4-3 假设检验思想及单样本T检验
4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检
单样本t检验

单样本t检验MINITAB 协助⽩⽪书本书包括⼀系列⽂章,解释了 Minitab 统计⼈员为制定在 Minitab 统计软件的“协助”中使⽤的⽅法和数据检查所开展的研究。
单样本 t 检验概述单样本 t 检验⽤于估计检验过程的平均值并将该平均值与⽬标值进⾏⽐较。
该检验操作起来⽐较可靠,因为当样本⼤⼩适中时,它对正态性假设极不敏感。
根据⼤多数统计教材中的内容,单样本 t 检验和平均值的 t 置信区间适合任何⼤⼩为 30 或以上的样本。
在本⽂中,我们介绍了对这个针对⾄少 30 个样本单位的⼀般规则进⾏评估的模拟⽅法。
我们的模拟重点关注⾮正态性对单样本 t 检验产⽣的影响。
我们也希望评估异常数据对检验结果的影响。
根据我们的研究,“协助”会⾃动对您的数据进⾏以下检查并在“报告卡”中显⽰研究结果:?异常数据正态性(样本量是否⾜够⼤,因此正态性不是问题?)样本量有关单样本 t 检验⽅法的⼀般信息,请参见 Arnold (1990), Casella and Berger (1990), Moore and McCabe (1993), and Srivastava (1958)。
注意:本⽂中的研究结果也适⽤于“协助”中的配对 t 检验,因为配对 t 检验对配对差异样本应⽤单样本 t 检验⽅法。
/doc/9c20bbaa67ce0508763231126edb6f1aff007127.html数据检查异常数据异常数据是⾮常⼤或⾮常⼩的数据值,也称为异常值。
异常数据会对分析结果产⽣巨⼤的影响。
当样本量较⼩时,异常数据会影响发现具有重要统计意义的结果的概率。
异常数据可以表明数据收集问题,或者由您正在研究的过程的异常表现产⽣的问题。
这些数据点往往值得研究,应尽可能予以更正。
⽬标我们想要制定⼀种⽅法来检查相对于总体样本⽽⾔,⾮常⼤或⾮常⼩的数据值,这可能会影响分析的结果。
⽅法我们制定了⼀种⽅法,⽤于根据 Hoaglin, Iglewicz, and Tukey (1986) 所述的⽅法检查异常数据,以确定箱线图中的异常值。
假设检验与样本数量分析①——单样本Z检验和单样本t检验

X
32.03 + 32.14 + … + 31.87 15
…
1.9 2.0
…
0.029 0.023
…
0.028 0.022
…
0.027 0.022
…
0.0226 0.020
…
0.025 0.020
…
0.024 0.019
…
0.024 0.019
…
0.023 0.018
原假设 (零假设)即上述的可能,符号是H0
备择假设(与原假设对立的假设),符号是H1
如本例:假设外径尺寸 H0:(μ = 32) H1: (μ≠32) 确立检验水准: α——显著水平(通常取α=0.05)
显著水平α是当原假设正确却被拒绝的概率 通常人们取0.05或0.01 这表明,当做出接受原假设的决定时,其正确的可 能性(概率)95% 或99% 概率是0~1之间的一个数,因此小概率就是接近0的 一个数 英国统计家Ronald Fisher 把0.05作为标准,从此0.05 或比0.05小的概率都被认为是小概率
8 作出不拒绝零假设的统计结论,即外径尺寸 均值没有偏离目标Ф 32
<6>
单样本 Z 检验 单样本 t 检验
预备知识
接上页
假设检验的例子(1)
检验 α = 0.05
临界值 临界值
2
=0.025
拒绝范围
1 – α = 95%
不拒绝H0范围
2
=0.025
根据小概率原理,可以先假设总体参数的 某项取值为真,也就是假设其发生的可能 性很大,然后抽取一个样本进行观察,如 果样本信息显示出现了与事先假设相反的 结果(显示出小概率),则说明原来假定 的小概率事件(一次实验中是几乎不可能发 生)在一次实验中居然真的发生了,这是 一个违背小概率原理的不合理现象,因此 有理由怀疑和拒绝原假设;否则不能拒绝 原假设。 在给定了显著水平α 后,根据容量为n的样 本,按照统计量的理论概率分布规律,可 以确定据以判断拒绝和接受原假设的检验 统计量的临界值。 临界值将统计量的所有可能取值区间分为 两个互不相交的部分,即原假设的拒绝域 和接受域。
假设检验与样本数量分析①——单样本Z检验和单样本t检验

“估计外径尺寸为32mm,”
——这就是对产品的外径尺寸(总体特征)的假设
对假设是接受还是拒绝,如何作出判断?
——对这样一个过程统计上叫做假设检验
Fisher没有解释他为什么选择0.05
<4>
单样本 Z 检验 单样本 t 检验
预备知识
接上页
5
假设检验的例子(1)
1 建立检验假设 H0:外径尺寸均值为32mm (μ = 32)
1 – α = 0.95
拒绝零假设 不拒绝零假设 拒绝零假设
! 也可以查正态分布表(样本数据的概率 P ) P = P(Z< -0.31 及 Z> 0.31) = 0.378 ×2 = 0.756 P= 0.756 > α = 0.05
无法拒绝零假设H0 P(Z﹤-0.31 或Z> 0.31)= 0.378 ×2 = 0.756
= 31. 9913
4 假设检验类别 选择 Z 检验法
Z α/2(α=0.05)= Z 0.025=1.96
7 用算得的统计量与相应的临界值作比较 Z = 0.31< Z 0.025=1.96
<5>
单样本 Z 检验 单样本 t 检验
预备知识
接上页
假设检验的例子(1)
双侧检验示意图(显著水平α与拒绝域 )
拒绝范围
右侧检验
H0 :μ HІ : μ
1 1
≤μ 2 >μ 2
临界值
例: 某种瓶装啤酒的标称容积是640毫升。如果瓶装啤酒液体容积少 于640毫升,会使产品信誉受到损害;但是多于640毫升不仅会 使成本上升,还有可能造成安全隐患。因此质检部定期从生产 线上抽取一定数量的啤酒组成样本来检验其质量是否达到要求。
统计假设检验-t检验

统计假设检验
一、假设检验的概念与分类
假设检验(hypothesis test) 亦称显著 性检验(significance test),是利用 样本信息,根据一定的概率水准,推断 指标(统计量) 与总体指标(参数)、不 同样本指标间的差别有无意义的统计分 析方法。
(3)确定P 值,作出推断结论
t 7.925 t0.05/ 2,9 2.262, p 0.05
同理 t=7.925>t0.001/2,9=4.781,P<0.001 结论;按 =0.05水准,拒绝 H0 ,p<0.001, 差别有统计学意义。两种方法对脂肪含量的测 定结果不同,哥特里-罗紫法测定结果高于脂 肪酸水解法。
2.选择检验方法、计算统计量
根据:①研究目的, ②资料的类型和分布, ③设计方案, ④统计方法的应用条件, ⑤样本含量大小等, 选择适宜的统计方法并计算出相应 的统计量。
3.确定P值、做出推论
假设检验中的P值是指在由无效假设所 规定的总体作随机抽样,获得等于及大 于(和/或等于及小于)现有统计量的概 率。 即各样本统计量的差异来自抽样误差的 概率,它是判断H0成立与否的依据。
差值 d (4)=23 0.260 0.082 0.174 0.316 0.350 0.461 0.296 0.218 0.203 0.364 2.724
配对数据检验的统计量t,公式
d 0 d0 t Sd Sd / n
(3-16)
n -1
t检验

• 建立检验假设和确定检验水准 H0:μd=0 H1: μd≠ 0 α=0.05 • 选定检验方法和计算统计量
∑ d = 6500 = 812.5 (U/g) d =
n 8 S Sd = d = n 7370000 − (6500 ) 2 / 8 = 193 .1298 (U / g ) 8 × (8 − 1)
( X 1 − X 2 ) − ( μ1 − μ 2 ) ~t( n +n -2) t= 1 2 S x1 − x2
总体方差相等的 两独立样本t检验
• 当两总体方差相等时,可将两样本方差 合并为 S c2 。
( X 1 − X 2 ) − ( μ1 − μ 2 ) X1 − X 2 t= = S x1 − x2 S x1 − x2
t=
d − μd 812.5 - 0 = = 4.2070, ν = 8 − 1 = 7 S d / n 193.1298
• 确定P值和作出推断结论
– 查t界值表(双侧),t>t 0.05/2, 7 =2.365, P<0.05 – 按 α=0.05水准,拒绝H0,接受H1,可以认为 两种饲料喂养的两组大白鼠中维生素A的含 量有差别。正常饲料组比缺乏维生素E饲料 组的含量要高。
∑ d = 0.10 = 0.010(μmol / L) d=
• 查t界值表,t < t 0.05/2, 9,P>0.05,不拒 绝H0,故不能认为两法测得的尿铅结果 有差别。
两组完全随机化设计
• 将受试对象完全随机地分配到两组中, 这两组分别接受不同的处理。这样的设 计称为两组完全随机化设计,也叫成组 设计。 • 目的是推断两总体均数μ1与μ2有无差 别。
差数 d -0.39 0.83 -0.14 -0.19 0.87 -0.39 -0.20 -0.15 -0.14 0.00 0.01
假设检验基本思想和步骤

H1 : u u0
* 检验假设是针对总体而非样本; * H0 和 H1 是相互联系、对立的假设,两者缺一不可 * H0 为无效假设,其假定通常是:某两个(或多个)总
体参数相等,或某两个总体参数之差等于0
* H1 的内容反映了检验的单双侧。若 H1 假设为
1=2
H1:该市高碘区与非高碘区儿童智力均数不等,即
12
=0.05
(2) 计算统计量
今 X1 =73.07, S1=10.75,n1=100 X2 =80.30,S2=11.83,n2=105
u X1 X 2 73.07 80.30 4.58
S12 S22
10.752 11.832
所有检验统计量都是在假设 H0 成立的条件下计 算出来的,它是用于决定是否拒绝 H0 的统计量,其统 计分布在统计推断中至关重要。
3、确定 P 值和作出推断结论
根据算出的检验统计量如 t、u 值,查相应的界
值表,即可得到概率 P。
P 是指从 H0 规定的总体作随机抽样,抽得等于 及大于现有样本获得的检验统计量值的概率。
1 称为检验效能(power of a test)。其意义是 当两总体确有差异,按规定检验水准 能发现该差 异的能力。如1 = 0.90,意味着若两总体确有差
别,则理论上在100次检验中,平均有90次能够得出 有统计学意义的结论。
拒绝H0,只可能犯 I 型错误,不可能犯 I I型错 误;不拒绝H0,只可能犯 II 型错误,不可能犯 I 型 错误。
n1 n2 2
n1 n2
30 28 2
30 28
=n1+n2–2=30+28–2=56
4第四章 假设检验、t检验和Z检验

编号
1 2 3
干预前
12 9 10
干预后
15 12 16
差值(d)
3 3 6
d2
9 9 36
4
5 6
6
5 8
10
12 9
4
7 1
16
49 1
7
8 9 10
13
11 10 9
19
18 15 11
67 5 2Fra bibliotek3649 25 4
第三节 配对设计t检验
1.建立检验假设,确定检验水准 H 0 : d 0
两独立样本t检验
1.建立假设,确定检验水准
H 0 : 1 2 H 1 : 1 2
2.选定检验方法,计算检验统计量
t 3012 .5 2611 .3 (30 1) 280.1 (32 1) 302.5 1 1 ( ) 30 32 2 30 32
第二节 单样本t检验和Z检验
1.建立检验假设,确定检验水准
H 0 : 0 H1 : 0
0.05
2.选定检验方法,计算检验统计量Z值
Z x 0 s/ n 142.6 130 31.25 / 210 5.843
3.确定P值,作出推断结论
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异有高
度统计学意义。
第三节 配对设计t检验
配对t检验的基本思路是:首先求出各对 子的差值的均数,若两种处理结果无差 别或某种处理前后不起作用,理论上差 值的总体均数应该为0。
d d d 0 d t Sd sd / n sd / n v n 1
第三节 配对设计t检验
表4-3 10名抑郁症患者干预前后心理指标LSIB测试结果