单管基本放大电路教学讲义
基本放大电路(模电)

基本放大电路1. 实验目的 (1)掌握单管放大电路的静态工作点、电压放大倍数、输入电阻输出电阻的测量方法。
(2)观察静态工作点的变化对电压放大倍数和输出波形的影响。
(3)进一步掌握示波器、低频信号发生器、晶体管毫伏表、万用表的使用。
2. 知识要点(1)实验参考电路见图2-6:图2-6 分压式共射放大电路电路参考参数:V cc=12V R w=680k Ω R B =51k Ω R B2=24k Ω R c=5.1k Ω R E =1k Ω R L =5.1k Ω C 1=C 2=C 3=10µF T 为3DG12β=60~80(2)为获得最大不失真输出电压,静态工作点应选在交流负载线中点。
为使静态工作点稳定必须满足以下条件:(3)静态工作点可由下列关系式计算(4)电压放大倍数计算(5)输入电阻输出电阻测量方法其中:0U 为带负载时的输出电压,'0U 为空载时的输出电压。
3. 预习要求BEQBQBQ UUI I >>>>,1,EBEQBQE C R U UI I -=≈,'0beLiu r R U U A β-==LC L R R R //'=,////21be be R R i r r R R R ≈=)()(26)1('mA I mV r r EQ bb be β++=,s is i i R U U U R -=LR U U R )1('00-=)300('Ω=bb r ,212CC B B B BQ V R R R U +=)(C E CQ CC CEQ R R I V U +-=(1)复习晶体管放大电路中有关静态和动态性能的基本内容并认真阅读实验指导书。
(2)掌握R B1与静态工作点之间的关系,以及电压放大倍数的增大或减小对应于R B1如何变化?(3)对各思考题做初步回答。
(4)对动态和静态有关参数进行理论计算。
mos管的单元放大电路 辅导讲义

2.交流通路和小信号等效电路
图1.13电容负载源极跟随器交流小信号等效电路图
1.3.2单级共漏放大电路的主要关系式和参数
1.输出电压与输入电压之间的关系(说明详细推导过程,画出二者之间的关系曲线并进行分析);
电路的直流传输特性曲线如图1.14所示。当输入电压很低时,M1管关断,偏置电流为0,输出电平也为0.当M1栅极电压上升,M2进入线性区,偏置电流快速增大。当M1和M2都进人饱和区后,随着M1栅极电平的上升,因为漏极电流基本不变,所以M1源极电平跟着上升,这就是电压跟随效应。由于M2管的输出阻抗有限,所以即使在饱和区,漏极电流ID也将随My管栅极电压的上升而有所增加。而M1管的背栅效应将起到和M2管的沟道长度调制效应相反的作用,在M1管栅极电压上升时,使漏极电流下降。总的来说,由于两种效应的存在,使得源极跟随器的直流电压跟随效果受到影响。而且为了使两个MOS管都工作在饱和区,电路输入和输出直流电平的幅度范围都有一定的限制。
1.2.2单级共栅放大电路的主要关系式和参数8
1.3单级共漏放大电路11
1.3.1单级共漏放大电路组成和原理11
1.3.2单级共漏放大电路的主要关系式和参数12
2其它形式的MOS管放大电路14
2.1源极反馈的共源放大电路14
2.1.1电路组成和原理14
2.1.2主要关系式和参数15
2.1.3源极反馈的共源放大电路的特点和应用18
源极跟随器的电路图如图1.12所示,其中NMOS管M1是输入管,信号从栅极输入,从源极输出,漏极是公共交流地,所以也叫做共漏放大器。在使用P衬底的MOS工艺中,所有NMOS管的衬底都接在最低电位。所以源极跟随器的衬底电位低于源极的电位,将会出现背栅效应。M1管源极下的M2管作为电流源,为M1提供一直流电流通路。
模拟电路实验讲义

实验一 单级交流放大电路一、实验目的1. 学会放大器静态工作点的调试方法, 分析静态工作点对放大器性能的影响。
2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图1-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用RB1和RB2组成的分压电路, 并在发射极中接有电阻RE, 以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号ui 后, 在放大器的输出端便可得到一个与ui 相位相反, 幅值被放大了的输出信号u0, 从而实现了电压放大。
图1-1 共射极单管放大器实验电路在图1-1电路中, 当流过偏置电阻RB1和RB2 的电流远大于晶体管T 的 基极电流IB 时(一般5~10倍), 则它的静态工作点可用下式估算 CC B2B1B1B U R R R U +≈CEBEB E I R U U I ≈-≈UCE =UCC-IC(RC+RE)电压放大倍数be LC V r RRβA //-=输入电阻R i =RB1// RB2//rbe输出电阻RO ≈RC由于电子器件性能的分散性比较大, 因此在设计和制作晶体管放大电路时, 离不开测量和调试技术。
在设计前应测量所用元器件的参数, 为电路设计提供必要的依据, 在完成设计和装配以后, 还必须测量和调试放大器的静态工作点和各项性能指标。
一个优质放大器, 必定是理论设计与实验调整相结合的产物。
因此, 除了学习放大器的理论知识和设计方法外, 还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括:放大器静态工作点的测量与调试, 消除干扰与自激振荡及放大器各项动态参数的测量与调试等。
1. 放大器静态工作点的测量与调试1) 静态工作点的测量测量放大器的静态工作点, 应在输入信号ui=0的情况下进行, 即将放大器输入端与地端短接, 然后选用量程合适的直流毫安表和直流电压表, 分别测量晶体管的集电极电流IC以及各电极对地的电位UB.UC和UE。
单管共射放大电路讲课稿

单管共射放大电路讲课稿一、引言:所谓放大,是在保持信号不失真的前提下,使其由小变大、由弱变强。
因此,放大器在电子技术中有着广泛的应用,是现代通信、自动控制、电子测量、生物电子等设备中不可缺少的组成部分。
放大的过程是实现能量转换的过程,即利用有源器件的控制作用将直流电源提供的部分转换为与输入信号成比例的输出信号。
因此放大电路实际上是一个受输入信号控制的能量转换器。
本节主要介绍放大电路的基本概念及结构组成;低频小信号放大电路的工作原理、静态工作点的估算方法。
二、教学内容1、复习导入:同学们一起来回忆一下前面的共发射极基本放大电路由哪些元件组成?答:2、新课讲授:(1).工作原理图2.2 (b)单电源的单管共发射极放大电路以图2.2(b)所示的固定偏置电阻的单管共发射极电压放大器为例来说明放大电路的工作原理。
放大电路内部各电压、电流都是交直流共存的。
其直流分量及其注脚均采用大写英文字母;交流分量及其注脚均采用小写英文字母;叠加后的总量用英文小写字母,但其注脚采用大写英文字母。
例如:基极电流的直流分量用I B表示;交流分量用i b表示;总量用i B表示。
需放大的信号电压u i通过C1转换为放大电路的输入电流,与基极偏流叠加后加到晶体管的基极,基极电流i B的变化通过晶体管的以小控大作用引起集电极电流i C变化;i C通过R C使电流的变化转换为电压的变化,即:u CE=U CC- i C R C 由上式可看出:当i C增大时,u CE就减小,所以u CE的变化正好与i C相反,这就是它们反相的原因。
u CE经过C2滤掉了直流成分,耦合到输出端的交流成分即为输出电压u0。
若电路参数选取适当,u0的幅度将比u i幅度大很多,亦即输入的微弱小信号u i被放大了,这就是放大电路的工作原理。
思考:1.基本放大电路的组成原则是什么?以共射组态基本放大电路为例加以说明2.如果共发射极电压放大器中没有集电极电阻R C,能产生电压放大吗?(2)、基本放大电路的静态分析输入信号u i=0、只在直流电源U CC作用下电路的状态称“静态”。
单管放大电路分析

一、主要性能指标(1)电压增益又称放大倍数,衡量放大电路放大电信号的能力。
最常用的是电压增益io v V V A§1.2 单管放大电路的分析开路电压增益负载开路(R L =∞)时的电压增益。
i oo vo V V A=源电压增益放大器的输出电压对信号源电压v s 的增益o i o i vs v s s i i s V V V R A A V V V R R ===+ o oo o L v vo i i oo o LV V V R A A V V V R R ==⋅=+ 带负载增益常用分贝(dB )为单位,1分贝=1/10贝尔,源于功率增益的对数:()i o p P P dB A lg 10)(=当用于电压增益时:()i o i o v V V V V dB A lg 20)/lg(10)(22==“0dB ”相当于A v =1;“-40dB ”相当于A v =0.01;“-20dB ”相当于A v =0.1;“40dB ”相当于A v =100;“20dB ”相当于A v =10;分贝(2)输入电阻R i输入电阻R i 是从放大电路输入端看进去的等效电阻,定义为输入电压与输入电流相量之比。
i i iV R I i IiR 输入电阻反映了放大电路从信号源所汲取电压的能力。
R i 越大,则信号电压损失越小,输入电压越接近信号源电压。
(3)输出电阻Ro输入信号置零、放大电路负载移去时从输出端口看进去的等效电阻。
RO输出电阻Ro的确定:①分析时采用在输出端施加等效信号源的方法。
''sLo VRVRI==∞=②在实验室采用测量的方法LoooRVVR⎪⎪⎭⎫⎝⎛-=1LOOOOORVRVV=-1.输入信号置零;2.负载断开加压。
输出电阻Ro 的大小,反映了放大电路带负载的能力。
R o 越小,则放大电路带负载能力越强,电路输出越接近恒压源输出。
V oI o R o 小R o 大V oo R o =0O O OO O R I V V -=(4)通频带—放大电路能放大信号的频率范围当放大电路的信号频率很低或很高时,由于电路中存在的耦合电容以及晶体管的结电容和极间电容的影响,放大电路的电压放大倍数在低频段或高频段都要降低,只有在中频段范围内放大倍数为常数。
放大电路的基本原理和分析方法ppt课件

IBQ
直流负载线
O
UBEQ UCC UBE
O
UCEQ UCC UCE
【例】 图 示 单 管 共 射 放 大 电 路 及 特 性 曲 线 中 , 已 知
Rb=280k,Rc=3k ,集电极直流电源VCC=12V,试用图 解法确定静态工作点。
解:首先估算 IBQ
IBQ
VCCUB Rb
E
Q
IB
(1 20.7)m A 4 0μA
饱和失真 Q 点过高,引起 iC、uCE的波形失真。
iC
iC / mA
Q
ib(不失真)
ICQ
O
tO
UCEQ
O
t
uo = uce
底部失真
IB = 0
uCE/V uCE/V
✓估算最大输出幅度
iC/mA
A
交流负载线
Q
OC
D
B iB=0
E uCE/V
Uom
minCD, DE 2 2
Q尽量设在线段AB的中点
uBE
iB
反相放大
iC
uCE
UBEQ ib
IBQ
ic ICQ
uce UCEQ
放大电路的组成原则
静态工作点合适:合适的直流电源、合适的电路 参数。
动态信号能够作用于晶体管的输入回路,在负载 上能够获得放大了的动态信号。
对实用放大电路的要求:共地、直流电源种类尽 可能少、负载上无直流分量。
VCC
4
出
回
路 IC Q
工
iC 2
作
情 况 分
0
t0
Au
ΔuO ΔuI
ΔuCE ΔuBE
0
析 = 4.5-7.5 =-75
§22单管共射放大电路的工作原理

§22单管共射放大电路的工作原理
单管共射放大电路是指使用单个晶体管的放大电路,其中晶体管的基极与输入信号相连,发射极与输出负载相连,而集电极则通过电源与负载相连。
单管共射放大电路的工作原理如下:
1.输入信号:输入信号通过输入电容C1与晶体管的基极相连。
当输入端输入正向信号时,基极电流将增大,导致晶体管的基极电位上升,从而导致发射极电流增大。
反之,当输入端输入负向信号时,发射极电流减小。
这样,在输入信号的作用下,晶体管的发射极电流将随之变化。
2. 输出信号:输出信号通过输出电源Vcc与负载电阻Rl相连。
当发射极电流变化时,导致负载电阻两端产生不同的电压变化,从而形成输出信号。
3. 集电极电位:晶体管的集电极通过电源Vcc与负载电阻Rl相连。
当晶体管的发射极电流增大时,集电极电位上升,导致负载电阻Rl两端的电压增大,进而产生更大的输出信号。
4.反馈:单管共射放大电路还可以通过合适的反馈电路进行反馈,从而使电路的增益更稳定。
常用的反馈方式包括电流反馈和电压反馈。
总结来说,单管共射放大电路的工作原理是基于晶体管的基、发射、集极之间的电流关系。
输入信号通过输入电容与晶体管的基极相连,使得晶体管的发射极电流随之变化,进而形成输出信号。
输出信号则通过负载电阻与输出电源相连,从而产生电压变化。
同时,晶体管的集电极电位也会受到基极电流的影响,进一步放大输出信号。
最后,通过合适的反馈方式实现对电路增益的稳定控制。
单管共射放大电路具有放大倍数大、输出电阻小、频率响应广等优点,在实际应用中被广泛使用。
第一章放大电路的基本原理和解读

2020/12/13 5
第五页,共20页。
二、动态 1.定义:输入端在原有的静态基础上叠加一个动态的微小变化量△UI 2. 工作电路
的电路的状态 。
iC
RC
iB
VCC
+
u- I
3.电路
Rb
C1
+ UI
_
RC C2
T
+VCC
+
U0
_
2020/12/13
8
第八页,共20页。
1.3放大电路的主要技术指标
一、放大倍数
1.定义:输出信号的变化量与输入信号的变化量之比。
2.分类:(1)电压放大倍数Au,(在放大电路的输入端加上一个正弦波电压信号
时)
Au=U0/Ui
在输出端测定的输出电压的有效值 指
三、输出电阻
1.定义:当输入端信号电压Us=0(保留信号源内阻Rs),输出端开路,即负载电阻Rl无穷大时,外加的输出电压Uo与相应的 输出电流I0之比。
2.计算公式:R0=U0/I0 Us=0 Rs=∞
3.试验测试:(1)测试方法:在输入端加上一个正弦信号电压Us,首先测出负载开路时的输出电压U0’,接上阻值 已知的负载电阻,测出此时的输出电压U0则得到 U0=
二.一般掌握 1.用图解法确定单管共射放大电路的静态工作点,定性分析波形失真,观察电路参数对静态工作点的影响,估 算最大不失真输出的动态范围。 2.三种不同组态放大电路的特点。
3.多级放大电路三种耦合方式的特点,放大倍数的计算规律。
2020/12/13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图7-11 共集电极放大电路
(a)原理电路
(b)直流通路
7.3.2 电路分析 1.静态分析
根据KVL定理可列出图7-11(b)的输入回路方程
U C C IB R B U B EIE R E
基极电流IBQ
IBQRBUC(C 1UB)E RE
集电极电流ICQ ICQIBQ
7.2.3 电路定量分析 1.静态分析
IEU R E EU BR E U BE R B 1 R B 2 R B 2U R C EC
I BQ
IE
1
ICQIBQ
根据KVL定理可得输出回路方程
U C CIC R C U C EIE R E
U C E U C Q I C C R C I E R E U C I C C ( R C Q R E )
2.动态分析 由分压式偏置放大电路图7-7可得交流通路如图7-9所示及 微变等效电路如图7-10所示。
图7-9 分压式偏置电路的交流通路
图7-10 分压式偏置电路的交流微变等效电路
(1)电压放大倍数Au
输入电压 输出电压
ui iiri ibrbe
A uu uo i ib.rib bRቤተ መጻሕፍቲ ባይዱeL
7.2 分压式偏置放大电路
7.2.1 分压式偏置放大电路的组成
分压式偏置放大电路如图7-7所示。V是放大管;RB1、 RB2是偏置电阻,RB1、RB2组成分压式偏置电路,将电源 电压UCC分压后加到晶体管的基极;RE是射极电阻,还是 负反馈电阻;CE是旁路电容与晶体管的射极电阻RE并联, CE的容量较大,具有“隔直、导交”的作用,使此电路有 直流负反馈而无交流负反馈,即保证了静态工作点的稳定性, 同时又保证了交流信号的放大能力没有降低。
第七章 基本放大电路
7.1 共射极单管放大电路 共射极放大电路是指组成放大电路的晶体管为共射极组
态,即输入信号和输出信号都经过晶体管的发射极。共射 极放大电路中只有一个晶体管的称为共射极单管放大电路。 7.1.1 共射极单管放大电路的组成和工作原理
7.1.2 直流通路和交流通路 放大电路工作,当无输入信号时,电路中只有直流电
R C/R /L rb e
uo icR L ibR L
(2)输入电阻ri ri RB1//RB2//rbe
(3)输出电阻ro
ro RC
7.3 共集电极放大电路
共集电极放大电路是一种应用非常广泛的单元电路之一。 一般来说,它可用来作为多级放大器的输入级、输出级和中 间级。共集电极放大电路还可用作缓冲级在电路中起阻抗匹 配的作用。 7.3.1 电路组成及各元件的作用
1.微变等效电路法
(1)输入电阻ri
ri
ui ii
RB //rbe
(2)输出电阻ro
ro
uo io
RC //ro
(3)晶体管动态输入电阻rbe rbe300(1)2IE6((m m)V A )
(4)电压增益Au
A uu uo i ib ic rb R L eibirb bR e L rR bL e
流;当有输入信号时,电路中既有直流电流又有交流电 流。直流电流流过的路径称为放大电路的直流通路;交 流电流流过的路径称为放大电路的交流通路。由于电路 中存在着电抗元件,所以直流通路和交流通路不相同。 在计算、分析具体的放大电路时,一定要分清交、直流 通路。 1.直流通路 直流通路的简化方法是将电抗元件中的电容看作开路,
图7-11(a)是共集电极放大电路的典型电路。V是放大 管,RB是基极偏置电阻,RE是发射极电阻,C1、C2是耦合 电容,RL是放大电路的负载,其中RE的存在起到了稳定静 态工作点的作用。
图7-11(b)是其直流通路,图7-12(a)是其交流通路。 从交流通路可看出输入信号ui加在基极与集电极之间,输出 信号uo由发射极和集电极之间取出,集电极是输入回路与输 出回路的公共端,故称为共集电极放大电路。又因为输出信 号是从发射极与“地”之间取出,所以此电路又称为射极输 出器。
T I C I E U E U B U E B U E 且 U B 恒 U B 定 E I B I C
要实现上述稳定过程,首先必须保证基极电位UB恒定。 由图7-7可见,合理选择元件,使流过偏置电阻RB1的电流I1 比晶体管的基极电流IB大很多,则UCC被RB1、RB2分压得
UCC ICRC UCE
IBQ
UCCUBE RB
IBQUCCR BUBEQ U RCBC
ICQIBQ
UCEQ UCC ICR QC
7.1.4 动态分析 放大电路有交流信号输入时的工作状态称为动态。一个 放大电路的性能如何?除了要看其静态工作点的位置以 外,还要看动态性能指标。放大电路的主要性能指标包 括增益、输入/输出电阻、频率特性、非线性失真等。本 节中主要讲解增益、输入电阻、输出电阻的求解方法。
图7-7 分压式偏置放大电路
图7-8 分压式偏置放大电路的直流通路
7.2.2 稳定静态工作点的原理 分压式偏置放大电路的直流通路如图7-8所示。当温度升
高,IC随着升高,IE也会升高,电流IE流经射极电阻RE产生 的压降UE也升高。又因为UBE=UB-UE,如果基极电位UB是 恒定的,且与温度无关,则UBE会随UE的升高而减小,IB也 随之自动减小,结果使集电极电流IC减小,从而实现IC基本 恒定的目的。如果用符号“ ”表示减小 ,用“ ”表示增 大,则静态工作点稳定过程可表示为:
晶体管的基极电位UB:
UB
RB2 RB1 RB2
UCC
分压式偏置放大电路中,采用了电流负反馈,反馈 元件为RE。这种负反馈在直流条件下起稳定静态工作 点的作用,但在交流条件下影响其动态参数,为此在该 处并联一个较大容量的电容CE,使RE在交流通路中被 短路,不起作用,从而免除了RE对动态参数的影响。
电感看作短路,其他元件不变。 2.交流通路
交流通路的简化方法是将电抗元件中的电容看作短路, 电感看作开路,其他元件不变。直流电源只能产生直流 激励,在交流电路中不起作用,而其内阻很小忽略不计, 作为短路处理。
图7-2 共射极单管放大电路的直流、交流通路
(a)直流通路
(b)交流通路
UCC IBRB UBE