制 炉内火层位置的控制非常重要。判断火层位置应
根据气化炉工艺指标与经验综合而定。火层过高(即 火层上移)使气化层缩短,煤气质量发生变化,严重 时会造成氧穿透,即煤气中氧含量超标,导致事故发 生;火层过低则会烧坏炉篦等内件。火层的控制主要 通过调整炉篦转速、控制炉顶温度与灰锁温度(即炉 底温度)来实现。
(2) 气化炉出口煤气温度与灰锁温度同时升高:如果气 化炉出口煤气温度与灰锁温度同时升高,并且超过设计 值。应立即进行以下检查和分析。
① 气化炉出现沟流,沟流现象如下:气化炉出口煤气 温度高,且大幅度变动;煤气CO2含量高;严重时粗煤气 中氧含量超标;排出灰中有渣块和未燃烧的煤。
如果出现上述现象,采取以下措施处理:气化炉降至
2、汽氧比的调整 汽氧比是气化炉正常操作的重要调整参数之一。调整汽氧比,
实际上是调整炉内火层的反应温度,气化炉出口煤气成分也随 之改变,改变汽氧比的主要依据如下:
① 气化炉排出灰渣的状态即颜色、粒度、含碳量。灰中渣块
较大、渣量多说明火层温度过高,汽氧比偏低;灰中有大量残 碳、细灰量较多无融渣说明火层温度过低,汽氧比偏高。
火层位置控制应综合炉顶与灰锁温度来调整: ① 炉顶温度升高,灰锁温度降低时,应提高炉篦转 速,加大排灰量,使炉篦转速与气化炉负荷相匹配; ② 炉顶温度下降,灰锁温度升高,应降低炉篦转速, 减小排灰量; ③ 炉顶温度与灰锁温度同时升高时,说明炉内产生 沟流现象,按处理沟流现象的方法进行调整。
4、灰锁操作 灰锁操作对气化炉的正常运行影响较大。操作中应注意以
相关文档
最新文档