数学:16.2.2分式的加减(二)教案(人教版八年级)
人教版八年级下册16.2.2:分式的加减(1)教学设计 (2)

人教版八年级下册16.2.2:分式的加减(1)教学设计一、教学目标1.理解分数的加法、减法运算规则。
2.掌握分数的通分、约分方法。
3.能够运用所学知识解决简单的分式加减问题。
二、教学重点1.分数加法、减法运算规则的理解;2.分数通分、约分方法;3.分数加减问题求解方法。
三、教学难点1.分数加减问题的应用。
四、教学内容与步骤1. 引入和导入1.通过归纳简单的生活问题,介绍分数的加减法;2.回顾分数的基本定义和运算法则。
2. 分数加减法1.掌握分数的通分方法;2.掌握分数的加减法运算规则;3.运用通分法和加减法解决问题。
3. 引导学生联想和思考从生活实例中引导学生思考和比较,例如:买一箱橙子,橙子装在塑料袋里,一箱装12个,每个塑料袋装4个,问需要几个塑料袋?(答案:3 个塑料袋)4. 学习分式加减的方法1.学习分数的加减法规则;2.学习分数的通分方法;3.通过多组例题,引导学生掌握分式加减的方法。
5. 拓展练习通过设计多项分数加减的应用练习,如求面积、周长等问题,增加学生连贯思考和解决问题的能力。
6. 总结反思1.总结今天所学知识;2.完成本节课的课堂作业。
五、教学手段1.PPT;2.白板、笔;3.练习用纸。
六、课时安排本节课预计时间为1个课时,可以进行适当的延长或压缩。
七、教学评价1.通过讨论和回答问题来评价学生的学习效果和掌握情况;2.通过课堂练习和课后作业来检验学生的掌握程度。
八、教学资源本次教学所需资源包括:1.人教版八年级下册教材;2.PPT教学材料;3.分式加减的应用练习题目。
以上是本节课的教学设计,仅供参考。
人教版八年级下册第一单元分式教案

第十六章分式单元分析
本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的
分式方程的解法。
全章共包括三节:
16.1 分式
16.2 分式的运算
16.3 分式方程
其中,16.1 节引进分式的概念,讨论分式的基本性质及约分、通分等分式变形,是全章的理论基础部分。
16.2节讨论分式的四则运算法则,这是全章的一个重点内容,分式的四则混合运算也是本章教学中的一个难点,克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序。
在这一节中对指数概念的限制从正整数扩大到全体整数,这给运算带来便利。
16.3节讨论分式方程的概念,主要涉及可以化为一元一次方程的分式方程。
解方程中要应用分式的基本性质,并且出现了必须检验(验根)的环节,这是不同于解以前学习的方程的新问题。
根据实际问题列出分式方程,是本章教学中的另一个难点,克服它的关键是提高分析问题中数量关系的能力。
分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。
然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。
借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。
解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。
16.1分式
16.2分式的运算
16.3分式方程。
16.2.2分式的加减(2)

22b a ab a ab b ab a b⎛⎫+∙ ⎪--+⎝⎭16.2.2分式的加减(2)主备人:许冬荣一、学习目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.重点:熟练地进行分式的混合运算.难点:熟练地进行分式的混合运算.二、预习提纲:1.认真学习第17页的例7,并把过程写在下面.2. 例8计算:(1) 41)2(2b b a b a b a ÷--∙(2)(3) x x x x x x x x -÷+----+4)44122(223:尝试应用:①xy y x x y y x 22222)2(÷-∙②)1(1x x x x -÷- ③m m m m1332-+÷④ 1)111(2+-÷+-a a a a ⑤)111(122+-÷-x x x⑥41)4422(22-÷-++-x x x x x⑦的值求已知:abb a b ab a b a 7222,411+---=-⑧)1()2()41,31xy x y y x x y y x y x +÷-+÷-==时,求(已知: ⑨三、讨论与交流要求:以小组为单位对预习提纲的内容展开交流,并准备展示内容.四、展示与点评要求:以小组为单位对预习提纲的内容进行展示,其他小组进行质疑、点评,教师做适五、当堂检测: (1)x x x x x 22)242(2+÷-+- (2))11()(ba ab b b a a -÷---(3))2122()41223(2+--÷-+-a a a a (4) )1)(1(y x x y x y +--+012,2444122222=+++-÷++--+-a a a a a a a a a a a 满足其中)先化简,在求值,((5) 22242)44122(aa a a a a a a a a -÷-⋅+----+ 六、小结:作业:1.化简(y-1x)÷(1x y -)的结果是( ) A.y x - B. x y - C. x y D . y x2.化简2214122x x x x x x ++⎛⎫+-÷ ⎪--⎝⎭的结果为( ) A. -1 B. 1x C. 12x - D. 1 3若x ≠0, y ≠0,x= 1y ,则(x-1x)(y+1y )等于( ) A.22x B. 22x y - C. 22y x - D 22x y --4下列算式中,正确的是( )A. 2323a a a -=-B. 221a a a a÷⋅= C. ()2362a b a b = D. ()236a a --= 5化简:22221369x y x y x y x xy y+--÷--+= . 6.计算:a b a b b a a -⎛⎫-÷ ⎪⎝⎭= . 7.化简:2a-(a-1)+ 211a a -+.8.先化简22142a a a+--,再求值a= 12. 9.先化简:再对a 取一个你喜欢的数代入求值.11. 在静水时,船的速度为x 科km/h ,水速为2km/h (x >2),船由A 地顺水而行skm 到B 地,再由B 地逆流而行返回A 地.求船往返A 、B 两地间的平均速度.当s=96,x=10时,平均速度是多少?2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭222xy M x y =-2222x y N x y +=-7x =时,223x-6x+2-2x -4x +4x+4÷的值2222x+2x-1x -16-x -2x x -4x+4x +4x ⎛⎫÷ ⎪⎝⎭2a-2a -45-a+32a+6a+2÷ 12. 先化简再求值:选一个使原代数式有意义的数带入求值. 13. 先化简再求值:,其中.14. 小敏让小惠做这样一道题:“当.求小惠一看:“太复杂了,怎么算呢?”你能帮助小惠解这个题吗?请写出具体过程.15. 已知 用“+”或“-”连接M 、N,有三种不 同的形式:M+N 、M-N 、N-M,请你任选其中一种进行计算,并化简求值,其中x :y=5:2.16. 先化简: 然后从-2≤x ≤2的范围内选取一个合适的整数 作为x 的值代入求值.。
八年级数学教案《分式的加减》

八年级数学教案《分式的加减》一、教学内容本节课的教学内容选自人教版八年级数学上册第二章《分式》的第三节《分式的加减》。
本节内容主要包括分式的加减法则、分式的加减运算步骤以及分式加减运算中容易出现的问题。
二、教学目标1. 让学生掌握分式的加减法则,能正确进行分式的加减运算。
2. 培养学生的逻辑思维能力和运算能力。
3. 通过对分式加减运算的练习,提高学生解决实际问题的能力。
三、教学难点与重点1. 教学难点:分式加减运算中正确处理分母、分子之间的关系。
2. 教学重点:掌握分式的加减法则,能熟练进行分式的加减运算。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:练习本、铅笔、橡皮、圆规、直尺。
五、教学过程1. 实践情景引入:假设有一瓶溶液,其中含有A、B两种物质,其质量比为3:2。
现在向溶液中加入另一种物质C,使得A、B、C的质量比变为4:5:3。
问加入的物质C的质量是多少?2. 例题讲解:例1:计算分式 (3/4) + (2/5)。
解:分式的加法运算,先找到分母的最小公倍数,即20。
然后分别将分子乘以相应的倍数,得到 (15/20) + (8/20) = 23/20。
例2:计算分式 (2/3) (1/6)。
解:分式的减法运算,先找到分母的最小公倍数,即6。
然后分别将分子乘以相应的倍数,得到 (4/6) (1/6) = 3/6 = 1/2。
3. 随堂练习:(1) 计算分式 (5/8) + (3/8)。
答案:(5+3)/8 = 8/8 = 1。
(2) 计算分式 (2/9) (1/3)。
答案:找到分母的最小公倍数,为9。
分别将分子乘以相应的倍数,得到 (6/27) (3/27) = 3/27 = 1/9。
六、板书设计板书题目:分式的加减板书内容:1. 分式的加法:找到分母的最小公倍数,分别将分子乘以相应的倍数,然后相加。
2. 分式的减法:找到分母的最小公倍数,分别将分子乘以相应的倍数,然后相减。
八年级数学下册 16.2.2分式的加减(2)教案 人教新课标版

= 分子是多项式时,要加括号。
= 处理好每一步运算中遇到的符号。
= 结果要化简。
在运算过程中,每进行一步都要检验一下,不要到最后才检验。
(3)
原式
练习1:(1) ( )
(2) ( )
(3) (x–y + xy )
练习2:书P22/练习
练习3:(1) ( )
(2) ( )
(3) (-1)
例2:先化简再求值:
课题
16.2.2分式的加减(二)
教学
目的
1.灵活应用分式的加减法法则。
2.分式的加减乘除的混合运算。
3.会进行比较负责的分是的加减乘除的混合运算,并能类比数的混合运算顺序,得出式的混合运算顺序,发展有条理的思考及其语言表达能力。
重点
分式的加减乘除的混合运算。
难点
分式的加减乘除的混合运算。
教学
ቤተ መጻሕፍቲ ባይዱ手段
教 学 内 容 和 过 程
一.复习:
1.我们学过的分式的运算有什么?
2.分数的混合运算顺序是什么? (先乘方,再乘除,最后加减;有括号先算括号内的.)
3.有理数的运算律:交换律、结合律、分配律.
二.新课:
1.分式的混合运算
(1)运算顺序与分数相同;
(2)可以应用有理数的运算律.
例1:(1) ;
原式
(2) 分清运算级别,
= 将各分式的分子、分母分解因式后进行运算。
,其中x=2.25,y= -2. ( = -9)
例3:若4x = 5y(y≠0)求 的值。
三.复习:
分式混合运算中应注意的要点
16.2.2分式的加减(1、2)

运用类比法教学,学生理解起来容易很多。难点还是因式分解
教
学
目
标
1理解并掌握分式加减法则,同时应用法则运算
2掌握四则运算的先后顺序
3在活动中培养学生乐于探索、合作学习的习惯。
重
点
分式的加减运算和混合运算
难
点
异分母分式的加减和四则运算顺序
课前准备
小黑板,题签
总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。
(2)她走那条路花费时间少?少用多少时间?
是顺势点题
一找朋友
把运算结果相同的找出来
(1)
(2)
追问:你们是怎么找的?
总结分式加减法则:
同分母分式像加减,分母不变,分子向加减;
异分母分式像加减,先通分,再加减
例题教材16页例6
读题、尝试列示
学生找
◇小黑板
△实例引出分式加减
△
通过游戏回忆分数加减法法则
△应用法则解决问题
总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。
教学流程
分课时
环节
与时间
教师活动
学生活动
△设计意图
◇资源准备
□评价○反思
习题巩固
课内小结
板书
·教材16页练习1、2题
有困难的师帮助
本节课你有哪些收获?
16.2.2分式的加减
分式的加减法则:同分母分式像加减,分母不变,分子向加减;
例7:
解:师板书
例8计算:
(2a/b)²(1/a-b)-( a/b)/(b/4)
提问学生混合运算顺序,再计算
分式加减(第2课时)

徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清第 周 星期 第 节 本学期学案累计: 11 课时 姓名:________课题:16.2.2 分式的加减(第2课时)学习目标 我的目标 我实现明确分式混合运算的顺序,熟练地进行分式的混合运算.学习过程 我的学习 我作主导学活动1:知识回顾计算: (1)m n m n m n m n n m -+---+22 (2)96312-++a a导学活动2:知识引入1.引导说出分数混合运算的顺序. 2.教师指出分数的混合运算与分式的混合运算的顺序相同. 导学活动3:知识转化(P17)例7:例8 计算:4122b b a b a b a ÷--⋅⎪⎭⎫ ⎝⎛ 针对性练习 计算 x x x x x x x x -÷+----+4)44122(22徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 学习评价 我的评价 我自信当堂检测(限时:8分钟 )我自信 我进取1.计算(1) )1)(1(y x x y x y +--+(2) 22242)44122(a a a a a a a a a a -÷-⋅+----+(3) zx yz xy xy z y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.自我小结:自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P22)习题16.2 第6(2)(3)(4)题。
人教版八年级下册16.2.2:分式的加减(2)教学设计

人教版八年级下册16.2.2:分式的加减(2)教学设计
一、教学目标
1.知道如何分析、计算和解决有分式的实际问题
2.能够正确地用加减法求解分式的运算结果
3.通过实际问题的创设,培养学生的思考能力和解决问题的能力
二、教学重难点
1.分式的加减的方法和技巧
2.通过实际问题解决分式的加减
三、教学过程设计
1. 导入环节(5分钟)
•老师进入教室,与学生们互动问答
•让学生们自己回忆上一个课堂所学的分式的基本概念以及分式的加减的方法
2. 课堂讲解(25分钟)
•老师将屏幕上的教学PPT发给学生,讲解分式的加减的方法和技巧
•在讲解过程中,老师应该注意引导学生逐步掌握分式的加减方法和技巧,并解释不同的计算步骤,帮助学生理解计算的意义
3. 练习环节(30分钟)
•老师发放相关的练习册子,学生独立完成书中相关的习题
•老师应该为学生提供充足的时间和机会,使学生掌握分式的加减方法和技巧,并帮助其解决问题
4. 总结评价(10分钟)
•老师与学生讨论讲解过程中的问题和难点,并对学生的习题进行点评和评价
•老师给出总体评价,帮助学生梳理知识
四、教学手段
•课件PPT
•练习册
•黑板
•教师讲解
五、教学反思
本次课程教学环节比较清晰,采用的是传统的教学模式。
学生们在上课期间沉
浸于如何计算分式的加减并解决实际问题,同时也不断地接触新的分式知识。
在教学的过程中,老师应该注意学生的不同状态,并及时纠正他们在学习中遇到的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.2.2分式的加减(二)
一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.
二、重点、难点
1.重点:熟练地进行分式的混合运算.
2.难点:熟练地进行分式的混合运算.
三、例、习题的意图分析
1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.
例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.
2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.
四、课堂引入
1.说出分数混合运算的顺序.
2.教师指出分数的混合运算与分式的混合运算的顺序相同.
五、例题讲解
(P21)例8.计算
这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.
(补充)计算
(1)x x x x x x x x -÷+----+4)4
4122(22 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解: x x x x x x x x -÷+----+4)44122(
22 =)
4(])2(1)2(2[2--⋅----+x x x x x x x =)4(])2()1()2()2)(2([
22--⋅-----+x x x x x x x x x x =)4()
2(4222--⋅-+--x x x x x x x =4
412+--x x (2)2
22
4442y x x y x y x y x y y x x +÷--+⋅- 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.
解:222
4442
y
x x y x y x y x y y x x +÷--+⋅- =22
222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((y
x y x y x y x xy --⋅+- =)
)(()(y x y x x y xy +-- =y x xy +-
六、随堂练习
计算 (1) x x x x x 22)242(2+÷-+- (2))11()(b
a a
b b b a a -÷--- (3))2122()41223(
2+--÷-+-a a a a
七、课后练习
1.计算 (1) )1)(1(y
x x y x y +--+ (2) 22242)44122(
a a a a a a a a a a -÷-⋅+----+ (3) zx
yz xy xy z y x ++⋅++)111( 2.计算24)2121(
a a a ÷--+,并求出当=a -1的值. 课后反思。