1高电压技术绪论第一章
合集下载
哈工大高电压技术1、绪论

高电压技术
(高电压与绝缘技术)
工程上把 1000伏及以 上的交流供电电压称为高电 压。高电压技术所涉及的高 电压类型有直流电压、工频
交流电压和持续时间为毫秒
级的操作过电压、微秒级的 雷电过电压、纳秒级的核致 电磁脉冲等。
20世纪以来,随着电能应用的日益广
泛,电力系统所覆盖的范围越来越大,传 输的电能也越来越多,这就要求电力系统
小
结
高电压技术是一门重要的专业技术基础课; 随着电力行业的发展,高压输电问题越来越得到 人们的重视; 高电压、高场强下存在着一些特殊的物理现象; 高电压试验在高电压工程中起着重要的作用。
P 3U cos 2 2 P P ∝ U 22 S
; R=
S S
R:导线电阻 :导线电阻率
:导线长度
S:导线截面积 P:传输功率 U:线路电压
提高电压等级可以实现大功率、远距离的输送电力
提高电压的效果 例如:输送750万千伏安容量的电力
345KV电压等级
• 降低线路损耗 1200KV电压等级 需:仅用一条单回线 走廊宽度为 91.5 m • 提高输送功率 即:可提高单位走廊宽度输送容量 提高输送距离 • • 节省线路走廊
不同电压等级线损
需:七条双回线 走廊宽度为 221.5 m
不同电压等级传输能量曲线
输电电压与输送容量、输送距离的范围 输电电压(kV) 输送容量(MW) 输送距离(km)
110 220 330 500 750
10-20 100-500 200-800 1000-1500 2000-2500
50-150 100-300 200-600 150-850 500以上
电压的能力 学会限制各种过电压的措施 理解供电系统中绝缘配合的原则
(高电压与绝缘技术)
工程上把 1000伏及以 上的交流供电电压称为高电 压。高电压技术所涉及的高 电压类型有直流电压、工频
交流电压和持续时间为毫秒
级的操作过电压、微秒级的 雷电过电压、纳秒级的核致 电磁脉冲等。
20世纪以来,随着电能应用的日益广
泛,电力系统所覆盖的范围越来越大,传 输的电能也越来越多,这就要求电力系统
小
结
高电压技术是一门重要的专业技术基础课; 随着电力行业的发展,高压输电问题越来越得到 人们的重视; 高电压、高场强下存在着一些特殊的物理现象; 高电压试验在高电压工程中起着重要的作用。
P 3U cos 2 2 P P ∝ U 22 S
; R=
S S
R:导线电阻 :导线电阻率
:导线长度
S:导线截面积 P:传输功率 U:线路电压
提高电压等级可以实现大功率、远距离的输送电力
提高电压的效果 例如:输送750万千伏安容量的电力
345KV电压等级
• 降低线路损耗 1200KV电压等级 需:仅用一条单回线 走廊宽度为 91.5 m • 提高输送功率 即:可提高单位走廊宽度输送容量 提高输送距离 • • 节省线路走廊
不同电压等级线损
需:七条双回线 走廊宽度为 221.5 m
不同电压等级传输能量曲线
输电电压与输送容量、输送距离的范围 输电电压(kV) 输送容量(MW) 输送距离(km)
110 220 330 500 750
10-20 100-500 200-800 1000-1500 2000-2500
50-150 100-300 200-600 150-850 500以上
电压的能力 学会限制各种过电压的措施 理解供电系统中绝缘配合的原则
【精】高电压技术复习大纲

旋转电机的防雷保护要求高、困难大,而且要全面考虑绕组的主绝缘、匝间绝缘和中性点绝缘的保护要求。
为什么随空气密度增大大气中间隙的放电电压会提高?
直o流耐自压试持验的放特点。电的条件分别可以用哪两种理论来说明?这两种 理论的分别适用于什么条件下?以空气为例,这两种理 能画图说明自持放电前和自持放电后空间电荷对电场的畸变作用及其引起的极性效应
畸变作用及其引起的极性效应 o 极不均匀场间隙电晕起始放电的极性效应与击穿的极性
效应?输电线路交流电压下击穿发生在外施电压哪个半 周? o 稍不均匀场间隙击穿的极性效应?
第三章 气体间隙的击穿强度
• 第一节 稳态电压下的击穿 o 气体间隙的击穿电压是否与外施电压的种类有关? o 气体放电中所谓的稳态电压是指? o 均匀场中直流击穿电压、工频击穿电压峰值和50%冲击
击穿电压有什么关系?
o 球间隙距离d与球直径D满足什么关系时球间隙处于正常
工作范围? o 内外径比值大致为多少时同轴圆柱电极具有最大击穿电
压? o 对于相同间隙距离,电力线发散程度越大,则电场越均
匀还是越不均匀? o 间隙距离很大时的极不均匀场,不同形状电极的间隙击
穿电压差别大吗?在一电极接地时接近于什ห้องสมุดไป่ตู้电极的击 穿数据?
其物理机理 o 自持放电形式(辉光放电、火花放电、电弧放电)与气压
以及外回路阻抗的关系 o 简单描述电子崩的发展过程
o 阴极表面初始电子数为n0,经电子崩发展后在阳极处的 电子数n为多少?
o 只有电子崩过程时放电是否能够自持?
o 电子自由行程大于x的概率是?
第二章 气体放电的基本物理过程
• 第二节 放电的电子崩阶段
o 推导电子碰撞电离系数α的表达式(电子平均自由行程 λ;电离电位Ui;电场强度E)
为什么随空气密度增大大气中间隙的放电电压会提高?
直o流耐自压试持验的放特点。电的条件分别可以用哪两种理论来说明?这两种 理论的分别适用于什么条件下?以空气为例,这两种理 能画图说明自持放电前和自持放电后空间电荷对电场的畸变作用及其引起的极性效应
畸变作用及其引起的极性效应 o 极不均匀场间隙电晕起始放电的极性效应与击穿的极性
效应?输电线路交流电压下击穿发生在外施电压哪个半 周? o 稍不均匀场间隙击穿的极性效应?
第三章 气体间隙的击穿强度
• 第一节 稳态电压下的击穿 o 气体间隙的击穿电压是否与外施电压的种类有关? o 气体放电中所谓的稳态电压是指? o 均匀场中直流击穿电压、工频击穿电压峰值和50%冲击
击穿电压有什么关系?
o 球间隙距离d与球直径D满足什么关系时球间隙处于正常
工作范围? o 内外径比值大致为多少时同轴圆柱电极具有最大击穿电
压? o 对于相同间隙距离,电力线发散程度越大,则电场越均
匀还是越不均匀? o 间隙距离很大时的极不均匀场,不同形状电极的间隙击
穿电压差别大吗?在一电极接地时接近于什ห้องสมุดไป่ตู้电极的击 穿数据?
其物理机理 o 自持放电形式(辉光放电、火花放电、电弧放电)与气压
以及外回路阻抗的关系 o 简单描述电子崩的发展过程
o 阴极表面初始电子数为n0,经电子崩发展后在阳极处的 电子数n为多少?
o 只有电子崩过程时放电是否能够自持?
o 电子自由行程大于x的概率是?
第二章 气体放电的基本物理过程
• 第二节 放电的电子崩阶段
o 推导电子碰撞电离系数α的表达式(电子平均自由行程 λ;电离电位Ui;电场强度E)
高电压技术(第1章)

极化、电导和损耗:在外加电压相对较低(不超 过最大运行电压)时,电介质内部所发生的物理 过程。
这些过程发展比较缓慢、稳定,所以一直被 用来检测绝缘的状态。此外,这些过程对电介质 的绝缘性能也会产生重要的影响。
击穿:在外加电压相对较高(超过最大运行电压) 时,电介质可能会丧失其绝缘性能转变为导体, 即发生击穿现象。
离子式结构的固体电介质的体积电导则主要 由离子在热运动影响下脱离晶格移动所形成。
影响固体电介质体积电导的主要因素 电场强度
场强较低时,加在固体介质上的电压与流过 的电流服从欧姆定律。场强较高时,电流将随电 压的增高而迅速增大。
因固体介质发生碰撞游离的场强高,在发生 游离前阴极就能发射电子,形成电子电导,故流 过固体介质的电流不存在饱和区。 温度
荷。
二、电介质极化的概念和极化的种类
极化:无论何种结构的电介质,在没有外电场 作用时,其内部各个分子偶极矩的矢量和平均 来说为零,电介质整体上对外没有极性。
当外电场作用于电介质时,会在电介质沿 电场方向的两端形成等量异号电荷,就像偶极 子一样,对外呈现极性,这种现象称为电介质 的极化。
电介质极化的四种基本形式:
温度升高时,体积电导按指数规律增大。 杂质
杂质含量增大时,体积电导也会明显增大。
固体电介质的表面电导主要是由附着于介质表 面的水分和其他污物引起的。
固体电介质的表面电导与介质的特性有关:
亲水性介质,容易吸收水分,水分可以在其表 面形成连续水膜,如玻璃、陶瓷就属此类。
憎水性介质,不容易吸收水分,水分只能在其 表面形成不连续的水珠,不能形成连续水膜,如石 蜡、硅有机物就属此类。
电负性相等或相差不大的两个或多个原子相 互作用时,原子间则通过共用电子对结合成分子, 这种化学键就称为共价键。
高电压技术-绪论

本节内容:
➢1.1.1 带电质点的产生 ➢1.1.2 带电质点的消失 ➢1.1.3 电子崩与汤逊理论 ➢1.1.4 巴申定律与适用范围 ➢1.1.5 不均匀电场中的气体放电
返回
第一节 气体放电的基本物理过程
一、带电粒子在气体中的运动 (一)自由行程长度
当气体中存在电场时, 粒子进行热运动和沿 电场定向运动(如图 1-1所示)
应该指出:在气体放电中,能导致气体光电离 的光源不仅有外界的高能辐射线,而且还可能是气 体放电本身,例如后面将要介绍的带电粒子复合的 过程中,就会放出辐射能而引起新的光电离。
(二)热电离 常温下,气体分子发生热电离的概率极小。 气体中发生电离的分子数与总分子数的比值m称为
该气体的电离度。 下图为空气的电离度m与温度T的关系:
表1-1列出了某些常见气体的激励能和电离能之
值,通常一电子伏 (eV) 表示由于电子电荷qe 恒
等于 1.61019C ,所以有时也可采用激励电
位 Ue (V) 和电离电位 Ui (V) 来代替激励能和电 离能,以便在计算中排除 qe 值。
表 1-1
某些气体的激励能和电离能
气体 激励能We (eV) 电离能Wi (eV) 气体 激励能We (eV) 电离能Wi (eV)
E
图1-1
第一节 气体放电自由行程的长度 基本物理过程
一、带电粒子在气体中的运动
(一)自由行程长度
各种粒子在气体中运动时不
断地互相碰撞,任一粒子在
E
1cm的行程中所遭遇的碰撞次
数与气体分子的半径和密度有
关。
单位行程中的碰撞次数Z的倒数λ即为该粒子的 平均自由形成长度。
实际的自由形成长度是随即量,并有很大的分 散性,粒子的平均自由形成长度等于或大于某一 距离x的概率为
高电压技术复习大纲-2012 (1)

第四章 气体中沿固体绝缘表面的放电
• 第三节 极不均匀电场中的沿面放电 o 弱垂直电场分量情况下,提高沿面闪络电压的途径?具 体措施? o 说明为什么加装均压环后绝缘子柱电压分布可以得到改 善 o 分析线路绝缘子串电压分布的等效电路?均压环如何改 善电压分布?
第四章 气体中沿固体绝缘表面的放电
• 第四节 受潮表面的沿面放电 o 名词解释:
• 第五节 脏污绝缘表面的沿面放电 o 名词解释:
o 污闪电压;污层等值附盐密度;单位爬电距离
o 干燥情况下绝缘子表面污层对闪络电压是否有影响? o 什么情况下绝缘子表面污层对闪络电压有显著影响?为 什么? o 为什么污闪事故对电力系统的危害特别大? o 简单描述污闪的发展过程 o 污闪与其他沿面闪络过程的最大不同之处是? o 污闪发展过程中,局部电弧能否发展成闪络取决于哪些 因素? o 影响污闪电压的因素有哪些? o 实验室进行人工污秽试验时,如何确定污闪电压?具体 步骤?对污闪试验所用电源的内阻抗有何要求?
o 湿闪络电压;
o 介质表面发生凝露时,沿面闪络电压降如何变化?是否 发生凝露与什么因素有关? o 低温下为什么相对湿度增加不会显著降低闪络电压? o 湿闪络电压与干闪络电压的关系? o 提高绝缘子湿闪电压的措施? o 为什么户外绝缘子都有伞裙? o 为什么伞裙宽度进一步增大并不能提高湿闪电压?
第四章 气体中沿固体绝缘表面的放电
o GIS的母线筒和测量电压用的球间隙属于什么类型的电 场?高压输电线路?套管? o 如何描述电场的不均匀性?以稍不均匀场和极不均匀场 为例予以说明 o 极不均匀场区别于均匀场的放电现象是? o 同样间隙距离下,稍不均匀场间隙的击穿电压比均匀场 间隙的要高还是低? o 电晕放电是自持还是非自持放电? o 极不均匀场间隙中自持放电条件是? o 电晕放电的危害、降低电晕放电的措施与电晕放电的有 利之处?
高电压技术第一章-PPT课件

第一章 电介质的极化、电导和损耗
夹层式极化:使夹层电介质分界面上出现电 荷积聚的过程。由于夹层极化中有吸收电 荷,故夹层极化相当于增大了整个电介质 的等值电容。 夹层式极化的特点:极化过程缓慢;是非弹 性的;只有在直流电压下或低频电压作用下 ,极化才能呈现出来,有能量损耗。
第一章 电介质的极化、电导和损耗
第一章 电介质的极化、电导和损耗
第一章 电介质的 极化、 电导和损耗
• 要求
熟悉电介质在电场作用下的极化、电 导和损耗等物理现象,以及它们在工程上 的合理应用。
第一章 电介质的极化、电导和损耗
知识点 ● 电介质的极化、电导和损耗的概念 ● 各类电介质的极化、电导和损耗的特 点 ● 相对介电常数εr ● 电介质的等值电路 ● 介质损失角正切tanδ ● 电介质极化、电导和损耗在工程上的 意义
定义:无外电场时对外不显电性。外电场 作用下由于电子发生相对位移而发生极 化。 特点:极化过程时间极短,约10-14~10-15 s ;极化是弹性的,无能量损耗;与电源 频率、温度无关。
第一章 电介质的极化、电导和损耗
图1-2 离子式极化示意图
定义:发生于离子结构的电介质中。正常 对外不呈现极性,在外电场作用下正、 负离子偏移其平衡位置,使介质内正、 负离子的作用中心分离,介质对外呈现 极性。 特点:时间极短,约10-12~10-13s;极化是 弹性的,无能量损耗;极化程度与电源 频率无关,随温度升高而略有增加。
第一章 电介质的极化、电导和损耗
相对介电常数εr
它是表征电介质在电场作用下极化程度 的物理量
εr的值由电介质的材料 决定,并且与温度、频 率等因素有关。
第一章 电介质的极化、电导和损耗
第一章 电介质的极化、电导和损耗
高电压技术,第一章精品课件

反映了带电质点自由运动的能力
1.1.1 带电粒子在气体中的运动
带电质点的迁移率
正离子
电子
负极
正极
E
迁移率
V μ=
E
1.1.1 带电粒子在气体中的运动
激励、电离和复合
原子核 基态电子 激励
复合
电离能
电离
1.1.1 带电粒子在气体中的运动
激励、电离和复合
气体 N2 O2 CO2 SF6 H2 H2O
热电子发射
1 2
mv2
≥Wt
E
正极Leabharlann .1.2 带电粒子的产生源于电极
强场发射
E
负极
电场阈值 108V / m
真空中、高压气体中、液体中、固体中
正极
负极
1.1.3 负离子的形成
1 2
mv2
< Wt
E
气体分子要有很高的电负性
正极
1.1.3 负离子的形成
电子亲和能
元素 F Cl Br I
电子亲合能(eV) 4.03 3.74 3.65 3.30
相关学术术语
平均自由行程 带电质点的迁移率 激励 电离 复合
1.1.1 带电粒子在气体中的运动
质点的平均自由行程
:一个带电质点在向前行进1cm距离内,发生碰撞 次数的倒数 。
1.1.1 带电粒子在气体中的运动
质点的平均自由行程
的性质
λ∝ T P
受温度和气压影响
电子的要比分子和离子的大得多
电负性值 4.0 3.0 2.8 2.5
1.1.4 带电质点的消失
扩散
hν
复合
负极
正极 中和
E
带电粒子消失的三条途径:复合、扩散和中和
(2021)高电压技术第一章概要正式版PPT资料

第一章 气体的放电基本物理过程和电气强度
主要内容:
第一节 汤逊理论和流注理论 第二节 不均匀电场中的放电过程 第三节 空气气隙在各种电压下的击穿特性 第五节 提高气体介质电气强度的方法 第六节 沿面放电及防污对策
第一节 汤逊理论和流注理论
主要内容: 一、非自持放电和自持放电 二、汤逊理论 三、巴申定律 四、流注理论 五、强电负性气体自持放电的条件
dK
K=10.5( SF 6 )—电子崩中电子的临界值取对数
第二节不均匀电场中的放电过程
主要内容: 一、稍不均匀电场的放电特点 二、极不均匀电场中的电晕放电现象 三、极不均匀电场中的放电过程
Dd
稍均匀 (d<=2D时) 极不均匀 (d>4D时)
一. 稍不均匀电场
当d<=2D时,稍不均匀,电晕放电不稳定,一旦出现, 气隙立即被击穿。f<2
α系数—电子崩过程(α过程) β系数—离子崩过程(β过程) γ系数—离子崩达到阴极后引起阴极发射二次电子的过程
(γ过程)
二、汤逊理论
3.均匀场中电子崩的计算
dnndxdndx
n
n ed -α过程电子崩的电子 ed 1 -β过程中产生的离子崩中的正离子数
ed1 -γ过程又在阴极上释放出二次电子数
一、非自持放电和自持放电
1、非自持放电
图1-1测定气体间隙的电压和电流
其过程如下: oa-初始阶段 ab-(良好 性能) bc-(碰撞电离↑)→带电离子↑ cs-气体间隙击穿,电流急剧增加 当U<U0时I很小,需外电离因素才能维持,称其为非自持放电阶段
一、非自持放电和自持放电
2、自持放电区 当U> U0 时,电流剧增,此时气隙中电流过程只靠外施电压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
3.高压输电的发展
电网发展的历史表明 : • 相邻两个电压等级的级差,在一倍以上是经济 合理的。 • 新的更高电压等级的出现时间一般为15—20年。 • 前苏联1150kV输电线路的运行表明: 特高压输电技术和设备,经过20年的研究 和开发,到20世纪80年代中期,已达到用于实 际的特高压输电工程的要求。
10
• 7) 大 型 变 压 器 为 什 么 装 电 扇 ?
11
• 8)专劈奶牛的雷:雷击牛棚后,奶牛应声倒地(或
被击死),而处于同一地点的人则无事,为什么?
• 9)变电站中通常要安装避雷器,为什么?
• 10)为什么在发电机高压母线上装设电容器?
• 11) 中性点不接地系统中,为什么有时会出现电磁
式电压互感器的严重过热、进而冒油、烧损、爆炸?
• 12) 在中性点不接地系统中,如含有大量的电力电
缆线路,则系统中的单相短路故障容易发展成相间短 路故障,为什么?
12
绪论
一、高压输电的发展历史
二、发展高压输电的必要性
三、中国电力工业的发展与现状 四、高电压技术的主要研究内容
五、高电压技术的应用
六、高电压技术面临的主要问题
13
一、高压输电的发展
1.电网发展历史
*1875年,法国巴黎北火车站建成世界上第一座火力直流发电 厂,标志着世界电力时代的到来。 * 1891年,在德国劳芬电厂安装了世界第一台三相交流发电 机:它发出的三相交流电通过第一条13.8kV输电线将电力输 送到远方用电地区,使电力既用于照明,又用于动力,从而 开始了高压输电的时代。 * 1879年,中国上海公共租界点亮了第一盏电灯。1882年, 第一家电业公司—上海电气公司成立(1台12kW直流) 。 * 100多年来,输电电压由最初的13.8kV逐步发展到20,35, 66,110,134,220,330,345,400,500,735,750, 765,1000kV。
20
高压 100kV
超高压 1001000kV
特高压 1000kV
21
高压输电
22
二、发展特高压的必要性
线路。从500kV电压等级到1150kV电压等级用了20年时间。
16
2.中国电网发展历史
中国,1949年前,电力工业发展缓慢,输电电压
按具体工程决定,电压等级繁多:
1908年建成22kV石龙坝水电站至昆明线路, 1921年建成33kV石景山电厂至北京城的线路。 1933年建成抚顺电厂的44kV出线。 1934年建成66kV延边至老头沟线路。
2. (续)
• 1983年又建成葛洲坝-武昌和葛洲坝-双河两回500kV线路, 开始形成华中电网500kV骨干网架。 1989年建成±500kV葛洲坝-上海高压直流输电线,实现了 华中-华东两大区的直流联网。 中国,在逐渐形成330kV和500kV区域输电骨干网架的同时, 于20世纪80年代初开始了330kV和500kV以上更高电压等 级的论证。1984年,国家明确提出500kV以上的输电电压 为1000kV特高压、330kV以上的输电电压为750kV。 2005年9月,中国在西北地区(青海官厅—兰州东)建成 了一条750kV输电线路,长度为140.7 km。输、变电设备, 除GIS外,全部为国产。 • 2008年12月 1000kV晋东南~南阳~荆门输电线路工程建成
2
2)绝缘子串、隔离开关安装特点(220kV & 500kV)
220kV线路绝缘子
500kV线路绝缘子3
220kV隔离开关
500kV隔离开关
4
5
3) 电弧现象
6
4) CVT、变压器套管特点
电容式电压互感器器 套管绝缘和 电缆头绝缘 结构特点?
9
6. 高压电缆结构?
如何解释下列典型现象
1
• 1) 一群顽童在火车站玩耍,当他们在铁道上追逐并攀 爬一停靠货场的车厢时,一九龄女童遭车厢上方高压电 电击不幸身亡,而电击火花又留下隐患,一个多小时后, 车载货物燃起大火。 • 车厢上方高压电对刘艺放电,电弧引燃了孩子身上的衣 服,她顿时变成了一个火人,惨叫声、呼救声令人心碎。 强大的电流瞬间夺走了刘艺年幼的生命。
14
1.(续)
1908年,美国建成了世界第一条110kV输电线路;经 过15年,于1923年,第一条230kV线路投入运行; 1954年建成第一条345kV线路。从230kV电压等级到 345kV电压等级经历了31年。在345kV投运15年后, 1969年建成了765kV线路。 1952年,瑞典建成世界上第一条380kV超高压线路。 1965年,加拿大建成世界第一条735kV超高压线路。
15
1.(续)
1952年,前苏联建成第一条330kV线路;1956年建成400kV 线路;1967年建成750kV线路。从330kV电压等级发展到 750kV电压等级用了15年时间。
欧洲和美国,在超高压输电方面,主要发展345kV、 380kV和750kV电压级, 500kV线路发展比较慢。1964年, 美国建成第一条500kV线路,从230kV到500kV输电,时间 间隔达36年。前苏联的500kV电压等级是在400kV基础上升 级发展起来的,1964年,建成完善的500kV输电系统。 1985年,前苏联建成世界上第一条1150kV特高压输电
1935年建成抚顺电厂至鞍山的154kV线路。
1943年建成110kV镜泊湖水电厂至吉林延边线路。
17
2. (续)
中国, 1949年新中国成立后,按电网发展统一电 压等级,逐渐形成经济合理的电压等级系列: 1952年,用自主技术建设了110kV输电线路,逐渐 形成京津唐110kV输电网。 1954年,建成丰满至抚顺李石寨220kV输电线路, 随后继续建设辽宁电厂至李石寨,阜新电厂至青堆 子等220kV线路,迅速形成东北电网220kV骨干网架。 1972年建成330kV刘家峡—关中输电线路,全长 534km,随后逐渐形成西北电网330kV骨干网架。 1981年建成500kV河南平顶山姚孟—湖北武昌输电 18 线路,全长595km。为适应葛洲坝输变电的需要。
3.高压输电的发展
电网发展的历史表明 : • 相邻两个电压等级的级差,在一倍以上是经济 合理的。 • 新的更高电压等级的出现时间一般为15—20年。 • 前苏联1150kV输电线路的运行表明: 特高压输电技术和设备,经过20年的研究 和开发,到20世纪80年代中期,已达到用于实 际的特高压输电工程的要求。
10
• 7) 大 型 变 压 器 为 什 么 装 电 扇 ?
11
• 8)专劈奶牛的雷:雷击牛棚后,奶牛应声倒地(或
被击死),而处于同一地点的人则无事,为什么?
• 9)变电站中通常要安装避雷器,为什么?
• 10)为什么在发电机高压母线上装设电容器?
• 11) 中性点不接地系统中,为什么有时会出现电磁
式电压互感器的严重过热、进而冒油、烧损、爆炸?
• 12) 在中性点不接地系统中,如含有大量的电力电
缆线路,则系统中的单相短路故障容易发展成相间短 路故障,为什么?
12
绪论
一、高压输电的发展历史
二、发展高压输电的必要性
三、中国电力工业的发展与现状 四、高电压技术的主要研究内容
五、高电压技术的应用
六、高电压技术面临的主要问题
13
一、高压输电的发展
1.电网发展历史
*1875年,法国巴黎北火车站建成世界上第一座火力直流发电 厂,标志着世界电力时代的到来。 * 1891年,在德国劳芬电厂安装了世界第一台三相交流发电 机:它发出的三相交流电通过第一条13.8kV输电线将电力输 送到远方用电地区,使电力既用于照明,又用于动力,从而 开始了高压输电的时代。 * 1879年,中国上海公共租界点亮了第一盏电灯。1882年, 第一家电业公司—上海电气公司成立(1台12kW直流) 。 * 100多年来,输电电压由最初的13.8kV逐步发展到20,35, 66,110,134,220,330,345,400,500,735,750, 765,1000kV。
20
高压 100kV
超高压 1001000kV
特高压 1000kV
21
高压输电
22
二、发展特高压的必要性
线路。从500kV电压等级到1150kV电压等级用了20年时间。
16
2.中国电网发展历史
中国,1949年前,电力工业发展缓慢,输电电压
按具体工程决定,电压等级繁多:
1908年建成22kV石龙坝水电站至昆明线路, 1921年建成33kV石景山电厂至北京城的线路。 1933年建成抚顺电厂的44kV出线。 1934年建成66kV延边至老头沟线路。
2. (续)
• 1983年又建成葛洲坝-武昌和葛洲坝-双河两回500kV线路, 开始形成华中电网500kV骨干网架。 1989年建成±500kV葛洲坝-上海高压直流输电线,实现了 华中-华东两大区的直流联网。 中国,在逐渐形成330kV和500kV区域输电骨干网架的同时, 于20世纪80年代初开始了330kV和500kV以上更高电压等 级的论证。1984年,国家明确提出500kV以上的输电电压 为1000kV特高压、330kV以上的输电电压为750kV。 2005年9月,中国在西北地区(青海官厅—兰州东)建成 了一条750kV输电线路,长度为140.7 km。输、变电设备, 除GIS外,全部为国产。 • 2008年12月 1000kV晋东南~南阳~荆门输电线路工程建成
2
2)绝缘子串、隔离开关安装特点(220kV & 500kV)
220kV线路绝缘子
500kV线路绝缘子3
220kV隔离开关
500kV隔离开关
4
5
3) 电弧现象
6
4) CVT、变压器套管特点
电容式电压互感器器 套管绝缘和 电缆头绝缘 结构特点?
9
6. 高压电缆结构?
如何解释下列典型现象
1
• 1) 一群顽童在火车站玩耍,当他们在铁道上追逐并攀 爬一停靠货场的车厢时,一九龄女童遭车厢上方高压电 电击不幸身亡,而电击火花又留下隐患,一个多小时后, 车载货物燃起大火。 • 车厢上方高压电对刘艺放电,电弧引燃了孩子身上的衣 服,她顿时变成了一个火人,惨叫声、呼救声令人心碎。 强大的电流瞬间夺走了刘艺年幼的生命。
14
1.(续)
1908年,美国建成了世界第一条110kV输电线路;经 过15年,于1923年,第一条230kV线路投入运行; 1954年建成第一条345kV线路。从230kV电压等级到 345kV电压等级经历了31年。在345kV投运15年后, 1969年建成了765kV线路。 1952年,瑞典建成世界上第一条380kV超高压线路。 1965年,加拿大建成世界第一条735kV超高压线路。
15
1.(续)
1952年,前苏联建成第一条330kV线路;1956年建成400kV 线路;1967年建成750kV线路。从330kV电压等级发展到 750kV电压等级用了15年时间。
欧洲和美国,在超高压输电方面,主要发展345kV、 380kV和750kV电压级, 500kV线路发展比较慢。1964年, 美国建成第一条500kV线路,从230kV到500kV输电,时间 间隔达36年。前苏联的500kV电压等级是在400kV基础上升 级发展起来的,1964年,建成完善的500kV输电系统。 1985年,前苏联建成世界上第一条1150kV特高压输电
1935年建成抚顺电厂至鞍山的154kV线路。
1943年建成110kV镜泊湖水电厂至吉林延边线路。
17
2. (续)
中国, 1949年新中国成立后,按电网发展统一电 压等级,逐渐形成经济合理的电压等级系列: 1952年,用自主技术建设了110kV输电线路,逐渐 形成京津唐110kV输电网。 1954年,建成丰满至抚顺李石寨220kV输电线路, 随后继续建设辽宁电厂至李石寨,阜新电厂至青堆 子等220kV线路,迅速形成东北电网220kV骨干网架。 1972年建成330kV刘家峡—关中输电线路,全长 534km,随后逐渐形成西北电网330kV骨干网架。 1981年建成500kV河南平顶山姚孟—湖北武昌输电 18 线路,全长595km。为适应葛洲坝输变电的需要。