商业轮转机的张力控制详细讲解

合集下载

完整版张力控制详解

完整版张力控制详解

MITSUBISHI ELECTRIC CORPORATION
利用张力检测器进行扭矩控制

速度
INV
设定
+
CMP
-
INV

张力 设定
?张力控制精度较高
?保持一定速度运转, 则张力也会稳定
?加减速时,需要进行 控制补偿
?通过长度较长时,不 利于控制
MITSUBISHI ELECTRIC CORPORATION
优。 品质 ? 产品价值 ?收卷时经常出现因材料卷紧引起“菊花花纹”
等问题。 ?胶片、薄膜等薄的材料。
MITSUBISHI ELECTRIC CORPORATION
恒定张力、锥度张力和恒定扭矩
?因张力控制方式不同而引起的差异
张力
恒定张力控制
一定
锥度张力控制 恒定扭矩控制
卷径
递减 反比例
MITSUBISHI ELECTRIC CORPORATION
MITSUBISHI ELECTRIC CORPORATION
保护层的结构
PET PET 镀膜
防静电剂
胶粘剂
处理剂 ?防腐剂 ?抗擦伤剂
胶粘剂 防静电剂
PET(基材) 处理层
PET(剥离膜) 胶粘剂
防静电剂 PET(基材)
处理层
一次加工
腹膜
涂层
二次加工
裁切
MITSUBISHI ELECTRIC CORPORATION
?
制器的张力控制更理想?
? 6. 对绕线机及捻线机进行张力控制时,使用三菱的哪种张力控制器产品比较好。
?
现在只使用磁粉产品对绕线机和捻线机进行张力控制,三菱张力控制器一台也没使用,该如何使用呢?

张力控制原理教程

张力控制原理教程

张力控制原理教程张力控制是一种常见的控制原理,广泛应用于工业生产中的张力控制设备。

本文将介绍张力控制原理的基本概念、应用领域以及实现方法等内容。

一、张力控制的基本概念张力控制是指通过对拉伸或收缩的材料施加力,使材料保持一定的张力水平。

张力控制的目的是确保材料在生产过程中的稳定运行,避免材料过松或过紧引起的问题。

二、张力控制的应用领域1.包装行业:在印刷、涂覆、贴合等过程中,需要对卷材进行张力控制,以确保产品质量和生产效率。

2.纺织行业:在纺纱、织造、印染等过程中,需要对纱线、织物进行张力控制,以避免出现断纱、断经等问题。

3.金属加工行业:在连续拉拔、连续铸轧、连续热轧等过程中,需要对金属带材进行张力控制,以保证产品的尺寸精度和表面质量。

4.纸张行业:在造纸、印刷等过程中,需要对纸张进行张力控制,以避免出现张力差、翘曲等问题。

5.电子行业:在印刷电路板、光纤制造等过程中,需要对薄膜、线材进行张力控制,以确保产品的可靠性和稳定性。

三、张力控制的实现方法1.传统方法:传统的张力控制方法主要通过机械装置来实现,如张力滚轮、张力锥轮等。

这些装置通过控制滚轮之间的接触压力来调节张力,但存在精度低、响应慢等缺点。

2.电气控制方法:电气控制方法通过检测材料的张力信号,并通过电动机或气缸等执行器来调节张力。

这种方法的优点是精度高、响应快,可实现自动化控制。

常见的电气控制方法包括PID控制、动态张力控制等。

3.光电控制方法:光电控制方法通过光电传感器检测材料的张力变化,并通过控制光源的亮度来调节张力。

这种方法可以较好地适应各种材料的张力控制,但对环境光线干扰比较敏感。

四、张力控制的关键技术1.传感器技术:张力传感器能够测量材料的张力,并将其转化为电信号。

关键是选用合适的传感器,如压电传感器、应变传感器等。

2.控制算法:张力控制的核心是控制算法,常见的控制算法有PID控制、神经网络控制等。

根据实际需求选择合适的控制算法,以实现稳定的张力控制。

【优秀资料】张力控制培训PPT

【优秀资料】张力控制培训PPT
什么叫张力 对线材、带材的表面拉伸力就是张力。 2、应用环境 其常应用在长材料的加工过程中,比如:纸、
胶片、线、电缆、各种薄膜和绳等
张力基础知识(二)
张力基础知识(三)
为什么要进行张力控制(一)
1、稳定的传送材料 防止横向滑动 防止材料和辊子之间的滑动 防止波动 防止缠绕 如果材料张力比较小,则材料和辊子之间摩擦力减
小,就会产生打滑。如果张力继续减小,材料就 会发生粘附和松弛,甚至材料会缠绕在辊子上, 导致材料断裂甚至机器损坏,
为什么要进行张力控制(二)
2、防止变形 发生皱纹,收缩
为什么要进行张力控制(三)
3、确保尺寸精度 尺寸、粗度、宽度、厚度、孔距、折痕等 主要是考虑张力不同会影响到材料的整个拉伸度不同,从而
张力控制系统基本结构
• 张力控制最基本的结构如下图,包括收卷、放卷和进给驱 动三个部分。整个系统的收放卷速度由进给驱动电机的转 速来决定。下图中的系统为传统形态的张力控制系统结构, 采用了磁粉制动器和磁粉离合器的形式。
张力控制的类型
在实际的工程应用中,最常用的张力控制模 式主要有以下两种:
1、磁粉制动器(离合器)+张力控制器模式 2、张力控制专用变频器模式
卷径计算方法(一)
张力控制的核心实际上就是转矩控制,而转 矩与张力的换算系数就是卷径,卷径的计 算是张力控制的一个关键内容。
磁粉制动器(离合器)
原理:磁粉制动器(离合器)是采用磁性铁粉作为 扭矩传递媒体,其扭矩特性与滑差无关,其实际 传递扭矩与励磁电流成正比。
优缺点: 张力控制比较稳定,控制方式简单。 在旋转过程中,磁粉和旋转轴一直处于摩擦状态,
由于散热的原因,无法实现高速的卷绕。随着制 动器温度的升高,会出现传递转矩下降的现象。

传动控制的难点:张力控制

传动控制的难点:张力控制

传动控制的难点:张力控制张力控制基础知识(1)什么叫张力对线材、带材的表面拉伸力就是张力。

(2)应用环境其常应用在长材料的加工过程中,比如:纸、胶片、线、电缆、各种薄膜和绳等。

张力控制的意义(1)稳定的传送材料•防止横向滑动•防止材料和辊子之间的滑动•防止波动•防止缠绕如果材料张力比较小,则材料和辊子之间摩擦力减小,就会产生打滑。

如果张力继续减小,材料就会发生粘附和松弛,甚至材料会缠绕在辊子上,导致材料断裂甚至机器损坏。

(2)防止变形、发生皱纹、收缩(3)确保尺寸精度保证尺寸、粗度、宽度、厚度、孔距、折痕等达标,主要是考虑张力不同会影响到材料的整个拉伸度不同,从而影响到最终产品的尺寸精度。

(4)配色:主要是多色印刷中的问题(5)材料卷起避免发生褶皱、横向偏移、产生间隙,确保牢固性和卷径。

主要用在将一定长度的材料卷成预定卷径的卷筒。

张力控制方式(1)手动张力控制方式手动张力控制就是在收卷和放卷过程中,通过人工分阶段调整张力的幅值,以满足不同阶段的张力控制。

由于采用人工调节,而且分不同的步长,其无法保证整个过程中张力的恒定。

由于张力采用人工调节,一般为电位器模式,其张力的调节精度比较差。

一般应用在张力控制精度要求不是很高,自动化程度要求不高的场合。

(2)卷径检测式张力控制方式所谓卷径检测方式就是在变频器收卷和放卷过程中,自动检测卷径的变化,并实时调整收卷和放卷的力矩的方法。

其又称为半自动式张力控制或者是张力开环控制。

问题:由于受到执行机扭矩变化、线性和机械损耗等影响,张力绝对控制精度不高。

应用场合:多用在用户无法安装张力反馈装置的场合。

(3)全自动张力控制方式全自动张力控制方式实际上就是张力闭环控制,其对应张力控制系统内部有张力传感器。

其实际控制模式为张力的PID控制器。

对于该种控制方式,当PID参数调节不当时,其跟踪效果会比较差,特别是系统内部出现一个比较大的扰动时,会出现一个很长的调节过程,影响整个系统的稳定。

张力控制——精选推荐

张力控制——精选推荐

张力控制系统往往是张力传感器和张力控制器的一种系统集成,目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。

这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。

即使在紧急停车情况下,也应有能力保证被分切物不破损。

张力控制的稳定与否直接关系到分切产品的质量。

若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。

一、标准变频器与收放卷变频器型号介绍尤尼康收放卷行业专用变频器,可以进行卷径计算。

AF201仅仅支持速度控制模式,AF202不仅支持速度控制模式,还支持转矩控制模式。

AF200标准产品不能进行卷径计算,收放卷行业专用变频器系列包括了标准产品的主要功能,还有行业特定的功能,可以进行卷径计算,有相应卷径计算功能码做相关设置,比如H0.00、H1.00、H1.24等等功能码。

AF201标准产品仅仅能做一个无速度编码器反馈的矢量控制,比如木工机械、音乐喷泉、扶梯、陶瓷机械、离心机、塑料吹塑机、细微拉丝机、磨床、雕铣机、跑步机、大圆机等等行业应用中。

AF202可以做有速度编码器反馈的闭环矢量速度控制,还能做转矩控制,设置PD.00=1变频器由速度控制模式变为转矩控制模式,这里可以设置P6.21作转矩给定或者张力给定及速度限定。

主要应用有:替换力矩电机、皮革机、鱼网编织机、浸胶机等等。

AF201收放卷行业专用变频器只能实现有位置摆杆或者浮动辊的速度控制,比较典型的行业应用是拉丝机速度控制。

AF201收放卷行业专用变频器可实现卷径计算、进行PID调节的复合控制模式实现恒定线速度收放卷控制。

应用行业主要有:双变频拉丝机、直进式拉丝机、层绕机、动力放线架、复卷机等等。

AF202收放卷行业专用变频器包含了AF201收放卷行业专用变频器的主要功能,不仅能做速度控制,还能做转矩控制,可以实现恒定转矩控制或者恒定张力控制。

张力控制原理教程

张力控制原理教程

10本文从应用的角度阐述了当前技术条件下,矢量变频技术在卷取传动中运用和设计的方法和思路。

有较强的实用性和理论指导性。

关键词:张力变频矢量转矩卷径引言:在工业生产的很多行业,都要进行精确的张力控制,保持张力的恒定,以提高产品的质量。

诸如造纸、印刷印染、包装、电线电缆、光纤电缆、纺织、皮革、金属箔加工、纤维、橡胶、冶金等行业都被广泛应用。

在变频技术还没有成熟以前,通常采用直流控制,以获得良好的控制性能。

随着变频技术的日趋成熟,出现了矢量控制变频器、张力控制专用变频器等一些高性能的变频器。

其控制性能已能和直流控制性能相媲美。

由于交流电动机的结构、性价比、使用、维护等很多方面都优于直流电动机,矢量变频控制正在这些行业被越来越广泛的应用,有取代直流控制的趋势。

张力控制的目的就是保持线材或带材上的张力恒定,矢量控制变频器可以通过两种途径达到目的:一、通过控制电机的转速来实现;另一种是通过控制电机输出转矩来实现。

速度模式下的张力闭环控制速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。

首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。

同步匹配频率指令的公式如下:F=(V×p×i)/(π×D)其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比D 卷筒的卷径变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。

这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。

这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。

若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。

张力机操作规程

张力机操作规程

张力机操作规程一、引言张力机是一种用于测量和调整材料张力的设备,广泛应用于纺织、包装、印刷等行业。

为了保证张力机的安全运行和准确测量,制定本操作规程,明确操作流程和注意事项。

二、设备概述1. 张力机是由主机、控制系统、传感器和显示器等组成的。

2. 主机包括张力传感器、滚筒、电机等部件,用于施加和测量材料的张力。

3. 控制系统用于调节张力机的工作状态,可以手动或自动控制。

4. 传感器用于实时测量材料的张力,并将数据传输给显示器。

5. 显示器用于显示材料的张力数值和其他相关信息。

三、操作流程1. 准备工作a. 确保张力机处于稳定的工作状态,无异常情况。

b. 检查传感器和显示器是否正常工作,确保数据准确性。

c. 检查滚筒的表面是否平整,无损坏或污染。

2. 设置参数a. 根据材料的特性和要求,设置合适的张力数值。

b. 根据材料的宽度和厚度,调整滚筒的间距,确保材料能够顺利通过。

3. 启动张力机a. 打开电源开关,确保主机和控制系统正常启动。

b. 根据需要选择手动或自动控制模式。

4. 材料安装a. 将待测量的材料固定在滚筒上,并确保材料的位置正确。

b. 确保材料的端部与滚筒之间没有松动或卡住的情况。

5. 运行张力机a. 根据需要,调整电机的转速,控制材料的进料速度。

b. 观察显示器上的张力数值,确保张力在设定范围内稳定。

6. 停止张力机a. 当需要停止张力机时,先减速电机的转速,然后关闭电源开关。

b. 将测量到的张力数值记录下来,以备后续分析和参考。

四、安全注意事项1. 在操作张力机时,必须戴上适当的防护手套和安全眼镜,以防止意外伤害。

2. 在操作过程中,严禁将手或其他物体靠近滚筒,以免被夹伤。

3. 在调整参数或更换材料时,必须先停止张力机并断开电源,确保安全操作。

4. 定期检查和维护张力机的各个部件,保持设备的正常工作状态。

5. 在操作过程中,如发现任何异常情况或故障,应立即停止使用,并及时联系维修人员进行检修。

张力控制原理介绍

张力控制原理介绍

第二章张力控制原理介绍2.1 典型收卷张力控制示意图浮动辊F牵引辊收卷图2 带浮动辊张力反馈收卷F牵引辊图1 无张力反馈32.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330 设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F 为材料张力,T 为收卷轴的扭矩,R 为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD 系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩4擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

商业轮转机的力控制详解
前言:随着商业印刷市场的扩展,商业轮转机在商业印刷中表现出来了越来越重要的作用,但也给商业轮转机印刷质量和精度提出了更高的要求。

轮转印刷过程常由于力的影响使印刷品套印和折页不准,给印刷带来很多不良品,从而影响生产成本和市场的信誉。

下文以桑拿C800为例分析商业轮转印刷力控。

C800商业轮转印刷的显著特点是纸带从开卷到进入折页滚筒都是在绷紧状态下完成的,套准、烘干、冷却、加湿及裁切等前后纸带长度上百米,因此纸带力稳定是保证正常印刷的首要条件现从五个方面分析纸带的力控制。

送纸部分:送纸部分从纸的入口到印刷单元包括了一次力和二次力,一次力采用的是轴制动方式,在纸卷芯部轴端设置刹车片和刹车盘,通过气压方式加载制动力,即气动式力控制系统。

保证纸卷以平稳的速度放纸,并通过浮动机构及力检测电路,消除或减轻由于纸卷不圆、偏心、一头松、一头紧等本身原因造成的力波动,并可在印刷过程中对纸卷不断变小引起的力变化进行自动调整。

如(图一)
图一:1纸筒也是力控制器所在、2和4导纸棍、3浮动机构。

电器控制原理图如(图二)
分析:供纸部的力控制部分由刹车片、制动器、浮动辊等组成,为了使纸带力保持恒定,纸卷制动器必须能够根据纸带力的波动情况自动进行调整以保证纸带匀速、平稳地进入印刷装置。

在机器平稳运行过程中,应保证纸带力稳定在给定值上,在启动和刹车时防止纸带过载和随意松卷。

在印刷过程中,随着纸卷直径不断减小,为保持纸带力的恒定,需要对制动力矩进行相应的调整。

在印刷过程中,纸带的线速度保持不变,而纸卷的角速度却随着纸卷直径的减小不断增大。

在不考虑由角加速度产生的惯性力矩和阻力矩的前提下,为保证纸带稳定运行,应该满足下面的条件:F×R=T×r F为纸带力,R为纸卷半径,T为纸卷轴芯的制动力,r为纸卷轴芯制动力半径。

可以看出,随着纸卷半径的减小,如果不改变制动力的大小,纸带所受到的力会越来越大,最终会使纸带被拉断。

因此,在保持纸带力稳定的前提下,随着纸卷半径的减小,制动力必须按照一定的规律随之减小。

简而言之,就是刹车片与刹车盘接触后产生一定的摩擦力,从而使纸带具有一定的力,浮动辊在力的作用下产生摆动,通过一个电子检测元件将力的变化转化为电信号,控制刹车盘电压,从而达到控制摩擦力大小的目的,实现纸带力的自动控制。

刹车片与刹车盘的间距应在1~2mm之间。

二次力为无级变速控制:无级变速控制是通过电机的转速来控制力的大小其控制原理图如(图三)
图三中:1铬棍、2电机传动的胶棍(又叫送纸棍)、3和4导纸棍、5浮动机构
电气控制原理图如(图四)
分析:二次力系统的控制原理是依靠纸带的速度与送纸辊的线速度之差,通过摩擦实现的。

一般情况下,送纸辊的线速度小于纸带的速度。

当使用送纸辊时,供纸部力对印刷部入口力具有一定的影响,通过印刷机主控制台合理地设置送纸辊电动机与滚筒电动机的速度比是精确控制印刷部入口纸带力的关键,一般设置在-0.15%左右(根据印刷部的多少数值略有不同,但相差不会太大)。

无轴传动方式彻底改变了以往依靠机械装置控制力的模式,通过数字电动机之间转速变化形成的相对速差实现对力的控制,即在送纸辊、印刷部滚筒、折报机RTF (折报机三角板前的拉纸辊)的线速度之间形成微小的速差实现对力的控制。

送纸辊电动机转速降低将增大印刷部的入口力,反之则减小。

浮动机构和第一次力的一样起到了反馈作用恒定了印刷过程中的力。

影响送纸辊电动机控制力的因素除了速比的大小外,另一个原因是送纸辊与合压辊的压力,压力的大小用合压时的压痕体现,一般为5~6mm。

压痕过小,则两辊的接触压力较小,送纸辊与纸的摩擦也较小,在相同的送纸辊电动机速比下力减小;压痕过大,则会使橡胶合压辊与送纸辊在对压运转过程中因接触压力较大产生过多的热量,加速橡胶辊的
老化,减少其寿命。

送纸辊对保证印刷质量是至关重要的,它能有效地防止印刷过程中跑规矩的问题。

印刷单元力控制:印刷单元力控制是指纸带进入印刷滚筒到第四组离开印刷滚筒的力控制,印刷单元之间的力在印刷过程中是不可调节的,橡皮布的硬度、弹性变形、塑性变形,橡皮布是否属于同一品牌,其新旧程度以及包衬厚度、各组的印刷压力、橡皮布的松紧程度等都会影响印刷单元力的变化,烘箱力:烘箱力是指纸带从印刷单元出到冷却塔出口为烘箱力,他是通过改变冷却水滚筒的转速来控制烘箱的力,烘箱力的大小对正常印刷起着重要作用,也是上述蹭脏问题的主要原因。

如果烘箱的纸带力控制得不好,就会引起断纸(力过大)和蹭脏(力过小)。

要根据纸的定量、脆性、韧性等对冷却滚筒转速进行适当调节,同时也要对第三个冷却滚筒(共四个)与花纹橡胶辊之间的压力进行相应调节
RTF力:RTF力这里是指纸带从冷却滚筒出到三角板的入口,他和二次力有相似之处也是通过调节电机转速来调节磨砂棍的转速来调节的。

如图:(1)1、为带电机磨砂棍,2、为压纸轮。

他的力的好坏与电机转速和磨砂棍的压轮压力有关,RTF电动机的转速(线速度)一般要比印刷部滚筒的转速快0.8%左右,变化围在0~2.0%。

此数值的设定要视具体情况而定,如果设定的不合适,则不但影响印刷部出口至三角板的力,而且影响纸带进入折报机后的力。

数值偏大,会使印刷部出口至三角板的纸带力变大,而三角板至折报机之间的纸带力变小;数值偏小,会使印刷部出口至三角板的纸带力变小,而使三角板至折报机之间的纸带力变大。

夹纸辊对力的影响:夹纸辊主要控制RTF以后的纸带力,夹纸辊有两对第一对夹纸辊的作用是使纸带贴附在三角板上,并拉动纸带使之被顺利裁开(裁刀为被动型);第二对夹纸辊的作用是使纸带保持一定的力。

如果设备运转时纸带有
抖动现象,则说明两对夹纸辊之间的力不合适。

两对夹纸辊的松紧原则是第二对比第一对略紧,因为夹纸辊的松紧发生变化时,其表面线速度与纸带的相对速度也相应的发生变化。

两对夹纸辊的作用虽然有所区别,但是必须配合使用才能在设备高速运转时保持稳定的纸带力,防止纸带跑偏。

夹纸辊太松则纸带会因为力比较小而左右移动,太紧则将纸边压伤且易造成纸边撕裂,还会将夹纸辊上齿牙损坏,或引起报纸裁口大小发生变化。

总结:纸带力的大小直接关系到卷筒纸胶印机能否正常工作,如果其大小不合适,就会造成一系列工艺故障,如纸带飘移。

起皱褶、破口或撕裂、套印不准、天头折标不准等,因此造成纸浪费,影响机器运转效率,增加劳动强度,而最终影响印品质量。

只有正确处理好供纸部、送纸辊、印刷单元、冷却滚、RTF、夹纸辊之间的关系才能更好解决印刷纸带力问题。

参考文献:《现代印刷机与质量控制技术》钱军浩编著中国轻工业《印刷设备电路和控制》泉长峰主编印刷工业
C800操作说明书及电器图纸。

相关文档
最新文档