磁性材料基本特性测量二
磁性材料的测量

二、用冲击电流计测量磁性材料直流磁特性
用冲击电流计测量磁特性步骤
第一步:测定冲击电流计的磁通冲击常数 Cq R
图中先将开关 s1投 向右边,由电流表测出 通过互感的电流值,记 下冲击电流计测出的最 大偏转角。
1 m M T I Cq R
若式中M 为已知, 可从上式求得 Cq R 值。
用冲击电流计测量磁特性步骤
N1 I1 πD Cq R B N2S H
用冲击电流计测量磁特性步骤
第四步: 测定磁滞回线 由于磁滞回线是对称的,所以只要测出磁滞 曲线的一个半边,另一个半边就可以按对称原 则画出。测量时激磁电流可以从最大值开始, 然后逐渐调小,直至等零。然后再从零向负向 最大值调节,至负最大值为止。之间可以取若 干点。测量顺序如下式。
交变磁场下的功率损耗,可用功率表测量,图中测 出的功率等于试样铁损耗加上功率表和电压表的损耗。 由于功率表的电压圈接在二次侧,所以功率表所测的 值已经不包括绕组的铜损耗。
返回本章首页
测量最大磁场强度必须测出通过样品绕组的最大电 流,由于电流不是正弦波,磁化电流最大值要用一个 互感线圈测量。
从互感线圈二次绕组感 应电压的平均值 U CP1 求出磁化电流最大值 I m 。 4 fMI m U CP1 然后再从I m 值求出H m 值。 Hm U CP1 N1 4 fMl
四、测量交变磁场下的功率损耗
第二步:退磁
将开关S1投向左边, 将S2反复改变投向 , 并不断加大 R1, 使电流逐渐减少 ,直至为零时 , 材料就被退磁 。
第三步:测量基本磁化曲线 从最大磁感应强度的较小的值开始,依次改变磁化电 流,将每次磁化电流值代入安培环路定律的公式,求出 磁场强度H,再用冲击电流计测出磁感应强度B,根据每 次对应的H、B。即可画出基本磁化曲线。
磁性材料性能测试实验报告(完整版)

实验报告一.实验名称:磁性材料性能测试实验二.实验原理简述如果一个小样品(可近似为一个磁偶极子)在原点沿Z 轴作微小振动,放在附近的一个小线圈(轴向与Z 轴平行)将产生感应电压:()km ft fCmA ==ππν2sin 2g ,其中,C 为耦合常数,取决于线圈的结构,m 为样品的磁矩,A 为振幅,f 为振动频率。
原则上,可以通过计算确定出v g 和m 之间的关系k ,从而由测量的电压得到样品的磁矩。
但这种计算很复杂,几乎是不可能进行的。
实际上是通过实验的方法确定比例系数k ,即通过测量已知磁矩为m 的样品的电压v g ,得到m v g=k ,这一过程称为定标。
定标过程中标样的具体参数(磁矩、体积、形状和位置等)越接近待测样品的情况,定标越准确。
VSM 测量采用开路方法,样品放置的位置对测量的灵敏度有影响。
假设线圈和样品按图1放置,沿x 方向离开中心位置,感应信号变大;沿y 和z 方向离开中心位置,感应信号变小。
中心位置是x 方向的极小值和y 、z 方向的极大值,是对位置最不敏感的区域,称为鞍点。
测量时,样品应放置在鞍点,这样可以使样品具有有限体积而引起的误差最小。
基本的VSM 由磁体及电源、振动头及驱动电源、探测线圈、锁相放大器和测量磁场用的霍耳磁强计等几部分组成,在此基础上还可以增加高温和低温系统,实现变温测量。
振动头用来使样品产生微小振动,振动频率应尽量避开50Hz 及其整数倍,以避免产生干扰。
为了使振动稳定,还要采取稳幅措施。
驱动方式有机械驱动、电磁驱动和静电驱动几种。
磁体有超导磁体、电磁铁和亥姆赫兹线圈等几种。
前两种能产生很强的磁场,用来测量高矫顽力的永磁材料。
亥姆赫兹线圈产生的磁场很小,但磁场的灵敏度很高,适于测量软磁材料。
磁矩m的测量由探测线圈和锁相放大器组成,锁相放大器有很高的放大倍数,保证了VSM有较高的灵敏度。
磁场的测量采用霍耳磁强计。
将m和H信号送给计算机,由计算机进行数据的处理,并对测量过程进行自动化控制。
中班儿童科学教案:探究磁性材料的特性

中班儿童科学教案:探究磁性材料的特性探究磁性材料的特性一、教材分析本教案通过磁性材料的实验,旨在让中班儿童对磁性材料的特性有一个初步认识,激发儿童对科学探究的兴趣和好奇心,同时培养儿童的观察力、思维力等。
根据中班儿童的特点,我们应采用生动形象的方式进行讲解,积极引导儿童思考和互动。
二、教学目标1.了解磁性材料的特性。
2.培养儿童观察力和思维力。
3.激发儿童对科学探究的兴趣。
三、教学过程(一)导入环节教师用生动形象的图片或实物引入,引导儿童探究磁性材料的特性:“大家看看这是什么?”(出示磁铁)。
“有没有人见过这个东西?”“这是磁铁,普通的铁是没有吸力的,而磁铁却可以吸住它,是不是很神奇呢?”随后,教师可以引导儿童自己去尝试,让他们过程中有所发现,同时也有趣味性和探究性。
(二)实验环节1.实验一:不同材料的吸附实验教师将磁铁放在桌子上,供儿童自由选择各种不同的材料,如铜、铁、木块、纸张、铝箔等,让他们一个一个来试着去吸住磁铁,看看能否吸上去。
并引导儿童思考:为什么铜、铁块等可以吸跑磁铁?而木块、纸张、铝箔等则不行?2.实验二:查找隐藏材料将一些材料放在盒子里,如纸张、石头、木棍、铁、铝箔、硬币等,其中有一个隐藏了一个磁铁。
教师让儿童动手摸索,找出隐藏的磁铁,了解磁铁的特殊性。
3.实验三:磁铁与磁铁之间总是相互吸引教师让儿童拿两个磁铁在空中自由移动,让他们观察磁铁之间的相对位置和磁极的特殊特性。
同时,让儿童感知磁力的强度与磁极朝向的重要性。
(三)总结环节教师引导儿童思考:从今天的实验中,我们了解了什么?(指出磁铁特性、不同材料的吸附实验、隐藏磁铁的查找、磁铁与磁铁之间总是相互吸引)为什么会这样?(讲解原理)我们为什么要学习这个呢?如何运用这些知识呢?四、教学反思通过这节磁性材料实验,中班儿童不仅掌握了磁性材料的特性,而且积极参与实验,感受到了科学探究的乐趣,培养了儿童的观察力、思维力和动手能力。
而且,通过探究实验,儿童逐渐认识到探索知识、理解世界的重要性,进一步激发了他们学习科学的兴趣和好奇心。
磁性材料的基本特性

一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数∙饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列;∙剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs;∙矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);∙磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关;∙初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp;∙居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度;∙损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r;∙在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米)3.软磁材料的磁性参数与器件的电气参数之间的转换∙设计软磁器件通常包括三个步骤:正确选用磁性材料;∙合理确定磁芯的几何形状及尺寸;∙根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
材料:B H,m 磁芯(S,l):f~F 器件(N):U~I,LI ~H: H = IN/l 磁势F =ò Hdl=Hl Nf = ò UdtL~m:L=AL N2 =4N2m SK /D′10-9 U ~B:U = Ndf/dt = kfNBS ′10-6二、常用软磁磁芯的特点及应用(一).粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
磁性材料的基本特性

磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
磁性材料的基本特性

一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值M s,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsM r曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数∙饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列;∙剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs;∙矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);∙磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关;∙初始磁导率m i、最大磁导率m m、微分磁导率m d、振幅磁导率m a、有效磁导率m e、脉冲磁导率m p;∙居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度.它确定了磁性器件工作的上限温度;∙损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r;∙在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米)3.软磁材料的磁性参数与器件的电气参数之间的转换∙设计软磁器件通常包括三个步骤:正确选用磁性材料;∙合理确定磁芯的几何形状及尺寸;∙根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
科学实验教案:探索磁性材料的特性和应用

科学实验教案:探索磁性材料的特性和应用1. 引言1.1 概述本文旨在介绍一个科学实验教案,探索磁性材料的特性和应用。
磁性材料是一类具有吸引铁、镍等金属或其他物质的能力的材料。
对于学生来说,了解磁性材料的基本特性以及掌握相关应用是很重要的。
通过开展多种有趣的科学实验,学生可以亲身体验磁力的产生与变化规律,观察磁性材料对铁粉的吸引现象,并探索电流在磁场中受力情况与生成规律。
1.2 文章结构本文将按以下结构进行组织:首先,在第二部分中将介绍磁性材料的基本特性,包括磁性概念与原理、不同种类磁性材料以及磁场对磁性材料的影响和测量方法。
接下来,在第三部分中将重点讨论磁性材料在科学实验中的应用,包括研究磁力产生与变化规律、观察磁铁吸引铁粉现象解释以及探索电流在磁场中的受力情况与生成规律。
第四部分将提供科学实验设计和教学活动的具体安排,包括实验设备和材料清单、实验步骤和操作指导以及预期结果与讨论指导。
最后,在第五部分中,我们将对实验结果进行总结与分析,并从磁性材料特性及应用角度展开思考,并探讨科学实验教育的重要性和可持续发展性。
1.3 目的本文的目的是通过介绍一个科学实验教案,引发读者对于磁性材料特性及其应用的兴趣,并提供了一套完整的实践方案,帮助教师在教学中更好地引导学生进行有趣且富有启发性的科学实验。
这些实验旨在培养学生的观察力、思考能力和解决问题的能力,同时强调科学知识与现实生活之间的联系。
通过完成这些实验,学生可以深入了解磁性材料并增加他们对科学方法以及科学探索过程的理解。
2. 磁性材料的基本特性:2.1 磁性概念与原理:磁性是物质表现出吸引或排斥其他物质的能力。
磁性源于物质中微观磁偶极子的排列和相互作用。
磁偶极子由带电粒子(如原子和电子)的自旋和轨道运动产生。
磁性可分为三种类型:顺磁性、铁磁性和抗磁性。
顺磁性物质受外部磁场影响时产生弱的吸引力,而铁磁性物质则在外部磁场中形成强大的吸引力,抗磁性物质则被外部磁场所排斥。
磁性材料的基本特性

磁性材料的基本特性2007年07月05日星期四21:181. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)记录下示波器x、y轴的单位量,测出饱 和点、剩磁点、去磁点应测的各物理量。
(饱4)和求磁出感剩应余强磁度感BS应和强磁度场B强r,度为H矫S。顽HC,
实验数据
f
R2
R1 UBS UHS UBr UHC U-BS U-HS U-Br U-HC
(kH) (kΩ) (Ω) (V) (mv) (V) (m v) (V)度和磁感应 强度,而是通过测量相关的电压,再经过 关系式计算相应的磁场强度和磁感应强度。
思考题
1.如何正确调试磁滞回线?关键步骤是哪些? 2.通过实验,磁化过程中磁性材料的磁感应强
HS时,B值几乎不再增加,
磁化趋于饱和.如使得H
A'
减少,B将不再沿着原路返
回,而是沿另一条曲线
AC'A'下降,当H从-HS增
加时,B将沿着A'CA曲线
到达A形成一闭合曲线.
C
0
Hc
Hs
H
-Br -Bs
其中当H = 0时,|B| = Br,B r称为剩 余磁感应强度。要使得Br为零,就必
须加一反向磁场,当反向磁场强度增 加到H = -HC时,磁感应强度B为零, 达到退磁,HC称为矫顽力。各种铁磁 材料有不同的磁滞回线,主要区别在
度B是否随外部磁场H增大而增大?为什么?
于矫顽力的大小,矫顽力大的称为硬 磁材料,矫顽力小的称为软磁材料。
实验原理
1.实验电路图
2.二个重要关系式
▪ X端电压输出:
UX
UR1
R1i1
R1L H N1
▪
Y端电压输出
Uy UC
N2S R2C
B
实验设备参数说明
N1、N2表示线圈的匝数:N1=N2=100
S表示样品的截面积 :S=16. 48mm2
L表示平均磁路:L=44.08mm 电容C的容量:4.7μF 电阻R2的阻值用万用表测量
实验仪器
▪ 数字万用表 ▪ 实验接线板 ▪ 功率函数信号发
生器 ▪ 双踪示波器 ▪ 实验配件:磁性
材料及线圈、电 阻各可变电阻、 电容及若干导线
实验内容
(1)按图6自连电路,在示波器上调节出饱 和的磁化曲线和磁滞回线;
基本知识
▪ 1.磁滞性质 铁磁材料除了具有高的磁导率外,另
一重要的特性是磁滞现象.当铁磁材料磁 化时,磁感应强度B不仅与当时的磁场强度 H有关,而且与磁化的历史有关。
2.磁化曲线
B
Bs
A
Br
曲线OA表示铁磁材料从没 有磁性开始磁化,B随H的
-Hs
C' -Hc
增加而增加,称为磁化曲
线.当H值到达某一个值
实验简介 实验目的 实验原理 实验仪器
实验内容 实验数据 预习题
思考题
实验简介
▪ 磁性材料在外加磁场H 作用下,必有相应 的磁感应强度B,B随磁场强度H 的变化曲 线称为磁化曲线。通过实验理解磁性材料 的磁化特点,加深认识磁性材料的特性。
实验目的
1.利用示波器观察并测量磁化曲线与磁滞回 线
2.测出剩磁Br、饱和磁感应强度BH、矫顽力 HC及达到饱和时磁场强度大小HS。