第七章热力学基础

合集下载

热力学基础

热力学基础
热力学过程 系统状态发生变化的过程
分类
1. 准静态与非静态
2. 等值过程
3. 与外界的关系 4. 可逆与不可逆 1) 自发与非自发 2) 绝热过程
一、理想气体的内能: (状态量)
M i i E RT RT 2 2
二、 改变热力学状态的两种能量交换形式 1)改变系统状态(E)的方式有两种
i E R(T2 T1 ) CV (T2 T1 ) 2
2. 能量关系(热力学第一定律)
Qp E A
QP E A
C p (T2 T1 )
CV (T2 T1 )
R(T2 T1 )
i CP CV R R R 2
3. 理气等压摩尔热容 比热容(摩尔热容比)
p2
Ⅱ T2 Ⅰ T1
V1 V
2. 热力学第一定律
p1
O
QV E A
QV E
等容过程中气体吸收的热量,全部用来增加 它的内能,使其温度上升。
3. 理气等容摩尔热容
i QV CV T E RT 2
3 R 2 5 R 2 6 R 2
刚性单原子
i CV R 2
一、 物质的热容量
与过程有关 可以大于0、小于0,也可 以等于0。
二、 摩尔热容量
(与具体的过程有关)
dQ c dT
——1mol气体温度升高1K气体吸收的热量。
1mol
三、 热量的计算
等压过程: 等压摩尔热容CP
dQ C dT
质量为m的气体,温度从T1升到T2,吸热为:
dQP CPdT
2)作功、传热是相同性质的物理量
做功 传热
均是 过程量

工程热力学基础——第七章蒸汽动力循环

工程热力学基础——第七章蒸汽动力循环

第四节 回热循环
一、回热循环的装置系统图和T-S 图 分析朗肯循环,导致平均吸热温度不高的原 因是水的预热过程温度较低,故设法使吸热过程 的预热热量降低,提出了回热循环。 回热是指从汽轮机的适当部位抽出尚未完全 膨胀的压力、温度相对较高的少量蒸汽,去回热 加热器中加热低温冷凝水。这部分抽汽未经凝汽 器,因而没有向冷源放热,但是加热了冷凝水, 达到了回热的目的,这种循环称为抽汽回热循环。
b
5
a
6
(4)
A
图8 再热循环的T-S图
二、再热循环工作原理
从图可以看出,再热部分实际上相当于在原来 的郎肯循环1A3561的基础上增加了一个附加的循环 ab2Aa。一般而言,采用再热循环可以提高3%左右的 热效率。
三、再热循环经济性指标的计算
1、热效率
t
w0 q1
(h1 ha ) (hb h2 )
第七章 蒸汽动力循环
本章重点
水蒸气朗肯循环、回热循环、再热循 环、热电循环的组成、热效率计算及提高 热效率的方法和途径
第一节 朗肯循环
一、水蒸汽的卡诺循环
1、水蒸汽的卡诺循环的组成,如图1 2、水蒸汽的卡诺循环在蒸汽动力装置中不被应用
原因:
T
(1)、T1不高(最高
不超 374 0 C ),T2不低
(h1
h2
)
(hb
h a
)
2、汽耗率
d 3600
3600
w0 (h1 ha ) (hb h2 )
四、再热循环分析
1、采用再热循环后,可明显提高汽轮机排 汽干度,增强了汽轮机工作的安全性; 2、正确选择再热循环,不仅可提高汽轮机 排汽干度,还可明显提高循环热效率; 3、采用再热循环后,可降低汽耗率; 4、因要增设再热管道、阀门等设备,采用 再热循环要增加电厂的投资,故我国规定 单机容量在125MW及以上的机组才采用此循 环。 [例7-2] 注意,再热后,各经济指标的变化

第七章统计热力学基础

第七章统计热力学基础

第七章统计热⼒学基础第七章统计热⼒学基础⼀、选择题1、统计热⼒学主要研究()。

(A) 平衡体系(B)单个粒⼦的⾏为案(C) ⾮平衡体系(D) 耗散结构2、能量零点的不同选择,在下⾯诸结论中哪⼀种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热⼒学函数值⽆影响:( )(A) U (B) S (C) G (D) H4、统计热⼒学研究的主要对象是:()(A) 微观粒⼦的各种变化规律(B) 宏观体系的各种性质(C) 微观粒⼦的运动规律(D) 宏观系统的平衡性质5、对于⼀个U,N,V确定的体系,其微观状态数最⼤的分布就是最可⼏分布,得出这⼀结论的理论依据是:()(A) 玻兹曼分布定律(B) 等⼏率假设(C) 分⼦运动论(D) 统计学原理6、以0到9这⼗个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同⼀种⽓体分⼦,其平动、转动、振动和电⼦运动的能级间隔的⼤⼩顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热⼒学中,对物系的分类按其组成的粒⼦能否被分辨来进⾏,按此原则:()(A) ⽓体和晶体皆属定域⼦体系(B) ⽓体和晶体皆属离域⼦体系(C) ⽓体属离域⼦体系⽽晶体属定域⼦体系(D) ⽓体属定域⼦体系⽽晶体属离域⼦体系9、对于定域⼦体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒⼦的能级 1, 2, ....., i⼀定,但简并度g1, g2, ....., g i及总微观状态数不确定。

热力学基础

热力学基础

第七章 热力学基础基 本 要 求一、理解功和热量的概念以及准静态过程。

二、掌握热力学第一定律;能熟练地分析、计算理想气体各等值过程和绝热过程中的功、热量、内能改变量及卡诺循环等简单循环过程的效率。

三、理解摩尔热容量的定义,并会用它来计算等压、等容过程中的热量。

四、了解热力学第二定律及其统计意义。

内 容 提 要一、准静态过程平衡态 不受外界影响时,系统的宏观性质不随时间改变的状态。

准静态过程 由无数个平衡态组成的过程,即系统的每个中间态都是平衡态。

准静态过程是一个理想化的过程,是实际过程的近似。

实际过程仅当进行得无限缓慢时才可看作是准静态过程 。

二、热力学第一定律W E E Q +-=12对于一元过程:dW dE dQ +=符号规定:Q > 0系统吸热;W > 0系统对外界做正功; ∆E >0系统内能增加。

热力学第一定律适用于任何系统(固、液、气)的任何过程(非准静态过程亦成立)。

三、功、内能、热量的数学表达式和意义功 通过做功可以改变系统的状态。

功是过程量,是分子的有规则运动能量和分子的无规则运动能量的转化和传递。

⎰=21V V PdV W内能 内能是状态的函数。

对于一定质量的某种气体,内能一般是T 、V 或P 的函数;对于刚性分子的理想气体,内能只是T 的函数,即T C RT iE V νν==2)(12T T C E V -=∆ν热量 传热也可改变系统的状态,其条件是系统和外界的温度不同。

Q=νC (T 2 –T 1) 其中C 为摩尔热容量。

四、气体的摩尔热容量摩尔热容量 一摩尔物质温度升高一度所吸收的热量,即⎪⎭⎫ ⎝⎛=dT dQ C ν1 理想气体等容摩尔热容量 R i C V 2=理想气体等压摩尔热容量 R C R R iC V P +=+=2泊松比 12>+==ii C C V P γ 对刚性理想气体单原子分子,i = 3,γ = 1.67; 对刚性理想气体双原子分子,i = 5,γ = 1.40; 对刚性理想气体多原子分子,i = 6,γ = 1.33。

物理化学第七章统计热力学基础

物理化学第七章统计热力学基础

热力学第二定律的实质是揭示了热量 传递和机械能转化之间的方向性。
VS
它指出,热量传递和机械能转化的过 程是有方向的,即热量只能自发地从 高温物体传向低温物体,而机械能只 能通过消耗其他形式的能量才能转化 为内能。
热力学第二定律的应用
在能源利用领域,热力学第二定律指导我们合理利用能源,提高能源利用效率。
优势
统计热力学从微观角度出发,通过统计方法描述微观粒子的运动状态和相互作用,能够 更深入地揭示热现象的本质和内在规律。
局限性
统计热力学涉及到大量的微观粒子,计算较为复杂,需要借助计算机模拟等技术手段。
统计热力学与宏观热力学的关系
统计热力学和宏观热力学是相互补充的 关系,宏观热力学提供整体的、宏观的 视角,而统计热力学提供更微观、更具 体的视角。
03
热力学第一定律
热力学第一定律的表述
热力学第一定律的表述为
能量不能无中生出,也不能消失,只能从一种形式转化为另一种 形式。
也可以表述为
封闭系统中,热和功的总和是守恒的,即Q+W=ΔU。其中Q表示传 给系统的热量,W表示系统对外做的功,ΔU表示系统内能的变化。
热力学第一定律的实质
热力学第一定律实质是能量守恒定律在封闭系统中的具体表现。 它表明了在能量转化和传递过程中,能量的总量保持不变,即能 量守恒。
掌握理想气体和实际气 体的统计描述,理解气 体定律的微观解释。
了解相变和化学反应的 统计热力学基础,理解 热力学第二定律和熵的 概念。
02
统计热力学基础概念
统计热力学简介
统计热力学是研究热力学系统 在平衡态和近平衡态时微观粒 子运动状态和宏观性质之间关 系的学科。
它基于微观粒子的运动状态和 相互作用,通过统计方法来描 述系统的宏观性质,揭示了微 观结构和宏观性质之间的联系 。

第七章热力学理论

第七章热力学理论
气体吸收的热量全部用来做功。 气体吸收的热量全部用来做功。
Q : ∆E : A = 1 : 0 : 1
•摩尔热容量 摩尔热容量: 摩尔热容量
CT ,m = ∞
4、绝热过程 adiabatic 、
•特点: 特点: 特点
整个过程和外界无热量交换, 整个过程和外界无热量交换,Q = 0 气体绝热膨胀, 气体绝热膨胀,温度 ? 气体绝热压缩, 气体绝热压缩,温度 ? p1 p2 B V1 V2 V p A
理想气体的压强保持不变, 理想气体的压强保持不变,p = const. p1
•过程曲线: 过程曲线: 过程曲线 •内能改变: 内能改变: 内能改变
图上是一条垂直p轴的直线 等压线)。 轴的直线(等压线 在 p-V 图上是一条垂直 轴的直线 等压线 。 过程方程: 过程方程:V/T = const. o
A
B
V1
V2
V
i ∆E = νR∆T 2 •体积功: 体积功: 体积功
A = p1 (V2 − V1 ) = νR(T2 − T1 ) = νR∆T
气体体积膨胀 做正功, 做正功,直接 计算面积。 计算面积。
2、等压过程 、
•热量交换 热量交换: 热量交换
由热力学第一定律: 由热力学第一定律:
p p1 A B
•过程曲线: 过程曲线: 过程曲线
图上是一条双曲线, 等温线。 在 p-V 图上是一条双曲线,叫等温线。 过程方程: 过程方程:pV = const. o
•内能改变: 内能改变: 内能改变
i Q ∆T = 0 ∴ ∆E = νR∆T = 0 2 •体积功: 体积功: 体积功
A = ∫ PdV =
V1
A Q1 − Q2 Q2 η= = = 1− Q1 Q1 Q1

第七章统计热力学基础

第七章统计热力学基础
练习7.63个可别粒子分布于同一能级的两个不同量子态上时,分布方式有4种。总微观状态数为。
练习7.7一个U,N,V确定的系统,任何一种分布均不能随意的,而必须满足①与②两个条件。
练习7.8对于一定量的某气态、液态、固态物质,其微观状态数的排序是。
练习7.9最概然分布的微观状态数随粒子增加而①,该分布出现的概率随粒子数增加而②。
自测7.15转动特征温度定义为( )。
(A) (B) (C) (D)
自测7.16双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为()。
(A)0(B)1(C)<0(D)>0
自测7.17对于N个粒子构成的定位独立可辨粒子系统熵的表达式为( )。
(A) (B)
(C) (D)
自测7.18对理想气体分子的平动,下面的结果中正确的是( )。
自测7.23已知CO与N2的质量、转动特征温度基本相同,若电子运动与振动能级均未开放,则()。
(A) (B) (C) 与 无法比较(D)
自测7.241mol双原子分子理想气体,当其温度由T1升到2T1时,若其转动惯量不变,则其转动熵变将是()。
(A) 5.763J·mol1K1(B)RlnT1
(C)RlnT2(D) 11.526J·mol1K1
练习7.22一个体积为V,粒子质量为m的离域子系统,其最低平动能级和其相邻能级间隔为①。若平动能级的 ,该能级的统计权重 是②。
练习7.23NH3分子的对称数是3,BF3分子的对称数是。
练习7.24已知HI的转动惯量I为4.31×1045kg·m2,h=6.626×1034J·s,k=1.38×1023J·K1,则其转动特征温度是。
(C)它的定义是 (D)它不是状态函数
自测7.32用J代表分子具有的各独立运动项目,分子在能级i的统计权重gi为下式中的()

第七章 热力学基础

第七章 热力学基础

p1 m RT ln 由 Q =W = T T M p2

QT = WT = 246J
mi R(T2 − T1 ) 得 由 QV = E2 − E1 = M2 mi QV = Ed − Ec = R(Td − Tc ) M2 i = ( pdVd − pcVc ) 2 3 2 = (1× 3 − 2 × 3) ×1.013 ×10 J = −456J 2
dW = pdV,W = p(V2 −V1 )
■ 热力学第一定律的形式
(dQ ) p = dE + pdV m RdT = dE + M
热源
■ 有限等压过程 对等压过程,气体从状态Ⅰ(p、V1、T1) 对等压过程, 变到状态Ⅱ (p、V2、T2)时:
m R(T2 − T1 ) Wp = ∫ pdV = p(V2 −V1 ) = V1 M
pbVb 3.039 ×105 Pa × 2 5 pc = = = 2.026 ×10 Pa 3 Vc
在状态d 压强为p 1.013× Pa,体积为V 在状态d,压强为pd=1.013×105Pa,体积为Vd= 3L
在全过程中内能的变化△E 为末状态内能减去 初状态内能,有理想气体内能公式及理想气体状态 初状态内能,有理想气体内能公式及理想气体状态 方程得: 方程得: ∆E = Ed − Ea
E = E(T,V )
二、热与功的等效性 如图: 如图:温度都由 T1→ T2 状态发生了相同的变化。 状态发生了相同的变化。 等效 传热 —— 作功 加热 搅拌作功
因为功是能量传递的一种形式, 因为功是能量传递的一种形式,是系统能量变 化的一种量度。 所以热量也是能量传递的一种形式, 化的一种量度。 所以热量也是能量传递的一种形式, 是系统能量变化的一种量度。 是系统能量变化的一种量度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
热力学基础
热力学是关于热现象的宏观理论,主要 讨论热力学系统在状态变化过程中有关功、 热和能量转化的规律。
第一节
准静态过程
1、准静态过程的定义
如果过程进行得非常缓慢,过程经历的时间远远 大于驰豫时间,这样系统在变化过程中的每一个中 间态都接近平衡态,这样的过程称为准静态过程。
驰豫时间:系统从一个平衡态变到另一个新的平衡 态所需要的时间。
i i R(T2 T1 ) ( p2V2 p1V1 ) 2 2
微小的热力学过程系统内能的增量:
i i dE RdT d ( pV ) 2 2
三、准静态过程中的体积功
若经过一个准静态过程,系统的体积发生了变 化,一定有外界对系统做功,或系统对外界做了功。 这种功称为体积功。
第三节
等值过程和绝热过程
p p2 b a V V
一、等值过程
1、等体过程
V 常量,A 0
p1
吸收的热量等于内能的增量:
i i Q E R(T2 T1 ) V ( p2 p1 ) 2 2 i pdV 对理想气体,由Cm R 可得 : 2 dT i CV ,m R CV,m为等体摩尔热容 2
理想气体的内能用等体摩尔热容表示2
内能的变化量:
i i E RT CV ,m T ( pV ) 2 2
准静态过程摩尔热容用等体摩尔热容的表示:
i pdV pdV Cm R CV ,m 2 dT dT
(2) 热力学第一定律体现的是一种能量守恒。热力 学第一定律的另一种表述:第一类永动机是不可 能制成的。 (3) 对微小过程,热力学第一定律可表示为:
dQ dE dA
二、内能的增量
i i 系统的内能:E RT pV 2 2
系统内能的增量:
i i E RT ( pV ) 2 2
四、热量与摩尔热容
1、热量: 热运动系统在某一个过程中转移的净热 运动能量,用Q表示。 摩尔热容:一摩尔的物质温度每升高或降低单位温 度吸收或放出的热量,用Cm 表示。
dQ Cm dT
对一般的过程: Q

T2
T1
Cm dT
当摩尔热容Cm为常数时:
Q Cm T
2. 摩尔热容Cm
p
b a V
p V C或 C T
V pC 或 C T
V1
V2 V
(3) 等温过程:
p1
p
a
等温线
b V1 V2
V
T C 或 pV C
p2
(4) 多方过程:
pV 常数
n
第二节
热力学第一定律及其应用
一、热力学第一定律
1、改变系统内能的两种方式 Q
E Q A
2、热力学第一定律
i pdV 5 pdV Cm R R pV 2 dT 2 d ( ) R k dV 2 5 pdV 5 R R R V R k 2 d ( pV ) 2 d( 2 V ) V 1 dV 2 5 5 3 V R R RR R 1 2 2 2 d( ) V
pV 2 p1V12 p2V22 k p1V12 即:p2 2 V2
p1
p2
b
V1
V2 V1
V2
V
做功:A pdV
V1
V2
k dV 2 V
k k ( ) p1V1 p2V2 V1 V2
内能增量为: i 5 E R(T2 T1 ) ( p2V2 p1V1 ) 2 2
F=pS
dV
气体膨胀过程
dx 这个微小过程,系统对外界做的元功为:
dA Fdx pSdx pdV
系统体积由V1变为V2 ,系统对外界做的功: p a p II V2 I A dA pdV V1 b


V1
V2
V
体积功等于在p-V图中过程曲线下的面积。 体积功是一个过程量。 系统体积膨胀做功为正,称为系统对外界做功; 系统体积被压缩做功为负,称为外界对系统做功。
准静态过程是理想过程。 如无特别声明,本章讨论的 都是无摩擦的准静态过程。
2、准静态过程的曲线表示
(1) p-V图 •图中的一个点表示一个平衡态。 •图中的一条曲线表示一个准静态 过程。 •过程方程为:p=p(V)
(2) p-T图
(3) T-V图
3、常见准静态过程的曲线及其方程
(1) 等体(容)过程: p2 p1 V (2) 等压过程: p p a b
2、等压过程 (p 常量)
做功:A pdV p( V2 V1 )
V1 V2
p p a b V
V1 V2 内能增量:E i R(T2 T1 ) i p(V2 V1 ) 2 2
由Q E A 得:
i2 i2 Q p(V2 V1 ) R (T2 T1) 2 2 dQ i2 由Cm 可得:C p ,m R CV ,m R dT 2
F 做功 传热
在热运动过程中,系统从外界吸收的热量等 于系统内能的增量与系统对外界所做的功之和。 这个结论叫热力学第一定律。
Q E A
3、热力学第一定律的讨论 (1) 符号法则:
系统从外界吸热Q为正,向外界放热Q为负; 系统的内能增加△E为正,内能减少△E为负; 系统对外界做功A为正,外界对系统做功A为负。
由热力学第一定律,系统吸收的热量: 3 Q E A ( p2V2 p1V1 ) 2
摩尔热容(常量):
3 3 Q Cm (T2 T1 ) ( p2V2 p1V1 ) R(T2 T1 ) 2 2 3 Cm R 2
摩尔热容的另一种求法(通用求法):
由热力学第一定律,dQ=dE+dA
dE dA dE dA dQ Cm dT dT dT dT
i 对理想气体,有: dE RdT 2
体积功:dA pdV
i pdV 得:Cm R 2 dT
状态量
过程量
Cm是一个过程量
例题1、一定量的双原子分子理想气体,经pV2=常数的准静态 过程,从状态(p1,V1)膨胀到体积V2,求气体在该过程中 对外所做功A,内能增量ΔE,吸收的热量Q和摩尔热容Cm。 解:由过程方程,可得: p a
相关文档
最新文档