中考数学专题复习1 配方法与换元法
中考数学的备考方法和解题技巧

中考数学的备考⽅法和解题技巧如何有针对性的⾼效提分⾄关重要。
中考更像是⼀场竞技赛,除了不断提升⾃⼰,踏实做好训练,更重要的是找准进攻⽅向,知道中考命题规律,同时也要把握好⾃⼰的作战节奏。
好好把握,则马到成功;有所偏离,则功亏⼀篑!⼀、备考⽅法⼤胆取舍——确保中考数学相对⾼分“有所不为才能有所为,⼤胆取舍,才能确保中考数学相对⾼分。
”针对中考数学如何备考,著名数学特级⽼师说,这⼏个⽉的备考⼀定要有选择。
“⾸先,要进⾏⼀次全⾯的基础内容复习,不能有所遗漏;其次,⼀定要⽴⾜于基础和难易度适中,太难的可以放弃。
在全⾯复习的基础上,再次把掌握得似懂⾮懂,知道但⼜不是很清楚的地⽅搞清楚。
在做题练习上要学会选择,决不能不加取舍地做题,即便是⽼师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但⼜不能肯定的题认真做⼀做,把根本没有感觉的难题放弃不做。
千万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精⼒。
”做到基本知识不丢⼀分某外国语学校资深中考数学⽼师建议考⽣在中考数学的备考中强化知识⽹络的梳理,并熟练掌握中考考纲要求的知识点。
“⾸先要梳理知识⽹络,思路清晰知⼰知彼。
思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识⽹络,对知识做到⼼中有谱。
”他说,“其次要掌握数学考纲,对考试⼼中有谱。
掌握今年中考数学的考纲,⽤考纲来统领知识⼤纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢⼀分,那就离做好中考数学的答卷⼜近了⼀步。
根据考纲和⾃⼰的实际情况来侧重复习,也能提⾼有限时间的利⽤效率。
”做好中考数学的最后冲刺距离中考越来越近,⼀⽅⾯需按照学校的复习进度正常学习,另⼀⽅⾯由于每个⼈学习情况不⼀样,⾃⼰还需进⾏知识点和丢分题型的双重查漏补缺,找准短板,准确修复。
压轴题坚持每天⼀道,并及时总结⽅法,错题本就发挥作⽤了。
最后每周练习⼀套中考模拟卷,及时总结考试问题。
初三数学一元二次方程复习与总结江苏科技版

初三数学一元二次方程复习与总结某某科技版【本讲教育信息】一. 教学内容:一元二次方程复习与总结学习目标:1. 加深理解一元二次方程的有关概念2. 熟练地应用不同的方法解方程3. 能应用方程的思想和方法解决实际问题4. 体会“降幂法”在解方程中的含义二. 重点、难点:重点:一元二次方程的解法与应用难点:一元二次方程的综合应用课堂教学(一)知识要点(1)本章知识结构(2)中考主要考点①利用一元二次方程的意义解决问题②用整体思想对复杂的高次方程或分式方程进行变形(换元法)③考查配方法(主要结合函数的顶点式来研究)④一元二次方程的解法⑤一元二次方程根的近似值⑥建立一元二次方程模型解决问题⑦利用根的判别式求方程中的字母系数的值⑧与一元二次方程相关的探索或说理题⑨与其他知识结合,综合解决问题【典型例题】例1. 写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1 _____________________________________________________解:答案不唯一,例如:x2=0x2-x=0例2. 用换元法解方程x 2-2x +xx 272-=8,若设x 2-2x =y ,则原方程化为关于y 的整数方程是( ) A. y 2+8y -7=0 B. y 2-8y -7=0 C. y 2+8y +7=0D. y 2-8y +7=0解:D 。
换元法的实质是整体思想的应用。
例3. 用配方法解方程:x 2-4x -1=0解:利用配方法解一元二次方程的一般步骤是移项,二次项系数化为1,两边同时加上一次项系数一半的平方,左边化为完全平方式、利用平方的意义求解。
例4.判断方程ax 2+bx +c =0(a ≠0)一个解x 的X 围是( ) A. 3<x <3.23 B. 3.23<x <3.24 C. 3.24<x <3.25 D. 3.25<x解:一元二次方程根近似值是深层次地理解方程的重要概念,在实际应用中,作用很大。
待定系数法、配方法、消元法教学中的应用

待定系数法、配方法、消元法教学中的应用近几年中考题减少了繁琐的运算,着力考察学生的逻辑思维与直觉思维能力,以及观察、分析、比较、简洁的运算方法和推理技巧,突出了对学生数学素质的考察,试题运算量不大,以认识型和思维性的题目为主,许多题目既可用通性、通法直接求解,也可用特殊方法求解。
其中,配方法、待定系数法、换元法等是常用的数学解题方法,它们是数学思想的具体体现,是解决问题的手段。
它们不仅有明确的内涵,而且具有可操作性,有实施的步骤和做法,事半功倍是它们的共同效果。
根据多年的教学经验,谈一下它们在初中数学中的应用。
一、换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元法的实质是转化,关键是构造元和设元。
理论依据是等量代换,目的是变换研究对象,将问题移至新的对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化、化生为熟、化已知为未知,使问题容易解决。
它可以化高次为低次,化分式为整式,化无理式为有理式,在探讨方程、不等式、函数等问题中有广泛的应用。
例1:解方程:126222=+-+xxxx解:设x2+2x=y,原方程为:y-6/y=1,整理得:y2-y-6=0, 解之得y=-2或3。
当y=-2时,即x2+2x=-2,方程无解;当y=3时,即x2+2x=3,解得x1=1,x2=-3,经检验,x1=1,x2=-3是原方程的解。
∴原方程的解为x1=1,x2=-3,例2、已知(x+y)(x+y+2)-8=0,求x+y的值.若设x+y=a,则原方程可变为___________________,所以求出a的值即为x+y的值.所以x+y的值为___________________.二、待定系数法:要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法。
其理论依据是多项式恒等,或依据两个多项式各同类项的系数对应相等。
待定系数法解题的关键是依据已知,正确列出等式或方程。
配方法

一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a 2+b2=(a+b)2-2ab=(a-b)2+2ab;a 2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a 2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a 2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x 2+12x=(x+1x)2-2=(x-1x)2+2 ;……等等。
Ⅰ、再现性题组:1. 在正项等比数列{a n}中,a1♦a5+2a3♦a5+a3∙a7=25,则 a3+a5=_______。
2. 方程x 2+y2-4kx-2y+5k=0表示圆的充要条件是_____。
A. 14<k<1 B. k<14或k>1 C. k∈R D. k=14或k=13. 已知sin 4α+cos4α=1,则sinα+cosα的值为______。
A. 1B. -1C. 1或-1D. 04. 函数y=log1 (-2x 2+5x+3)的单调递增区间是_____。
A. (-∞, 54] B. [54,+∞) C. (-12,54] D. [54,3)5. 已知方程x 2+(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x2+y2=4上,则实数a=_____。
初中数学换元法

②、 (x 1) (x 2) (x 6) (x 3) x2
③、 2009x 2 (20092 1)x 2009
★2、在代数式的计算、化简中的运用
1、 如果 a b c 0 , 1 1 1 0 ,求: (a 1)2 (b 2)2 (c 3)2 的值。 a 1 b 2 c 3
their being are g 3、 若 x2 xy y 14, y2 xy x 28,求 x y 的值。 nd All things in 4、 若 a b 2 a 1 4 b 2 3 c 3 c 5,求 a b c 的值。
a 2 y one thing at a time 3
3
in their being are g 2、 a1, a2 , ,a2004 都是正数,如果 M (a1 a2 a2003)(a2 a3 a2004) ,
gs N (a1 a2 a2004 )(a2 a3 a2003) ,那么 M 、 N 的大小关系是(
)
thin A、 M N
nd S 学如逆水行舟,不进则退。 ing a ②已知 x2 x 1 0 ,求代数式 x3 2x2 2002 的值。
②、解方程 x2 1 2 x 1 。
x2
x
for someth ★3、在方程、不等式中的运用
od 1、 求方程 x 2 10 3x 的实数解。
o x2 2 x
。
ethin ◆目标训练五:
om 1、已知 for s A. 3 ;
a(a 4) b2
2b 5 ,则
ab
的值等于(
ab
1
B. ;
3
C. 3;
)
D. 1 . 3
od 2、若实数 x 、 y 满足 x2 y 2 4x 2 y 5 0 ,求
全国中考真题分类汇编 一元二次方程及其应用

精品基础教育教学资料,仅供参考,需要可下载使用!一元二次方程及其应用考点一、 一元二次方程的解法 (10分) 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点二、一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆考点三、一元二次方程根与系数的关系 (3分)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
考点四、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。
专题1 常用的数学思想和方法

- 1 -专题复习一 常用的数学思想和方法一、常用的数学思想(数学中的四大思想)1.函数与方程的思想用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。
深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。
2.数形结合思想在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。
3.分类讨论思想在数学中,我们常常需要根据研究对象性质的差异。
分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。
分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。
4.等价转化思想等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。
常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。
二、常用的数学方法主要有换元法、配方法和待定系数法三种。
三、例题解析【例1】解方程:x+1-=2.3x +1〖点拨〗解分式方程通常是采用去分母或还元法化为整式方程,并特别要注意验根。
【例2】已知一次函数y=kx+b 的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y 的值.〖点拨〗利用待定系数法可求函数的解析式、代数式及多项式的因式分解等符合题设条件的数学式。
一元二次方程中蕴含的几种思想方法

一元二次方程中蕴含的几种思想方法一、降次法降次法是把高次方程转化为低次方程的基本方法,解一元二次方程的方法实际上就是把一元二次方程降次为一元一次方程来解.例1 一元二次方程230x x的根是()A.3x B.1203x x ,C.1203x x ,D.1203x x ,分析:把原方程化为x (x-3)=0的形式,就可降次为一元一次方程x=0或x-3=0,问题迎刃而解. 答案为D.二、配方法配方法是本章的一个难点,配方的目的是使方程的一边变成完全平方式,其根据是乘法公式a 2±2ab+ b 2=(a ±b)2.其步骤是:1.二次项系数化为1,并把常数移到方程的右边;2.在方程的两边同时加上一次项系数一半的平方,使方程的左边能配成一个完全平方式;3.当方程右边的常数为非负数时,方程有解,这时用直接开平方法求解;当方程右边的常数为负数时,方程无解。
例2 用配方法解方程:2210xx .解:两边都除以2,得211022xx(二次项系数化为1)移项,得21122xx(把常数移到方程的右边)配方,得221192416xx(在方程的两边都加上一次项系数一半的平方)即219416x1344x或1344x(直接开平方法)11x ,212x .三、换元法换元法的基本思路是通过设辅助未知数,使复杂的问题转化为简单的、已知的问题.如解可化为一元二次方程的分式方程.例3 用换元法解方程1)2()2(2=+-+xx xx ,设xx y 2+=,则原方程可化为().A .012=--y y B .012=++y y C .012=-+y y D .012=+-y y 分析:若把原方程展开再解,项数增加、次数增高,解答起来会很复杂,设xx y 2+=,通过换元将原方程化为整式方程012=--y y 再解,方便多了. 故选 A.四、转化思想解方程的过程就是不断的通过变形把原方程转化为与它等价的最简单方程的过程.在本章,转化无处不在,一元二次方程转化为一元一次方程来解;特殊转化为一般,一般转化为特殊,例如通过用配方法解数字系数的一元二次方程归纳出用配方法解字母系数的一般形式的一元二次方程 ax 2+ bx + c = 0的方法,进而得出一元二次方程的求根公式;将分式方程转化为整式方程;把实际问题转化为一元二次方程问题,等等.例4 经计算整式1x 与4x的积为234x x.则一元二次方程2340xx 的所有根是()A.11x ,24x B.11x ,24x C.11x ,24x D.11x ,24x 分析:通过已知可把2340x x 转化为(1x)(4x)=0,从而有1x=0或4x=0 ,解得11x ,24x ,故选B.五、类比思想要注意新旧知识的联系,把新旧知识进行类比,如用直接开平方法解一元二次方程时,可类比平方根的概念和意义;解可化为一元二次方程的分式方程时,可类比解可化为一元一次方程的分式方程的方法和步骤等.例5 先阅读,再填空解题:(1)方程2120xx的根是13x ,24x ,则121x x ,1212x x ;(2)方程22730x x 的根是112x ,23x ,则1272x x ,1232x x ;(3)方程2310x x 的根是1x ,2x .则12x x ,12x x ;根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程2m x nx p (0m,且m n p,,为常数)的两个实数根是12x x ,,那么12x x ,12x x 与系数m n p,,有什么关系?请写出你的猜想并说明理由.分析:由求根公式可得12353522x x ,,计算就有121231x x x x ,.由数到式,类比猜想可得:1212n p x x x x mm,.理由如下:一元二次方程20m x nx p(0m,且m n p ,,为常数)的两实数根是22124422nnm pn n m px x m m ,.22124422nnm p nnm px x m m,22n n mm .22124422nn m p n n m px x mm,2222()(4)4n n m p m222(4)4nnmp p mm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考数学二轮专题复习之一:配方法与换元法
把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.
所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】:
例1: 填空题:
1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例 2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=
【闯关夺冠】
1.已知13x x +=.则221x x
+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2 –2ab+b 2 –c 2的值 ( )
A 大于零
B 等于零
C 小于零
D 不能确定
3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-
b 1的值。
4. 解方程:211(
)65()11
x x +=--。