《2分式的乘除法》教案2
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
数学2.2《分式的乘除法》课件(2)

Conversation 4 Anna: Mei Ling, can you come to my party on Saturday? Mei Ling: Sorry, but I’m not available. I must study for a math test. Anna: Ok. Good luck!
①把各分式中分子或分母里的多项式分解因式; ②在乘除过程中遇到整式则视其为分母为1; ③应用分式乘除法法则进行运算; ④结果为最简分式或整式.
随堂练习 1、计算 (1)
a b b a2
(2) (a2 a) a
a 1
1
解(1)原式= a
(2)原式= (a-1)2
2.计算 a2 b 1 a2 1 a2 正确吗?
A: Can you play basketball with us?
B: Sorry, I can’t. I …
prepare for an exam
A: Can you … ? B: Sorry, I can’t. I …
go to the doctor
meet my friend
A: Can you …?
to meet my friend on Saturday.
Conversation 2 Anna: Hello, Mary! Can you come
to my party on Saturday? Mary: I’d love to. Do I need to bring
anything? Anna: No, I’ll buy all the circle can or can’t.
1. Jeff can/ can’t go to the party. 2. Mary can/ can’t go to the party. 3. May can/ can’t go to the party. 4. Mei Ling can/ can’t go to the party. 5. Paul can/ can’t go to the party.
《分式的乘除法》优质课比赛教案

《分式的乘除法》优质课比赛教案教案名称:分式的乘除法教学目标:1. 学会分式的乘法运算。
2. 学会分式的除法运算。
3. 能够应用分式的乘除法解决实际问题。
教学时长:2课时教学内容:第一课时:1. 复习分式的加减法,引入分式的乘法概念。
2. 讲解分式的乘法运算规则。
3. 练习分式的乘法计算。
4. 引入分式的除法概念。
5. 讲解分式的除法运算规则。
6. 练习分式的除法计算。
第二课时:1. 复习分式的乘法和除法规则。
2. 引入应用题,通过实际问题来练习分式的乘除法运算。
3. 学生上台演示解题过程。
4. 教师总结、点评和拓展,提出一些相关实际问题供学生练习。
教学准备:1. 教师准备白板、黑板、彩色粉笔等。
2. 学生准备笔记本、铅笔等。
教学步骤:第一课时:1. 引入:复习分式的加减法知识,向学生介绍分式的乘法概念。
2. 讲解:讲解分式的乘法运算规则,包括分子相乘、分母相乘。
3. 练习:给学生一些分式乘法计算的练习题,让学生在纸上计算并写出答案。
4. 引入:向学生介绍分式的除法概念。
5. 讲解:讲解分式的除法运算规则,包括将除法转化为乘法,分子相乘、分母相乘。
6. 练习:给学生一些分式除法计算的练习题,让学生在纸上计算并写出答案。
第二课时:1. 复习:复习分式的乘法和除法规则。
2. 引入:通过实际问题引入应用题,让学生能够将分式乘除法运用到实际情境中去解决问题。
3. 练习:学生上台展示解题过程,并与其他同学共同分析和讨论解题方法。
4. 总结:教师总结学生上台演示的解题方法,点评其中的优缺点,并提出相关拓展问题。
5. 拓展:提出一些相关的实际问题,供学生进一步练习分式的乘除法。
教学评价:1. 教师观察学生的学习情况,在课堂上提问学生,评价他们对分式乘除法的理解和运用能力。
2. 教师检查学生课后作业,评价他们对分式乘除法的掌握程度。
3. 学生之间互相讨论、合作解题,评价他们的合作能力和解题思路。
教学延伸:1. 学生可以在课后继续练习分式的乘除法运算,拓宽应用范围,提高运算速度和准确性。
分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。
2. 培养学生运用分式的乘除法解决实际问题的能力。
3. 提高学生对分式运算的兴趣和自信心。
二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。
三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。
四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。
五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。
【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。
2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。
3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。
5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。
7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
8. 总结:让学生总结分式的乘除法运算规则,加深印象。
9. 课堂小测:进行课堂小测,了解学生掌握情况。
10. 课后作业:布置课后作业,让学生巩固所学知识。
六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。
2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。
3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。
七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。
2. 分析学生的学习困难,针对性地调整教学内容和策略。
3.3《分式的乘法与除法》教学案2

3.3 分式的乘法与除法 教学案【教学目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。
2.运用分式的乘除运算法则,进行分式的简单运算。
【教学重点】运用分式的乘除法运算法则,进行简单分式的乘除运算。
【学习过程】第一部分 预习设计【预习目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。
2.运用分式的乘除运算法则,进行分式的简单运算。
学习任务一:自学教材78交流与发现,类比分数乘除法的运算法则,探索分式乘除法的运算法则。
1、类比分数的乘除法则计算:⑴b a ·d c = ⑵b a ÷d c= 2、由以上算式我们可得到分式的乘法和除法的运算法则分别是:乘法法则:除法法则:学习任务二:自学教材第79-80页内容,会进行简单分式的乘除运算。
1、分析例1和例2,仿照例题做下面的题目,理解分式乘除法的解法。
(1)235bc a -·223ab c - (2)222235b a c b a -÷ (3)242x x -+÷24x x - 思考:1)在运算过程中应进行 ,把结果化为 ;2)在进行分式的乘除运算时,如果分子与分母是多项式,应当先进行2、注意:分式的分子或分母中带有负号时要注意商的符号!预习检测:计算:1)m n ·n m2)4x ÷3x3)2a b -÷22a b4)1a a -·1b a - 5)24a x -÷22a x - 6)422643xy yx ÷- 7)abc bc a 853)2(22⋅ 8)()x y xy 3232÷- 预习质疑:第二部分课中实施 一、问题收集二、问题处理,精讲点拨1、讲解学生预习中的共性问题2、典型例题解析课本79页例2和80页例3三、反思拓展:四、计算:(1)2214m m m -+-·241m m --(2)x xx x x x x x x -+∙-÷+++-33944962222五、强化训练课本练习1、2、3题六、系统总结:。
5.2分式的乘除法(2)

2
-(2 x 1)= -2 x - 1
自学检测(二):6分钟 计算
2 b2 3a 3b a 2 8a b ⑴ 4ab 2a
⑵பைடு நூலகம்
x2 1 (x 1) x2 3x 2 x 1 x2 4x 4
2 3(a b) 2 a 12 a 2 8 a b 解:⑴原式 4ab (a b)( a b) a b
⑵原式
( x 1)( x 1) 1 ( x 1)( x 2) x 1 2 x2 x 2 x 1 x 1
自学指导(三):6分钟
• 先化简再求值: xy 2 2 (1)(x-y) ÷(x y-xy ). (2)若x= 3 ,y= 2 求代数式 xy y
; 。
通常购买同一品种的西瓜时,西瓜的质量越大, 花费的钱越多。因此人们希望西瓜瓤占整个西瓜 的比例越大越好。假如我们把西瓜都看成球形, 并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都 是d,已知球的体积公式为V= 4πR3 (其中R为 3 球的半径)那么 (1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积的比是多少? (3)你认为买大西瓜合算还是买小西瓜合算?
( x y)2
x y
,其中x=-2,y=1
2,
÷
( y x) 2 . x 2 y 2 的值 y xy y 2
当堂训练(10分钟)
完成《随堂小练》
a 1
2
<
“丰收2号”小麦的单位面积产量高。
a 1
2
(2)
500 500 2 2 a 1) a 1
“丰收2号”小麦的单位面积产量是“丰 a 1 收1号”小麦的单位面积产量的_______ a 1 倍。
《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。
2. 掌握分式的乘法和除法运算规则。
3. 能够解决与分式有关的实际问题。
二、教学重点1. 分式的乘法和除法运算规则。
2. 实际问题的解决。
三、教学难点实际问题的解决。
四、教学准备1. 教师准备:课本、黑板、粉笔。
2. 学生准备:课本、笔记。
五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。
2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。
例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。
例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。
5.2分式乘除法(2)

b b 3b 5. (技能题)计算: . 2 a a 4a
2 3
D.
b4n a2n
x2 6. (辨析题)计算 y
A. x 5 师生互动 B. x 5 y
2
y2 y 得( ) x x
2
13. (学科综合题)先化简,再求值: x2 2x 8 x 2 x 4 4 .其中 x x3 2 x 2 x x x 1 5
2. (技能题)计算:
16 m2 m4 m2 . 16 8m m2 2m 8 m 2
题型 2:分式的乘方运算
2a 2 b 3. (技能题)计算: . 3c
3
b2 4. (辨析题) 的值是( ) a
2n
b2 2 n b2 n 2 b4n B . C . a2n a2n a 2n 题型 3:分式的乘方、乘除混合运算
D. y 5 z
10.计算: (1)
2x 6 x2 x 6 ( x 3) x2 4 x 4 3 x
(2)
x2 6 x 9 x2 9 x3 x2 x 6 x2 3x 10 2x 10
拓展创新题
3 b2 b ab 12. (学科综合题)已知 3a b 1 3a b 0 .求 的值. 2 a b a b a b
C. y5 D. x15
3
4
x2 y y 7.计算 的结果是( ) y x x
A.
x2 y
2 n 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《2 分式的乘除法》教案
教学目标
(一)教学知识点
1.分式乘除法的运算法则.
2.会进行分式的乘除法的运算.
(二)能力训练要求
1.类比分数乘除法的运算法则.探索分式乘除法的运算法则.
2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和
语言表达能力.
3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识.
(三)情感与价值观要求
1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获
得成就感.
2.培养学生的创新意识和应用数学的意识.
教学重难点
教学重点:让学生掌握分式乘除法的法则及其应用.
教学难点:分子、分母是多项式的分式的乘除法的运算.
教学过程
Ⅰ.创设情境,引入新课
[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看:
[生]观察上面运算,可知:
两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.
即a b
×c d
=ac bd
;
a b ÷c d =a b ×d c =ad
bc .这里字母a ,b ,c ,d 都是整数,但a ,c ,d 不为零.
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.
Ⅱ.讲授新课
1.分式的乘除法法则
[师生共析]分式的乘除法法则与分数的乘除法法则类似:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
2.例题讲解
[例1]计算:
分析:(1)将算式对照乘除法运算法则,进行运算;
(2)强调运算结果如不是最简分式时,
一定要进行约分,使运算结果化为最简分式.
[例2]计算:分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.
3.做一做
通常购买同一品种的西瓜时,
西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,
并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d ,已知球的体积公式为V=34
πR3
(其中R 为球的半径),那么(1)西瓜瓤与整个西瓜的体积各是多少?
(2)西瓜瓤与整个西瓜的体积比是多少?
(3)买大西瓜合算还是买小西瓜合算?
[师]夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信
你一定会感兴趣的.
[生]我们不妨设西瓜的半径为R ,根据题意,可得:
(1)整个西瓜的体积为
V 1=34πR3;西瓜瓤的体积为V 2=34
π(R -d )3.
(2)西瓜瓤与整个西瓜的体积比为:
12
V V =333
4)(34
R d R =33)(R d R =(R d R
)3=(1-R d
)3
.(3)我认为买大西瓜合算.由1
2
V V =(1-R d )3可知,R 越大,即西瓜越大,R d 的值越小,(1-R d
)的值越大,(1-R d
)3也越大,则12
V V 的值也越大,即西瓜瓤占整个西瓜的体积
比也越大,因此,买大西瓜更合算.
Ⅲ.课时小结
[师]同学们这节课有何收获呢?
[生]我们学习分式的基本性质可以发现它类似于分数的基本性质.今天,我们学习分式的乘除法的运算法则,也类似于分数乘除法的运算法则.
我们以后对于分式的学习是否也类似于分数,加以推广便可.
[师]很好!其实,数学历史的发展就是不断地将原有的知识加以推广和扩展.[生]今天我们学习了一种新的运算,
能运用因式分解将分子、分母是多项式的分式乘或除,我觉得我们很了不起.
Ⅳ.活动与探究
已知a 2+3a+1=0,求
(1)a+a 1
;(2)a 2+21
a ;(3)a 3+31
a ;(4)a 4+41
a。