传统活性污泥脱氮除磷限度

合集下载

SBR系列工艺及其脱氮除磷

SBR系列工艺及其脱氮除磷

CASS与CASTh
污泥回流 脱N功能 除P功能
CASS
CAST
生物选择区和主反应区 生物选择区、缺氧区和主反应区
连续进水、周期排水
间歇进水、周期排水
间歇
间歇
半静态
静态
4或6
4或6


尚可

一般

生物选择器简介
“生物选择器”的开发与应用是污水处理工程中的一大突破。 生物选择器可以是好氧的、缺氧的或厌氧的。CASS和CAST 反应池中的生物选择区通常为厌氧或缺氧状态,其主要功能为: ①有效地抑制丝状菌的繁殖,从而抑制了污泥膨胀; ②可使污泥中的P在厌氧条件下得到有效释放; ③充分利用了活性污泥的吸附作用而加速对溶解性有机物的去 除,并对难降解有机物起到良好的水解作用; ④对回流污泥液中的硝酸盐有较显著的反硝化作用,其所去除 的氮可占总去除率的20%左右。
但是,随着电子计算机的普及应用、相关控制和操作软件的 开发,特别是自动监控技术和各类自动化仪器设备的开发与应用, 污水处理厂的自动化管理程度得到大大提高,为序批式活性污泥 法再度得到深入研究和应用提供了极为有利的先决条件。
SBR工艺概述
SBR工艺的发展与推广应用,与目前城市污水处理厂建设朝 中小型化和分散化的发展趋势密切相关。随着城市建设与发展的 生态化、住宅区的分散化,建设中小规模的污水处理设施 ①易于使处理出水就地达标排放; ②避免因大规模集中排放而对受纳水体造成过大的生态压力; ③同时也利于废水的分散回用; ④便于基建投资的筹措,尤其是目前我国随城镇化发展不断涌现 的众多中小城镇,其污水的收集与排放具有明显的分散和小型化 的特点。
SBR系列工艺及 其脱氮除磷
SBR工艺概述
SBR工艺并不是一种“新”的污水处理技术。20世纪初,在 活性污泥法诞生之时,首先采用的就是这种处理系统(当时称之为 fill and draw系统),但由于当时尚无先进的自动监控技术,使间歇 处理所需的控制系统十分繁琐,操作复杂且工作量大,特别是后 来由于城市和工业废水处理的规模趋于大型化,使得序批式活性 污泥法逐渐被连续式活性污泥法所代替。

污水处理工艺脱氮除磷基本原理

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。

因此,城市污水处理厂一般不推荐采用.从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。

我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步实现工业化流程.目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。

➢生物脱氮原理生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。

随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。

整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。

在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。

反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行.由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。

反硝化阶段:硝酸盐的存在,缺氧条件DO值在0。

2mg/L左右,充足碳源(能源),合适的PH条件。

生物脱氮过程如图5—1所示。

反硝化细菌+有机物(氨化作用)(硝化作用) (反硝化作用)➢生物除磷原理磷常以磷酸盐(H2PO4-、HPO42-和H2PO43—)、聚磷酸盐和有机磷的形式存在于废水中,生物除磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。

生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。

污水处理方法之除磷、脱氮

污水处理方法之除磷、脱氮

污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。

常用的除磷方法有化学法和生物法。

A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。

化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。

B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。

整个处理过程分为厌氧放磷和好氧吸磷两个阶段。

含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。

这就是“厌氧放磷”。

聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸)储存于体内。

进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。

这就是“好氧吸磷”。

在此阶段,活性污泥不断增殖。

除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。

脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%~50%,亚硝酸盐与硝酸盐中的氮占 0~5%。

它们均来源于人们食物中的蛋白质。

脱氮的方法有化学法和生物法两大类。

A、化学法脱氮:包括氨吸收法和加氯法。

a、氨吸收法:先把废水的pH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。

通过适当控制加氯量,可以完全除去水中的氨氮。

为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。

B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。

SBR工艺污水生物脱氮除磷研究

SBR工艺污水生物脱氮除磷研究
样 絮体 由外 向 内 . 形成 好 氧 一缺氧 的微
环境 .这 是 产 生 S BR内 同步 硝 化 反 硝
水 中 的氨 基 酸 或 蛋 白质 的含 量 过低 , 聚
磷 茵 的 生 长速 率就 会 减 慢 . 而 导 致 聚 从
糖 菌 占优 势 :如 果 进 水 中没 有氨 基 酸 .
着 异 养硝 化 菌 与好 氧 反硝 化 菌 B S R反
S R工艺污水 生物脱氮 除磷研 究 B
文/ 赵志太
应 器 内脱 氦 的 影响 因 素如 下 :
1 微 环境 、


孙成 才
厌 氧 状 态 形 成 之 间形 成 了一 个 兼 性 的 状 态 。 一 般 而 言 , 活污 水 中的 硝酸 盐 生 氮为 2 g 5 g L m  ̄ m / .所 以不 会 导 致 生物 除 磷 的 失 效 , 是 如 果污 水 中硝 酸盐 的 但 浓 度 很 高 就 可 能 导 致 反 硝 化 菌 与 聚 磷 菌 对 有 机 基 质 的 竞 争 反 应 而 导 致 生 物 除磷 的失 效 。 这种 状 态 下 。 需要 有 足 够 的和 特 殊 的 有 机 基 质 以进 行 反 硝 化 和 完 成 聚磷 菌 对 P A的贮 存 H 2 可 脱 氯 聚磷 菌 ( A ) 系统 ) DP Os 对
况下. 既发 生 了好 氧硝 化 又发 生 了好氧 反硝 化 . 而 获 得 了 比较 可 观 的 总氮 去 从
除率 , 推 断 活性 污 泥 絮 体 中 同 时存 在 并
破 坏 生物 除 磷 的效 果 。 是 由于 反硝 化 这
菌 会 与 聚磷 菌 竞 争 废 水 中 的有 机 基 质 .
传 统 的脱 氮 理 论 认 为 . 化 与反 硝 硝 化 反 应不 能 同 时发 生 . 些 新 的研 究 证 一 明 。在 控 制 S R反 应 器保 持 良好 的 好 B 氧状态 (O 8 g L、 S O>m / } L S较 低 的 情

传统活性污泥法去除氨氮

传统活性污泥法去除氨氮

传统活性污泥法的脱氮除磷改造实践hc360慧聪网水工业行业频道 2004-07-05 09:21:16[ 摘要 ]在仍使用旧设备和构筑物的基础上,对传统活性污泥生物处理工艺进行了改良,解决了污泥膨胀问题,工艺运行更加稳定,而且使氮磷的去除率提高。

在脱氮模式中氨氮的去除率达到了73.3%;除磷模式中,总磷的去除率达到了82.0%,大大优化了出水水质。

[ 正文 ]0 前言深圳市滨河污水处理厂二期活性污泥生物处理系统于1987年竣工并投入使用,该系统主要处理深圳市罗湖区、福田区的部分城市污水,设计处理量为2.5万m3/d。

经过十几年的运行,该系统的设备日趋老化,而进厂污水中污染物的浓度逐年增高,这些都给运行管理带来了一定的困难。

另一个更为突出的问题是,该系统以传统的活性污泥工艺运行,对氮磷的去除率不高。

而目前由于我国水环境污染和水体富营养化的状况日趋严重,国家对污水处理厂氮磷排放的控制更加严格。

因此,传统活性污泥工艺已经较难适应新的环保需要了。

新的形势迫切要求污水处理厂提高污水处理的深度,但是要彻底改造又需要相当大的资金投入,为此,我们尝试在仍使用旧设备和构筑物的基础上改良运行模式,加强脱氮除磷的效果,并提高系统的抗冲击负荷能力,使工艺的运行更游榷ā?1 设计工艺概况我厂二期系统的工艺流程见图1主要设计参数为:进水水质BOD5=200mg/L,SS=240mg/L;出水水质BOD5≤20mg/L,SS ≤20mg/L, CODCr ≤60mg/L;曝气池总有效容积 8 350m3, HRT=8 h,泥龄≈6d;污泥负荷0.2kgBOD5/(kgMLSS·d)。

滨河厂二期系统的曝气池的池型设计是再生推流式池型,见图2。

图2 再生推流式曝气池池型示意从目前该系统的运行状况来看,出水水质还是较好的。

由于各方面的原因,进水水质要远高于设计值,例如1998年年平均SS为431mg/L,CODCr 为696mg/L,BOD5为256mg/L,而 1999年上半年的均值SS为592mg/L,CODCr 为966mg/L,BOD5为298mg/L。

脱氮除磷的工艺选择-化工废水处理

脱氮除磷的工艺选择-化工废水处理

脱氮除磷的工艺选择1、生物脱氮技术(1)传统脱氮工艺(巴茨三级活性污泥法)活性污泥法脱氮的传统工艺是由巴茨开创的三级活性污泥法流程,它是以氨化、硝化和反硝化3项反应过程为基础建立的。

工艺流程如下:第一级曝气池为一般的二级处理曝气池,主要去除BOD、COD,使有机氮转化形成氨氮,即完成氨化过程。

经过沉淀后,污水进入硝化池。

第二级硝化曝气池使氨氮转化为硝态氮,需要投碱,以防pH值下降。

第三级为反硝化反应器,缺氧条件下,硝态氮转化为N2,这一级采取厌氧—缺氧交替的运行方式。

碳源即可投加CH3OH,亦可引原污水作为碳源。

这种系统的优点是有机物降解菌、硝化菌、反硝化菌,分别在各自反应器内生长增殖,环境条件适宜,反应速度快且彻底。

但处理设备多,造价高,管理不够方便。

因此在实践中还使用两级脱氮系统,将BOD去除和硝化两道反应过程放在统一的反应器内进行。

(2)缺氧—好氧活性污泥法脱氮系统(A/O法)这套系统是将反硝化反应器放在系统之首,故又称前置反硝化生物脱氮系统,是目前采用比较广泛的工艺。

设内循环系统,向前置的反硝化池回流硝化液是本工艺的一项特征。

反硝化反应产生的碱度可补偿硝化反应消耗的碱度的一半左右。

因此,对含氮浓度不高的废水可不必另行投碱以调节pH值。

此外,硝化曝气池在后,使反硝化残留的有机物得以进一步去除,提高了处理水水质,而且无需增建后曝气池。

由于流程比较简单,装置少,无需外加碳源,因此,本工艺建设费和运行费均较低。

本工艺主要不足之处是该流程的处理水是来自硝化反应器,因此在处理水中含有一定浓度的硝酸盐,如果沉淀池运行不当,在沉淀池中也会发生反硝化作用,使污泥上浮,水质恶化。

另外,内循环液来自硝化池,含有一定的溶解氧,使反硝化段难于保持理想的缺氧状态,影响反硝化进程,一般脱氮率很难达到90%。

2、生物除磷技术(1)弗斯特里普除磷工艺这项工艺将生物除磷与化学除磷相结合,具有很高的除磷效率。

工艺流程如图:工艺特点:①本法是生物除磷与化学除磷的结合,效果良好,处理水中含磷量一般都低于1mg/L。

活性污泥的脱氮除磷原理及应用

活性污泥的脱氮除磷原理及应用
杆状细菌 .
(2)环境因素对硝化反应的影响 ※硝化菌对环境条件的变化极为敏感
实用文档
①溶解氧—— 氧是电子受体,DO不能低于1.0mg/l 硝化需氧量(NOD)——4.57g(氧)/g(N)
②碱度——7.1g碱度(以CaCO3计)/1g氨态氮(以N计), 一般碱度不低于50mg/l ③PH——对PH变化敏感(硝化菌),最佳值8.0-8.4,效率最高
13.7活性污泥的脱氮除磷原理及应用
13.7.1脱氮原理与工艺技术 1、氮污染的危害 (1)富营养化——N、P引起,藻类问题(滇池,太湖); (2) 提高制水成本——应用水,污水消毒时,增加投氯量; (3)污水回用填塞管道——NH3-N可促进设备中微生物的繁殖; (4) 农业灌溉——TN不大于1mg/l,否则对农作物有影响。 2、氮的存在形式 ( (12) )有氨机态氮氮(NH3—N、NH4+—N)凯式氮 (3) NO2—N、NO3—N (4) N2 3、二级处理技术的局限性
※合成代谢对氮磷的去处率低,水中氮磷过剩 nCxHyOz+nNH3+n(x+y/4-z/2-5)O2 (C5实H用7文N档 O2)n+n(x-5)CO2+n/2(y-
一、 氮的吹脱去除
1、原理 (1)NH3+H2O
NH4++OHPH=7时,以NH4+存在 PH=11时,90%NH3存在 PH升高,去除NH3上升 T(上2升),脱去氮除塔NH3上升
N
硝化
亚硝化
硝化
Nitrosomonas 自养型细菌
Nitrobacter 自养型细菌兼性菌
化学能
化学能
O2 2mg/l以上 氧化1mg NH4+-N 需要7.14mg的碱度

4.3生物脱氮除磷技术

4.3生物脱氮除磷技术

NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传统活性污泥工艺运行方式的改进
来源:中国论文下载中心更新时间:08-9-1 14:29 作者: 黄甦刘瑾
1 传统工艺低负荷运行除磷脱氮的限度
由于传统工艺运行的污水厂没有深度净化功能,也没有更多资金新建大规模污水处理厂,因此对老厂原工艺进行改进,使其成为AO或连续流间隙曝气工艺是十分必要的。

常规的活性污泥法采用的污泥负荷为0.2~0.3kgBOD5/(kgMLSS·d),曝气池活性污泥浓度控制在2~3g/L之间,泥龄维持在4~5d以内。

由于泥龄短,活性污泥中硝化菌的增殖速率小于其随剩余污泥排出的速率,因而常规活性污泥法在满负荷的条件下,氨氮去除率低,一般仅为20%~30%。

为使按常规法设计的污水厂获得满意的硝化效果,必须减小污泥负荷,提高污泥泥龄。

在不增加曝气池容积的前提下,可采用的办法就是提高曝气池污泥浓度。

为了达到这一目标,要保证做到以下两点:一是活性污泥具有良好的沉降性能;二是曝气系统具有足够的供氧能力。

为了改善污泥的沉降性能,可采用超越初沉池的办法,这样进水中悬浮颗粒可能成为细菌絮凝的核心。

某污水处理厂采用超越初沉池的低负荷活性污泥法,严格控制曝气池溶解氧(前段1.1mg/L,中段1.6mg/L,后段2.8mg/L),运行结果表明,BOD5的去除很好,出水平均值<10mg/L,去除率达95.4%;NH3-N硝化相当完全,出水为0.1mg/L,硝化率为99.6%;氮磷的去除情况见表1。

超越初沉池,提高曝气池污泥浓度的运行结果表明,硝化的效果相当好,氨氮去除率达99%,但出水的总氮在20mg/L以上,去除效果还不是很理想。

某污水厂设计处理能力27 000 m3/d,实际水量为15 000m3/d,进水中很大部分为工业废水。

超越初沉池低负荷活性污泥法运行数据表明,在平均水温为26.6 ℃,MLSS为4.98 g/L,SVI为50.5 mL/g时,COD、BOD5的去除率达90%以上,出水NH3-N为3.0mg/L,
硝化率为85.3%,当BOD5/TN为4.4时,总氮去除率为48.5%。

总之,低负荷传统活性污泥法除磷脱氮的量是很有限的。

为了进一步提高总氮去除率,可充分利用传统工艺的现有设施和设备,对工艺进行切实可行的改进,使之成为高浓度活性污泥AO工艺,使氮、磷的去除提高到一定水平。

2 低负荷AO工艺
利用传统工艺的全部设施,关闭曝气池前1/3段空气管,安装搅拌机,保持原来的回流方式和回流比,变传统工艺为缺氧—好氧(AO)工艺。

运行参数见表2。

与常规意义的AO法不同之处在于,本工艺不设内回流装置,仅设污泥回流系统,工艺流程如图1所示。

在运行中采用了两种容积比,缺氧:好氧为1:1或1:3。

由表3可见,1:1的情况总氮去除率略高于1:3的情况,但并无明显的优势。

缺氧区容积的设定首先应保证系统在COD、BOD5、NH3-N、SS等方面有良好的去除率,故本工艺的1:3容积比是合适的,污泥回流比为80%~100%。

该工艺进水COD、BOD5平均值为543和246mg/L,出水平均值为47和17mg/L,去除率分别达到91.3%和93.1%,进水NH3-N为30.2mg/L,出水为0.5mg/L,硝化率为98.2%,TN和TP的降解指标见表1。

AO工艺对总氮的去除已大为改善,出水TN在12mg/L左右,去除率达80%,TP 的去除尚未达到较好水平,但相对于进水的9.6 mg/L,出水已有很大程度的降低,如果辅以其他方式的除磷,AO工艺是一种适合于老厂改进的方案。

3 连续流间隙曝气工艺
众所周知,SBR法中间歇曝气的方法有较好的去除氮磷能力。

对于按传统活性污泥法设计的污水厂,不可能按SBR法运行。

一是不可能间断进水,二是不可能从曝气池出水。

因此,保留高浓度活性污泥法运行中已有的经验,只把连续曝气改为分时段曝气,保持正常流量的进出水,就可把这个改进后的工艺称为连续流间隙曝气工艺。

某污水处理厂设计能力27000m3/d,实际水量为15000m3/d,由于水量负荷低,故减少曝气量,缩短曝气时间,连续运转的鼓风机轮流给两组曝气池充氧,8h为一周期,运行参数见表2。

在生产性试验的运行期间,进行了三个不同工况的研究,其运行参数和结果见表3。

由表3可见,这三个工况的运行情况都很好,用于老厂的改造是完全可行的。

出水COD和BOD5与工艺改进前相似,硝化率相似,TN、TP出水浓度大为降低,去除率达到72.5% 和74.6%,由于氮、磷的去除消耗了碳源,因而工艺改进前后BOD5、COD的去除机理不同。

活性污泥镜检发现,菌胶团密实,在团状结构中有不透光的核心。

钟虫及采盖虫成株茂盛,数量极其多,很难发现游动型的后生动物如轮虫等。

污泥指数小、污泥沉降性能好的原因在于:①间隙曝气方式抑制了游动型后生动物的生长,菌胶团密实;②因超越初沉池,入流惰性物质与污泥絮体结合在一起,增加了污泥的体积质量;③保持50%以上的高回流比,污泥新鲜,利于沉降。

当气温下降至4 ℃左右,BOD5、COD的降解几乎没受影响,但硝化水平下降,出水NH3-N上升至7.6mg/L,去除率下降至68%,总磷的去除率下降至63.2%。

连续流间隙曝气工艺中,曝气时有机物部分被好氧微生物分解利用,部分由兼性微生物作糖元贮存;NH3-N被硝化杆菌最终氧化为NO3-N;溶解性磷盐被聚磷菌吸收。

不曝气时,溶解氧被迅速消耗掉,开始了反硝化,入流带来的有机物以及被贮存的糖元作电子供体在反硝化菌的作用下还原NO3-N为N2;聚磷菌把低分子有机酸变为贮存在体内的PHB,并释放PO43-;活性污泥充分发挥其网捕和吸附功能,“过滤”污染物。

4 几种工艺氮的去除途径分析
氮的最终去除途径是生成N2或转化入污泥。

假设实际消耗的碱度包括入流NH3-N硝化和有机氮氨化再硝化两部分,那么由NH3-N硝化的计算碱度与实际消耗碱度之差可以推算出有机氮硝化消耗的碱度,从而推算出有机氮通过N2和污泥途径去除的量,确定总氮两种去除途径所占比例。

各种工艺的计算结果如表4所示。

连续流间隙曝气工艺通过污泥途径去除的氮最多,因而该工艺脱氮对BOD5/TN的要求最低。

5 结论
①传统活性污泥法经过较为简单的工艺改进后,具备了良好的生物除磷脱氮功能。

②工艺改进后,可节省部分用于曝气的费用,但要求曝气系统有更好的供氧能力,即供氧速率高。

③由于城市污水中可被利用的有机物在保证脱氮(反硝化)之后所剩无几,若要确保出水总磷小于1mg/L,有必要增加辅助除磷措施,如在进二沉池前加药剂等。

④连续流间隙曝气工艺由污泥途径去除的氮远高于AO工艺,故间隙曝气工艺的脱氮对有机物依赖性更小。

相关文档
最新文档