第 10 讲 待定系数法(高中版)

合集下载

第10讲-一次函数的图象与性质(课件)-2024年中考数学一轮复习讲练测(全国通用)全文编辑修改

第10讲-一次函数的图象与性质(课件)-2024年中考数学一轮复习讲练测(全国通用)全文编辑修改


C.一、三、四
D.二、三、四
【详解】解:∵正比例函数 = ( ≠ 0)的函数值随的增大而减小,
∴ < 0,∴− > 0,2 < 0,
∴一次函数 = − + 2的图象所经过第一,三,四象限,故选:C.
【对点训练1】(2022·河南南阳·统考三模)若一元二次方程x2−4x+4m=0有两个相等的实数根,则
y=kx+b(k≠0)探索并理解k>0和k<0时图象的变
化情况.
➢ 会运用待定系数法确定一次函数的表达式.
稿定PPT
命题预测
一次函数的图象与性质是中考数学中比较重要
的一个考点,也是知识点牵涉比较多的考点.各
地对一次函数的图象与性质的考察也主要集中在
一次函数表达式与平移、图象的性质、图象与方
程不等式的关系以及一次函数图象与几何图形面
y=kx+b中b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.
一次函数的一般形式:y=kx+b(k,b是常数,k≠0).
考点一 一次函数的相关概念
1. 一次函数一般形式的特征:1)k≠0; 2)x的次数为1; 3)常数b可以取任意实数.
2. 正比例函数是一次函数,但是一次函数不一定是正比例函数.
y随x的增大而减少
y
y
y
y
y
图象
x
O
经过象限
与y轴交点位置
x
O
x
x
O
O
b>0
b=0
b<0
b>0
一、二、三
一、三
一、三、四
一、二、四
y
x
O
b=0

第10讲 一次函数

第10讲 一次函数
解析:∵-1<0,4>0,∴一次函数y=-x+4的图象经过第一、二、四象限,不 经过第三象限.∵点P在一次函数y=-x+4的图象上,∴点P一定不在第三象 限.故选C.
2.(2019 临沂)下列关于一次函数 y=kx+b(k<0,b>0)的说法,错误的是( D ) (A)图象经过第一、二、四象限 (B)y 随 x 的增大而减小 (C)图象与 y 轴交于点(0,b)
性质
y 随 x 的 增 大 而 y随x的增大而 y随x的增大而 y随x的增大而
增大 .
增大 .
减小 .
减小 .
3.一次函数图象的平移 一次函数y=kx+b的图象可以看作是由直线y=kx向上(下)平移 |b| 个单 位长度而得到的.当b>0时,将直线y=kx向上平移|b|个单位长度;当b<0时,将 直线y=kx向下平移|b|个单位长度.
x>0, x<
3,
∴无解;
kx<x 0,b>0,即
x<0, x>
3,
∴解集为-3<x<0,
∴不等式 x(kx+b)<0 的解集为-3<x<0.
6.(2018上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路 程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数解析式;
解:(1)由图象可知,蓄电池剩余电量为 35 千瓦时时汽车已行驶了 150 千米. ∴当 0≤x≤150 时,1 千瓦时的电量汽车能行驶的路程为 150 =6 千米.
60 35
(2)当150≤x≤200时,求y关于x的函数解析式,并计算当汽车已行驶180千 米时,蓄电池的剩余电量.

(新课程)高中数学2.2.3《待定系数法》教案新人教B版必修1

(新课程)高中数学2.2.3《待定系数法》教案新人教B版必修1

待定系数法、 教学目标1、知识目标: 使学生掌握用待定系数法求解析式的方法;2、能力目标: (1)尝试设计有关一次、二次函数解析式问题,运用待定系数法求解;(2)培养学生由特殊事例发现一般规律的归纳能力。

3、情感目标:(1) 通过新旧知识的认识冲突,激发学生的求知欲; (2) 通过合作学习,培养学生团结协作的品质。

、教学重点与难点重点:用待定系数法求函数解析式;难点:设出适当的解析式并用待定系数法求解析式。

三、教学方法求 a,h.采用实例归纳,自主探究,合作交流等方法; 讨论和交流, 并通过创设情境,让学生自主探索。

四、教学过程 教学教学内容 环节 复习 1、正比例函数、一次函数的几析式? 弓|入2、正比例函数、一次函数的几析式中 教学中通过列举例子,引导学生进行各有几个需要确定的系数? 师生互动 教师通过多媒 体展示问题,学 生思考后回答•定义:在求一个函数时,如果已知这个函数的一 般式,可以先把所求函数 设为一般式,其中系数待定,然 后根据题设条件求出这些待定系数的方法叫待定系数法. 例:二次函数的运用 已知二次函数 f(x ), f ( 0) =-5,f(-1)=-4,f(2)=5, 求这个函数运用待定系数法解题步骤: 第一步:设出适当含有待定系数的解析式; 第二步:根据已知条件,列出含有待定系数的方程组; . 第三步:解方程组,或消去待定系数,进而解决问题 概念 形成 二次函数在待定系 数法中的设法: 学生分组讨论 并总结.设法1:已知顶点坐标(m,n ),可设y=a (x m)2 n 2,再利用一个独立条件,求a. 设法2:已知对称轴x=m,设y a(x m)2b.利用两个独立条件求a,b.每种结论给出 相应练习.设法3:已知最大或最小值 n ,可设y a(x h)2 n ,利用两个独立条件,XX设法4:二次函数图像 与x 轴有两个交点时,设 y (x xj(x x 2),再利用一个独立条件求 a.练习: 求下列二次函数的解析式学生到黑板板①经过三点(3,0),( 0,-3),( -2,5)演.②顶点(4,2),(2,0) 在图像上③yx 2 4x h 的顶点在y4x1上概念给疋哪些条件,才能求出一个具体的二次函数.学生分小组讨 深化论,进行探索与研究.应用 一根弹簧原长是 12厘米,它能挂的重量不超过 15kg ,并且每挂重量 1kg 例题由学生扮 举例就伸长0.5厘米,挂后的弹黄长度 y(cm)与挂重 (kg )是一次函数的关系.演完成,对出现 (1) 求y 与x 的函数解析式;的问题及时给(2)求自变量x 的取值范围;予纠正。

第10讲 一次函数

第10讲 一次函数

简记为“左加右减,上加下减”.
知识点四
常用方法
步骤
确定一次函数的表达式
待定系数法
(1)设函数表达式;(2)列方程(组);(3)解方程(组),确定待定系数;(4)写出函数表达式
常见类型 (1)已知两点坐标;(2)已知两对对应值;(3)利用平移规律;(4)利用实际问题中的数量关系
知识点五
一次函数与方程(组)、不等式的关系
待定系数法求函数表达式.
(2)表格型应用题:分析表格中数据,从表格中提取两组量,应用待定系数法求函数表达式.
(3)图象型应用题:从函数图象上找出两点,将其坐标代入求函数表达式;若函数为分段函数,则要注意
取同段函数图象上的两点,依此方法分别求各段函数的表达式,最后记得加上对应自变量的取值范围.
(4)方案选取问题:根据表达式分类讨论,比较几个方案在不同取值下的最优结果.

解:(1)当 x=100 时,y=- ×100+13=9,

∴B(100,9).
设线段 BC 的表达式为 y=kx+b(k≠0),


= ,
= + ,

解得

= + ,
=- ,

∴线段 BC 的表达式为




y= x- (100≤x≤140).
(2)如果从甲地到乙地全程为260 km,包括60 km限速为50 km/h的省道和200 km限速为120
A
B
C
D
)
[变式2] (2022眉山)一次函数y=(2m-1)x+2的值随x的增大而增大,则点P(-m,m)所在象限为(B
)
A.第一象限

待定系数法求数列的通项公式

待定系数法求数列的通项公式

待定系数法求数列的通项公式尹伟云(贵州省仁怀市周林高中564500)尹伟云全国高中数学联赛优秀教练员,多次荣获优秀教师称号。

发表论文20多篇。

数列的通项公式是高中数学的核心知识点,根据条件式求通项是近几年高考考查的热点之一.本文从条件的结构特征入手,探讨几类数列通项公式的求法.1.“an+1=Aan+B”型例1已知数列{an}满足a1=1,an+1=3an+1,求{an}的通项公式.解设an+1+x=3(an+x),即an+1=3an+2x,与an+1=3an+1对比知2x=1,即x=12,所以an+1+12=3 an+12(),从而数列an+12{}是首项为a1+12,公比为3的等比数列,所以an+12=a1+12()·3n-1,得an=3n-12.2.“an+1=Aan+Bn+C”型例2已知数列{an}中,a1=-1,且an+1=3an-2n+3,求数列{an}的通项公式.解设an+1+A(n+1)+B=3(an+An+B),即an+1=3an+2An+2B-A,与原式对比知2A=-2,2B-A=3,烅烄烆解得A=-1,B=1,烅烄烆即an+1-(n+1)+1=3(an-n+1),所以an-n+1=-3n-1,故an=-3n-1+n-1.3.“an+1=Aan+Bqn+1”型例3已知数列{an}满足a1=-1,an+1=2an+4×3n-1,求数列{an}的通项公式.解法1设an+1+α·3n+1=2(an+α·3n),即an+1=2an-α·3n,所以α=-43,从而an+1-43·3n+1=2 an-43·3n(),所以an-43·3n=-5·2n-1,即an=4·3n-1-5·2n-1.解法2原式化为an+13n+1=23·an3n+49,设an+13n+1+α=23an3n+α(),易得α=-43,所以an+13n+1-43=23an3n-43(),即an3n-43=-5323()n-1,所以an=4·3n-1-5·2n-1.4.“an+1=Aan+Bqn+1+C”型例4已知数列{an}满足a1=1,an+1=·21·《数理天地》高中版数学中的思想和方法2021年第2期3an+5·2n+4,求{an}的通项公式.解设an+1+α·2n+1+β=3(an+α·2n+β),①将an+1=3an+5·2n+4代入①式,得3an+5·2n+4+α·2n+1+β=3(an+α·2n+β),整理得(5+2α)2n+4+β=3α·2n+3β.令5+2α=3α,4+β=3β,烅烄烆解得α=5,β=2,烅烄烆代入①式得an+1+5·2n+1+2=3(an+5·2n+2),②由a1+5×21+2=1+12=13≠0及②式,得an+5·2n+2≠0,所以an+1+5·2n+1+2an+5·2n+2=3,故数列{an+5×2n+2}是以13为首项、3为公比的等比数列,即an+5×2n+2=13×3n-1,所以an=13×3n-1-5×2n-2.5.“an+1=Aan+B·An+1+C”型例5已知数列{an}满足a1=8,an+1=3an+3n+1+2,求{an}的通项公式.解设an+1+α3n+1=an+α3n+1,整理得an+1=3an+3n+1+2α,与an+1=3an+3n+1+2比较,得α=1,所以an+1+13n+1=an+13n+1,an+13n=a1+131+(n-1)×1=n+2,故an=(n+2)·3n-1.6.“an+1=Aan+B·qn+1+Cn+D”型例6已知数列{an}满足a1=8,an+1=2an+4×3n+2n+1,求数列{an}的通项公式.解设an+1+α·3n+1+β(n+1)+γ=2(an+α·3n+βn+γ),即an+1=2an-α·3n+βn+γ-β,所以α=-4,β=2,γ-β=1,烅烄烆从而γ=3,an+1-4×3n+1+2(n+1)+3=2(an-4×3n+2n+3),所以数列{an-4×3n+2n+3}是首项为8-4×3+2+3=1、公比为2的等比数列,所以an-4×3n+2n+3=1×2n-1,故an=4×3n+2n-1-2n-3.7.“an+1=Aan+B·An+1+Cn+D”型例7已知数列{an}满足a1=6,an+1=3an+3n+1+2n+3,求{an}的通项公式.解设an+1+α(n+1)+β3n+1=an+αn+β3n+1,整理得an+1=3an+3n+1+2αn-α+2β,所以α=1,β=2,即an+1+(n+1)+23n+1=an+n+23n+1,得an+n+23n=a1+1+23+(n-1)×1=n+2,故an=(n+2)·3n-n-2.8.“an+2=Aan+1+Ban”型例8已知数列{an}满足a1=1,a2=2,且当n≥2时,an+1=an+an-12,求{an}的通项公式.解设an+1-αan=β(an-αan-1),即an+1=(α+β)an-αβan-1,与an+1=an+an-12对比得α+β=12,αβ=-12,烅烄烆·31·2021年第2期数学中的思想和方法《数理天地》高中版所以α,β是方程x2-12x-12=0的两根,解得α=1,β=-12,烅烄烆或α=-12,β=1,烅烄烆取α=1,β=-12,烅烄烆得an+1-an=-12(an-an-1),即an+1-anan-an-1=-12,所以数列{an+1-an}是首项为a2-a1=1、公比为-12的等比数列,即an+1-an=-12()n-1,从而an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+1+-12()+…+-12()n-2=1+1--12()n-11--12()=53-23-12()n-1,又n=1时,a1=53-23×-12()1-1=1,故an=53-23×-12()n-1.(上接第11页)球O的表面积S=4πR2=100π.4.向量法例4已知在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AB=AP=AC=2,求三棱锥P-ABC外接球的半径R.图4解过A作Ay⊥BC,以A为空间坐标原点,分别以AB→ ,Ay→ ,AP→为x轴,y轴,z轴的正方向,建立如图4所示的空间直角坐标系.设三棱锥P-ABC外接球的球心为O(x,y,z),由题可知B(2,0,0),P(0,0,2),C(-1,槡3,0),又OP=OC=OB=OA,x2+y2+z2=x2+y2+(z-2)2,x2+y2+z2=(x+1)2+(y -槡3)2+z2,x2+y2+z2=(x-2)2+y2+z2,烅烄烆解得x=1,y=槡3,z=1,烅烄烆即球心O(1,槡3,1),所以三棱锥P-ABC外接球的半径R=槡5.5.截面圆法例5已知正四棱锥P-ABCD的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为()(A)814π.(B)16π.(C)9π.(D)274π.解连接AC,BD交于E,连接AO,PE,如图5所示.设球心为O,球O半径为R,由题可知,△AOE所在的平面是球O大圆所在的平面,图5在Rt△AOE中,(4-R)2+(槡2)2=R2,解得R=94,所以该球的表面积为4πR2=814π,故选(A).·41·《数理天地》高中版数学中的思想和方法2021年第2期。

方法专题10用待定系数法求一次函数解析式的常见类型

方法专题10用待定系数法求一次函数解析式的常见类型

方法专题10用待定系数法求一次函数解析式的常见类型
类型一点与点结合求解析式(KP78)
1.若直线l经过点A(- 1,-4)和B(1,0),则直线l的函数解析式为
2.已知一次函数y=kx+b,当-2≤x≤1时,有一3≤y≤3,求这个一次函数的解析式.
类型二点与平行结合求解析式
3.若一次函数y=kx+b的图象与直线y=3x平行,且经过点(- 2, 1),则该一次函数的解析式是
类型三点与对称或折叠结合求解析式
4.若直线=3x-6与直线l关于y轴对称,则直线l的解析式是
5.如图,已知点A的坐标为(0,4),点B的坐标为(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在直线交y轴正半轴于点C.
(1)求点A'的坐标;
(2)求直线BC的解析式.
类型四点与垂直结合求解析式
6.如图,直线y=2x+4交x轴于点A,交y轴于点B,直线BC⊥AB于点B,求直线BC的解析式.
类型五点与特殊角结合求解析式
7.已知直线l与x轴交于点A,与y轴交于点B,直线l经过点P(1,4),且与x轴的
夹角为45°,求直线l的解析式.。

第10讲 用空间向量研究直线、平面的位置关系4种常见方法归类(解析版)-新高二数学暑假自学课讲义

第10讲 用空间向量研究直线、平面的位置关系4种常见方法归类(解析版)-新高二数学暑假自学课讲义

第10讲用空间向量研究直线、平面的位置关系4种常见方法归类1.理解与掌握直线的方向向量,平面的法向量.2.会用方向向量,法向量证明线线、线面、面面间的平行关系;会用平面法向量证明线面和面面垂直,并能用空间向量这一工具解决与平行、垂直有关的立体几问题.知识点1空间中点、直线和平面的向量表示1.空间直线的向量表示式设A 是直线上一点,a 是直线l 的方向向量,在直线l 上取AB →=a ,设P 是直线l 上任意一点,(1)点P 在直线l 上的充要条件是存在实数t ,使AP →=ta ,即AP →=tAB →.(2)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t .使OP →=OA →+ta .(3)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+tAB →.注意点:(1)空间中,一个向量成为直线l 的方向向量,必须具备以下两个条件:①是非零向量;②向量所在的直线与l 平行或重合.(2)直线上任意两个不同的点都可构成直线的方向向量.与直线l 平行的任意非零向量a 都是直线的方向向量,且直线l 的方向向量有无数个.(3)空间任意直线都可以由直线上一点及直线的方向向量唯一确定.2.空间平面的向量表示式①如图,设两条直线相交于点O ,它们的方向向量分别为a 和b ,P 为平面α内任意一点,由平面向量基本定理可知,存在唯一的有序实数对(x ,y ),使得OP →=xa +yb.②如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP →=OA →+xAB →+yAC →.我们把这个式子称为空间平面ABC的向量表示式.③由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.如图,直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合{P |a ·AP →=0}.注意点:(1)平面α的一个法向量垂直于平面α内的所有向量.(2)一个平面的法向量有无限多个,它们相互平行.易错辨析:(1)空间中给定一个点A 和一个方向向量能唯一确定一条直线吗?答案:能(2)一个定点和两个定方向向量能否确定一个平面?答案:不一定,若两个定方向向量共线时不能确定,若两个定方向向量不共线能确定.(3)由空间点A 和直线l 的方向向量能表示直线上的任意一点?答案:能知识点2空间平行、垂直关系的向量表示1、理解直线方向向量的概念(1)直线上任意两个不同的点都可构成直线的方向向量.(2)直线的方向向量不唯一.2、利用待定系数法求法向量的步骤3、求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量(2)取特值:在求n的坐标时,可令x,y,z中一个为一特殊值得另两个值,就是平面的一个法向量(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为04、用空间向量证明平行的方法(1)线线平行:证明两直线的方向向量共线.(2)线面平行:①证明直线的方向向量与平面内任意两个不共线的向量共面,即可用平面内的一组基底表示.②证明直线的方向向量与平面内某一向量共线,转化为线线平行,利用线面平行判定定理得证.③先求直线的方向向量,然后求平面的法向量,证明直线的方向向量与平面的法向量垂直.在证明线面平行时,需注意说明直线不在平面内.(3)面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题.5、用空间向量证明垂直的方法(1)线线垂直:证明两直线的方向向量互相垂直,即证明它们的数量积为零.(2)线面垂直:①基向量法:选取基向量,用基向量表示直线所在的向量,证明直线所在向量与两个不共线向量的数量积均为零,从而证得结论.②坐标法:建立空间直角坐标系,求出直线方向向量的坐标,证明直线的方向向量与两个不共线向量的数量积均为零,从而证得结论.③法向量法:建立空间直角坐标系,求出直线方向向量的坐标以及平面法向量的坐标,然后说明直线方向向量与平面法向量共线,从而证得结论.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.考点一:求直线的方向向量例1.(2023春·高二课时练习)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点,AB =AP =1,AD PC 的一个方向向量.【答案】1)-【分析】建立如图所示的空间直角坐标系,根据方向向量的定义可得.【详解】如图所示,建立空间直角坐标系A -xyz ,则(0,0,1)P ,C ,所以1)PC =-即为直线PC 的一个方向向量.变式1.(2023春·高二课时练习)已知直线1l 的一个方向向量为()5,3,2-,另一个方向向量为(),,8x y ,则x =________,y =________.【答案】-2012【分析】由直线的方向向量平行的性质即可求解.【详解】∵直线的方向向量平行,∴8532x y ==-,∴20,12x y =-=,故答案为:20-;12.变式2.(2022秋·广西钦州·高二校考阶段练习)已知直线l 的一个法向量是)n =,则l 的倾斜角的大小是()A .π3B .2π3C .π6D .π2【答案】A【分析】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =,根据直线方向向量与法向量的关系得到得到y =,即可求解.【详解】设直线l 的倾斜角为θ,[)0,πθ∈,直线l 的方向向量为(),u x y =.则0u n y ⋅=-=,即y =,则tan y xθ==又[)0,πθ∈,解得π3θ=,故选:A.变式3.【多选】(2022秋·湖北十堰·高二校联考阶段练习)如图,在正方体1111ABCD A B C D -中,E 为棱1CC 上不与1C ,C 重合的任意一点,则能作为直线1AA 的方向向量的是()A .1AA B .1C EC .ABD .1A A【答案】ABD【分析】结合立体图形,得到平行关系,从而确定答案.【详解】因为111////C E AA A A ,所以1AA ,1C E ,1A A都可作为直线1AA 的方向向量.故选:ABD.变式4.(2023春·江苏常州·高二校联考期中)已知直线l 的一个方向向量()2,1,3m =-,且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z 等于()A .0B .1C .2D .3【答案】A【分析】根据//m AB求解即可.【详解】由题知:()1,2,3AB y z =---,因为//m AB ,所以213123y z -==---,解得33,22y z ==,所以0y z -=.故选:A考点二:求平面的法向量例2.(2023春·四川成都·高二四川省成都市新都一中校联考期中)已知(2,0,0)A ,(0,2,0)B ,(0,0,2)C ,则平面ABC 的一个法向量可以是()A .(1,1,1)---B .(1,1,1)-C .(1,1,1)-D .(1,1,1)-【答案】A【分析】代入法向量的计算公式,即可求解.【详解】(2,2,0)AB =- ,(2,0,2)AC =- ,令法向量为(,,)m x y z = ,则220220x y x z -+=⎧⎨-+=⎩,y z x ∴==,可取(1,1,1)m =---.故选:A.变式1.(2023春·高二课时练习)已知()()()1,1,0,1,0,1,0,1,1A B C ,则平面ABC 的一个单位法向量是()A .()1,1,1B.C .111(,,)333D.(,)333-【答案】B【分析】待定系数法设平面ABC 的一个法向量为n,由法向量的性质建立方程组解出分析即可.【详解】设平面ABC 的一个法向量为(),,n x y z =,又()()0,1,1,1,1,0AB BC =-=- ,由0000AB n AB n y z x y BC n BC n ⎧⎧⊥⋅=-+=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⋅=⎩⎪⎪⎩⎩ ,即x y z ==,又因为单位向量的模为1,所以B 选项正确,故选:B.变式2.(2023春·福建龙岩·高二校联考期中)《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在鳖臑A BCD -中,AB ⊥平面BCD ,=90BDC ∠︒,BD AB CD ==.若建立如图所示的“空间直角坐标系,则平面ACD 的一个法向量为()A .()0,1,0B .()0,1,1C .()1,1,1D .()1,1,0【答案】B【分析】根据题意,设1BD AB CD ===,可得A 、C 、D 的坐标,由此可得向量DC 、AD的坐标,由此可得关于x 、y 、z 的方程组,利用特殊值求出x 、y 、z 的值,即可得答案.【详解】根据题意,设1BD AB CD ===,则()0,1,0D ,()1,1,0C ,()0,0,1A ,则()1,0,0DC = ,()0,1,1AD =- ,设平面ACD 的一个法向量为(),,m x y z=,则有00DC m x AD m y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,令1y =,可得1z =,则()0,1,1m = .故选:B .变式3.(2023秋·高二课时练习)在如图所示的坐标系中,1111ABCD A B C D -为正方体,给出下列结论:①直线1DD 的一个方向向量为(0,0,1);②直线1BC 的一个方向向量为(0,1,1);③平面11ABB A 的一个法向量为(0,1,0);④平面1B CD 的一个法向量为(1,1,1).其中正确的个数为()A .1个B .2个C .3个D .4个【答案】C【分析】根据空间直线的方向向量的概念以及平面的法向量的定义判断可得答案.【详解】设正方体的棱长为a ,则(0,,0)D a ,1(0,,)D a a ,1(0,0,)DD a = ,则1DD与(0,0,1)平行,故直线1DD 的一个方向向量为(0,0,1),故①正确;因为(,0,0)B a ,1(,,)C a a a ,所以1(0,,)BC a a = ,因为1BC与(0,1,1)平行,所以直线1BC 的一个方向向量为(0,1,1),故②正确;因为(0,0,0)A ,(0,,0)D a ,所以(0,,0)AD a = ,因为AD 是平面11ABB A 的一个法向量,且AD与(0,1,0)平行,所以平面11ABB A 的一个法向量为(0,1,0),故③正确;因为(,,0)C a a ,(0,,0)D a ,所以(,0,0)CD a =-,因为(1,1,1)(,0,0)(1,1,1)0CD a a ⋅=-⋅=-≠ ,所以CD与(1,1,1)不垂直,所以(1,1,1)不是平面1B CD 的一个法向量,故④不正确.故选:C变式4.(2023·全国·高三专题练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ⊥平面ABC ,写出:平面BHD 的一个法向量___________;【答案】()(答案不唯一)【分析】利用向量法得出平面BHD的一个法向量.【详解】由题意可知23CH OC DH===,则(),0,1,0,0,,333H B D⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭0,0,3HD⎛⎫= ⎪⎪⎝⎭,1,3BH⎛⎫=- ⎪⎪⎝⎭.设(),,n x y z=为平面BHD的一个法向量,则3n HD zn BH x y⎧⋅==⎪⎪⎨⎪⋅=-=⎪⎩,不妨设1x=,则()n=.故平面BHD的一个法向量为().故答案为:()(答案不唯一)变式5.(2023春·高二课时练习)在棱长为2的正方体1111ABCD A B C D-中,E,F分别为棱1111,A D A B的中点,在如图所示的空间直角坐标系中,求:(1)平面11BDD B的一个法向量;(2)平面BDEF的一个法向量.【答案】(1)(2,2,0)=-AC(答案不唯一)(2)(2,2,1)n=--(答案不唯一)【分析】(1)利用线面垂直的判定定理求解法向量;(2)利用空间向量的坐标运算求平面的法向量.【详解】(1)由题意,可得()()()()()0,0,0,2,2,0,2,0,0,0,2,0,1,0,2D B A C E ,连接AC ,因为底面为正方形,所以AC BD ⊥,又因为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,所以1DD AC ⊥,且1BD DD D = ,则AC ⊥平面11BDD B ,∴(2,2,0)=-AC 为平面11BDD B 的一个法向量.(答案不唯一).(2)(2,2,0),(1,0,2).DB DE ==设平面BDEF 的一个法向量为(,,)n x y z =,则,0220,,120,.02y x n DB x y x z z x n DE =-⎧⎧⋅=+=⎧⎪⎪∴∴⎨⎨⎨+=-⋅=⎩⎪⎪⎩⎩令2x =,得2, 1.y z =-=-∴(2,2,1)n =--即为平面BDEF 的一个法向量.(答案不唯一).变式6.【多选】(2023春·福建宁德·高二校联考期中)已知空间中三个向量()2,1,0AB = ,()1,2,1AC =- ,()3,1,1BC =-,则下列说法正确的是()A .AB与AC 是共线向量B .与AB同向的单位向量是,55⎛⎫ ⎪ ⎪⎝⎭C .BC 在AB方向上的投影向量是()2,1,0--D .平面ABC 的一个法向量是()1,2,5-【答案】BCD【分析】A :由向量共线定理,应用坐标运算判断是否存在R λ∈使AB AC λ= ;B :与AB同向的单位向量是||ABAB 即可判断;C :由投影向量的定义可解;D :应用平面法向量的求法求平面ABC 的一个法向量,即可判断.【详解】A :若AB与AC 共线,存在R λ∈使AB AC λ= ,则2120λλλ=-⎧⎪=⎨⎪=⎩无解,故不共线,错误;B :与AB同向的单位向量是||AB AB ==,正确;C:由cos ,11||||AB BCAB BC AB BC ⋅==-,则BC 在AB方向上的投影向量是()cos ,2,1,0AB BC AB BC AB ⎛=⨯-- ⎝⎭,正确;D :若(,,)m x y z = 是面ABC 的一个法向量,则2020m AB x y m AC x y z ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,令=2y -,则(1,2,5)m =- ,正确.故选:BCD变式7.(2023春·四川成都·高二成都市锦江区嘉祥外国语高级中学校考期中)已知()2,0,2a =,()3,0,0= b 分别是平面α,β的法向量,则平面α,β交线的方向向量可以是()A .()1,0,0B .()0,1,0C .()0,0,1D .()1,1,1【答案】B【分析】根据平面的交线都与两个平面的法向量垂直求解.【详解】因为四个选项中,只有()()()0,1,02,0,20,1,00⋅=⋅=a ,()()()0,1,03,0,00,1,00⋅=⋅=b ,所以平面α,β交线的方向向量可以是()0,1,0故选:B变式8.(2023秋·福建南平·高二统考期末)已知四面体ABCD 的顶点坐标分别为()0,0,2A ,()2,2,0B ,()1,2,1C ,()2,2,2D .(1)若M 是BD 的中点,求直线CM 与平面ACD 所成的角的正弦值;(2)若P ,A ,C ,D 四点共面,且BP ⊥平面ACD ,求点P 的坐标.【答案】3(2)482,,333⎛⎫ ⎪⎝⎭【分析】(1)由题意分别求出向量()1,0,0CM = 和平面ACD 的一个法向量()1,1,1n =--,再用直线与平面所成的角的正弦值公式代入计算即可;(2)由题意,(),,BP n λλλλ==--,于是点P 的坐标为()2,2,λλλ+--,由P ,A ,C ,D 四点共面,可设AP xAD y AC =+ ,将,AP AD AC ,坐标分别代入即可解得23λ=-,从而求得点P 的坐标.【详解】(1)由题意,()1,2,1AC =- ,()2,2,0AD = ,()2,2,1M ,()1,0,0CM =,可设平面ACD 的法向量(),,n x y z =,则00n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即20220x y z x y +-=⎧⎨+=⎩,化简得z xy x=-⎧⎨=-⎩.令1x =,则1y =-,1z =-,可得平面ACD 的一个法向量()1,1,1n =--,设直线CM 与平面ACD ,则sin 3CM n CM n θ⋅===⋅ ,即直线CM 与平面ACD(2)由题意,(),,BP n λλλλ==-- ,于是点P 的坐标为()2,2,λλλ+--,又P ,A ,C ,D 四点共面,可设AP xAD y AC =+,即()()()2,2,22,2,01,2,1x y λλλ+---=+-,即222222x y x y y λλλ+=+⎧⎪-=+⎨⎪--=-⎩,解得23λ=-,所以所求点P 的坐标为482,,333⎛⎫⎪⎝⎭.变式9.(2023春·湖北·高二校联考阶段练习)已知点()2,6,2A -在平面α内,()3,1,2=n 是平面α的一个法向量,则下列点P 中,在平面α内的是()A .()1,1,1P -B .31,3,2P ⎛⎫ ⎪⎝⎭C .31,3,2P ⎛⎫- ⎪⎝⎭D .31,3,4P ⎛⎫--- ⎪⎝⎭【答案】A【分析】根据每个选项中P 点的坐标,求出AP的坐标,计算AP n ⋅ ,根据结果是否等于0,结合线面垂直的性质,即可判断点P 是否在平面α内.【详解】对于选项A ,()1,5,1AP =-- ,所以1351120AP n ⋅=-⨯+⨯-⨯= ,根据线面垂直的性质可知AP α⊂,故()1,1,1P -在平面α内;对于选项B ,11,9,2AP ⎛⎫=-- ⎪⎝⎭ ,则11391202AP n ⋅=-⨯+⨯+⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫ ⎪⎝⎭不在平面α内;对于选项C ,11,3,2AP ⎛⎫=-- ⎪⎝⎭ ,则11331202AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,2P ⎛⎫- ⎪⎝⎭不在平面α内;对于选项D ,113,3,4AP ⎛⎫=-- ⎪⎝⎭ ,则113331204AP n ⋅=-⨯+⨯-⨯≠ ,()2,6,2A -在平面α内,根据线面垂直的性质可知AP α⊄,故31,3,4P ⎛⎫--- ⎪⎝⎭不在平面α内;故选:A变式10.(2023春·河南·高二临颍县第一高级中学校联考开学考试)已知点()01,2,3P -在平面α内,平面{}00P n P P α=⋅= ∣,其中()1,1,1n =-是平面α的一个法向量,则下列各点在平面α内的是()A .()2,4,8-B .()3,8,5C .()2,3,4-D .()3,4,1-【答案】B【分析】由法向量的定义结合数量积运算确定y =x+z ,再判断选项.【详解】设(),,P x y z 是平面α内的一点,则()01,2,3P P x y z =+--,所以()()()1230x y z +--+-=,即y =x+z ,选项B 满足.故选:B考点三:用空间向量证明平行问题(一)判断直线、平面的位置关系例3.(2023秋·湖北黄石·高二校考阶段练习)若直线l 的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,则()A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交【答案】A【分析】直线的一个方向向量()257,,a = ,平面α的一个法向量为()111,,u →=-,计算数量积,即可判断出结论.【详解】 直线的一个方向向量为()257,,a = ,平面α的一个法向量为()111,,u →=-,2570a u →→∴⋅=+-=,∴a u →→⊥,l α∴∥或l ⊂α,故选:A变式1.(2023春·高二单元测试)若平面α与β的法向量分别是()1,0,2a =-,()1,0,2b =-r,则平面α与β的位置关系是()A .平行B .垂直C .相交不垂直D .无法判断【答案】A【分析】利用平面法向量的位置关系,即可判断两平面的位置关系.【详解】因为()1,0,2a =- ,()1,0,2b =-r是平面α与β的法向量,则a b =-,所以两法向量平行,则平面α与β平行.故选:A变式2.(2023春·山东菏泽·高二统考期末)已知平面α与平面ABC 是不重合的两个平面,若平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,则平面α与平面ABC 的位置关系是________.【答案】平行【分析】分别计算AB m ⋅ ,AC m ⋅ ,可得0m AB ⋅= ,0m AC =⋅ ,从而可知m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,所以可得平面α与平面ABC 平行.【详解】平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,()220410AB m =⨯⨯=⋅++- ,()2116410AC m =⨯+-⨯+⨯=⋅,所以m AB ⊥ ,m AC ⊥ ,m ⊥平面ABC ,平面ABC 的一个法向量为(2,1,4)m =-,又因为平面α与平面ABC 是不重合的两个平面所以平面α与平面ABC 平行.故答案为:平行.变式3.(2023秋·陕西宝鸡·高二统考期末)在长方体ABCD A B C D -''''中,222AA AB AD '===,以点D 为坐标原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴建立空间直角坐标系,设对角面ACD '所在法向量为(,,)x y z ,则::x y z =__________.【答案】2:2:1【分析】利用法向量的求法进行求解即可【详解】由题意得()1,0,0A ,()0,1,0C ,()0,0,2D ',()1,1,0AC =- ,()1,0,2AD '=-,因为平面ACD '的法向量为(),,n x y z = ,则00AC n AD n '⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z -+=⎧⎨-+=⎩,取()20x k k =≠,则2,y k z k ==,故::2:2:1x y z =故答案为:2:2:1变式4.【多选】(2023春·甘肃张掖·高二高台县第一中学校考期中)下列利用方向向量、法向量判断线、面位置关系的结论中正确的是()A .若两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,则12//l l B .若直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-,则l //αC .若两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则//αβD .若平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,向量()11,,n u t =是平面α的法向量,则1u t +=【答案】ACD【分析】利用空间向量共线定理判断A 即可;由,a μ的关系式即可判断B ;由12,n n 的关系即可判断选项C,利用平面内法向量的性质即可判断D.【详解】因为两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,所以a b =-,所以,a b 共线,又直线1l ,2l 不重合,所以12//l l ,故A 正确;因为直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0μ=-且53a μ=-,所以l α⊥,故B 不正确;两个不同平面α,β的法向量分别为()12,1,0n =- ,()24,2,0n =-,则有212n n =-,所以//αβ,故C 正确;平面α经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,所以()(),,1,1,11,1,0B B A C --==又向量()11,,n u t = 是平面α的法向量,所以1111010100AB n AB n u t u BC n BC n ⎧⎧⊥⋅=-++=⎧⎪⎪⇒⇒⎨⎨⎨-+=⊥⊥=⎩⎪⎪⎩⎩则1u t +=,故D 正确,故选:ACD.(二)已知直线、平面的平行关系求参数例4.(2022秋·广东广州·高二广州市第九十七中学校考阶段练习)直线l 的方向向量是()1,1,1s =- ,平面α的法向量()222,,n x x x =+-,若直线//l 平面α,则x =______.【答案】2【分析】线面平行时,直线的方向向量垂直于平面的法向量,即它们的数量积为零,根据数量积的坐标表示列出方程求解即可.【详解】解:若直线//l 平面α,则0s n ⋅=,22220x x x x ∴-++-=-=,解得2x =,故答案为:2.变式1.(2023秋·上海浦东新·高二上海南汇中学校考期末)已知直线l 的一个方向向量为(1,2,1)d =-,平面α的一个法向量(,4,2)n x =-,若//l α,则实数x =_______.【答案】10【分析】根据直线与平面平行,得到直线的方向向量与平面的法向量垂直,进而利用空间向量数量积为0列出方程,求出x 的值.【详解】因为//l α,所以直线l 的方向向量与平面α的法向量垂直,即(,4,2)(1,2,1)820n d x x ⋅=-⋅-=--=,解得:10x =.故答案为:10变式2.(2022秋·天津蓟州·高二校考期中)直线l 的方向向量是()1,1,1s →=,平面α的法向量()21,,n x x x →=--,若直线l α∥,则x =___________.【答案】1【分析】结合已知条件可得s n →→⊥,然后利用垂直向量的数量积为0即可求解.【详解】由题意可知,s n →→⊥,因为()1,1,1s →=,()21,,n x x x →=--,从而210s n x x x →→⋅=+--=,解得1x =.故答案为:1.变式3.(2023春·上海·高二校联考阶段练习)已知平面α的一个法向量为()11,2,3n =-,平面β的一个法向量为()22,4,n k =--,若//αβ,则k 的值为______【答案】6【分析】因为法向量定义,把//αβ转化为12//n n,可得k 的值.【详解】因为平面α的一个法向量为()11,2,3n =- ,平面β的一个法向量为()22,4,n k =--,又因为//αβ,所以12//n n,可得()()342k -⨯-=,即得6k =.故答案为:6.(三)证明直线、平面的平行问题例5.(2022春·江苏镇江·高二江苏省镇江第一中学校联考期末)如图,三棱柱11ABC AB C -中侧棱与底面垂直,且AB =AC =2,AA 1=4,AB ⊥AC ,M ,N ,P ,D 分别为CC 1,BC ,AB ,11B C 的中点.求证:PN ∥面ACC 1A 1;【解析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()10,0,4A ,()2,0,0B ,()0,2,2M ,()1,1,0N ,()1,0,4P .取向量()2,0,0AB = 为平面11ACC A 的一个法向量,()0,1,4PN =-,∴()0210400PN AB ⋅=⨯++-=⨯⨯,∴PN AB ⊥ .又∵PN ⊄平面11ACC A ,∴PN ∥平面11ACC A .变式1.(2023·天津和平·耀华中学校考二模)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形,线段AD 的中点为O 且PO ⊥底面ABCD ,112AB BC AD ===,π2BAD ABC ∠==∠,E 是PD 的中点.证明:CE ∥平面PAB ;【解析】连接OC ,因为//,AO BC AO BC =,所以四边形OABC 为平行四边形,所以//AB OC ,所以OC AD ⊥,以OC ,OD ,OP 分别为x ,y ,z轴建立空间直角坐标系,则(P ,()0,1,0A -,()1,1,0B -,()1,0,0C.11,22CE ⎛⎫=- ⎪ ⎪⎝⎭,(0,1,PA =-,(1,1,PB =- ,设平面PAB 的一个法向量为()1,,n x y z =,则1100PA n y PB n x y ⎧⋅=--=⎪⎨⋅=--=⎪⎩ ,则0x =,令1z =-,y =平面PAB的一个法向量()11n =-,1022CE n ⋅== ,则1CE n ⊥ ,又CE ⊄平面PAB ,所以//CE 平面PAB .变式2.(2023·湖北黄冈·浠水县第一中学校考模拟预测)如图,在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,D ,E 分别为棱AB ,11B C 的中点,2BC =,AB =114AC =.证明://DE 平面11ACC A ;【解析】证明:在三棱柱111ABC A B C -中,1BB ⊥平面ABC ,2BC =,AB =114AC =.所以114AC AC ==,则222AC AB BC =+,则AB BC ⊥,则如下图,以B 为原点,1BC BA BB ,,为x y z ,,轴建立空间直角坐标系,设1BB h =,则()()()00000200A B C ,,,,,,,,()()()()()111000200010A h B h C h D E h ,,,,,,,,,,,,所以()1DE h =,()()12000AC AA h =-=,,,,,设平面11ACC A 的一个法向量为()n x y z =,,,所以1200AC n x AA n hz ⎧⋅=-=⎪⎨⋅==⎪⎩ ,令1y =,则0x z ==,即)0n =,,所以())1000DE n h ⋅=⋅==,,得DE n ⊥,又DE ⊄平面11ACC A ,所以//DE 平面11ACC A ;变式3.(2023春·江苏盐城·高二盐城市大丰区南阳中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ==,1AB =.求证://MN 平面BDE ;【解析】因为PA ⊥底面ABC ,90BAC ∠=︒,建立空间直角坐标系如图所示,则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(0,1,1),(0,0,),(,1,0),(0,0,2)22A B C D E M N P ,所以(0,1,0),(1,0,1)DE DB ==-,设(,,)n x y z =为平面BDE 的法向量,则0n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩ ,即00y x z =⎧⎨-=⎩,不妨设1z =,可得(1,0,1)n = ,又11,1,22MN ⎛⎫=- ⎪⎝⎭ ,可得0MN n ⋅=,因为MN ⊄平面BDE ,所以//MN 平面BDE ,变式4.(2023·天津南开·南开中学校考模拟预测)在四棱锥P ABCD -中,PA ⊥底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ⊥,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.求证://DM 平面PAB ;【解析】证明:以A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()0,2,0D ,()002P ,,,()2,4,0C ,()1,2,1M ,()2,1,0E ,()1,0,1DM =,易知平面PAB 的一个法向量为()0,2,0AD = ,故0DM AD ⋅=,则DM AD ⊥ ,又DM ⊂/平面PAB ,故//DM 平面PAB .变式5.(2023·四川成都·校考一模)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,AD MN ⊥,2AB =,4AD AP ==,M ,N 分别是BC ,PD 的中点.求证:MN ∥平面PAB ;【解析】(1)由题意,在矩形ABCD 中,2AB =,4AD AP ==,AB AD ⊥,M ,N 分别是BC ,PD 的中点,∴11222BM CM BC AD ====,2AB CD ==,在四棱锥P ABCD -中,面PAD ⊥平面ABCD ,面PAD ⋂面ABCD AD =,AB AD ⊥,∴AB ⊥面PAD ,PA ⊂面PAD ,∴PA AB ⊥,取AP 中点E ,连接BE ,由几何知识得BE MN ∥,∵AD MN ⊥,∴AD BE ⊥,AD AB⊥∵BE ⊂面PAB ,AB ⊂面PAB ,AB BE B = ∴AD ⊥面PAB ,∴PA AD⊥以AB 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系如下图所示,∴()()()()()()()0,0,0,2,0,0,2,4,0,0,4,0,0,0,4,2,2,0,0,2,2A B C D P M N ,∴()2,0,2MN =- ,面PAB 的一个法向量为()0,4,0AD =,∵2004200MN AD ⋅=-⨯+⨯+⨯=,∴MN ∥平面PAB .变式6.(2021·高二课时练习)如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F AG ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .【答案】证明见解析【分析】构建以D 为原点,1,,DA DC DD为x 、y 、z 轴正方向的空间直角坐标系,令1,,AB a BC b BB c ===写出EF 、EG uu ur 、PQ 、PR ,进而求面EFG 、面PQR 的法向量m 、n ,根据所得法向量的关系即可证结论.【详解】构建以D 为原点,1,,DA DC DD为x 、y 、z轴正方向的空间直角坐标系,如下图示,设1,,AB a BC b BB c ===(,,1)a b c >,又1111A E A F AG ===,1CP CQ CR ===,∴(,0,1)E b c -,(,1,)F b c ,(1,0,)G b c -,(0,,1)P a ,(0,1,0)Q a -,(1,,0)R a ,∴(0,1,1)EF = ,(1,0,1)EG =- ,(0,1,1)PQ =--,(1,0,1)PR =- ,设(,,)m x y z = 是面EFG 的一个法向量,则00EF m y z EG m z x ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,令1x =,(1,1,1)m =- ,设(,,)n i j k = 是面PQR 的一个法向量,则00PQ n j k PR n i k ⎧⋅=--=⎪⎨⋅=-=⎪⎩ ,令1i =,(1,1,1)n =- ,∴面EFG 、面PQR 的法向量共线,故平面//EFG 平面PQR ,得证.变式7.(2023·上海普陀·ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F.求证:平面BDE ∥平面B 1D 1F ;【解析】(1)以A 为原点,AB ,AD ,AA 1所在直线为坐标轴,建立空间直角坐标系,如图则B (1,0,0),D (0,1,0),E (0,0,2),B 1(1,0,4),D 1(0,1,4),F (1,1,2),∵()10,1,2DE FB ==-,∴DE ∥FB 1,1//,DE FB DE ⊄ 平面11B D F ,1FB ⊂平面11B D F ,//DE ∴平面11B D F ,同理//BD 平面11B D F ,∵BD ⊂平面BDE ,DE ⊂平面BDE ,BD DE D ⋂=平面BDE ,∴平面//BDE 平面11B D F .考点四:利用空间向量证明垂直问题(一)判断直线、平面的位置关系例6.(2021秋·北京·高二校考期中)直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,则()A .12l l ⊥B .1l ∥2l C .1l 与2l 相交不平行D .1l 与2l 重合【答案】A【分析】由题意可得0a b ⋅= ,即得a b ⊥,从而得12l l ⊥,即得答案.【详解】解:因为直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--=,(1,3,1)(8,2,2)8620a b ⋅=--⋅=--=所以a b ⊥ ,即12l l ⊥.故选:A.变式1.(2022秋·北京·高二校考阶段练习)若直线l 的方向向量为e (2,3,1)=-,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,则直线l 和平面α位置关系是()A .l α⊥B .//l αC .l α⊂D .不确定【答案】A【分析】根据题意判断直线l 的方向向量和平面α的法向量的关系,即可判断直线l 和平面α位置关系.【详解】由题意直线l 的方向向量为e (2,3,1)=- ,平面α的法向量为311,,22n ⎛⎫=-- ⎪⎝⎭ ,可知e 2n =-,故l α⊥,故选:A变式2.【多选】(2022秋·广东珠海·高二珠海市斗门区第一中学校考期末)已知v为直线l 的方向向量,12,n n 分别为平面α,β的法向量(α,β不重合),那么下列说法中正确的有().A .12n n αβ⇔∥∥B .12n n αβ⊥⇔⊥C .1v n l ⇔ α∥∥D .1v n l ⊥⇔⊥ α【答案】AB【分析】根据法线面垂直平行的性质及法向量、方向向量的概念即可选出选项.【详解】解:若12n n∥,因为α,β不重合,所以αβ∥,若αβ∥,则12,n n 共线,即12n n∥,故选项A 正确;若12n n ⊥,则平面α与平面β所成角为直角,故αβ⊥,若αβ⊥,则有12n n ⊥,故选项B 正确;若1v n ∥,则l α⊥,故选项C 错误;若1v n ⊥,则l α∥或l ⊂α,故选项D 错误.故选:AB变式3.(2023春·江苏·高二南师大二附中校联考阶段练习)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=--,则12l l ∥B .直线l 的方向向量()112a ,,=- ,平面α的法向量是()6,4,1u =-,则l α⊥C .两个不同的平面,αβ的法向量分别是()()2,2,1,3,4,2u v =-=-,则αβ⊥D .直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0u =-,则l α∥【答案】AC【分析】根据条件,利用方向向量、法向量的定义与性质,结合空间向量的平行和垂直,对各选项逐项判断即可.【详解】解:对于A ,两条不重合直线1l ,2l 的方向向量分别是(2,3,1),(2,3,1)a b =-=--,则b a =-,所以//a b ,即12l l //,故A 正确;对于C ,两个不同的平面α,β的法向量分别是(2,2,1),(3,4,2)u v =-=-,则0u v =⋅,所以αβ⊥,故C 正确;对于B ,直线l 的方向向量(1,1,2)a =- ,平面α的法向量是(6,4,1)u =-,则16142(1)0a u ⋅=⨯-⨯+⨯-= ,所以a u ⊥,即//l α或l ⊂α,故B 错误;对于D ,直线l 的方向向量(0,3,0)a = ,平面a 的法向量是(0,5,0)u =-,则53u a =-,所以//μα ,即l α⊥,故D 错误.故选:AC .变式4.【多选】(2022·高二课时练习)下列命题是真命题的有()A .A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =- ,直线m 的方向向量12,1,2b ⎛⎫=- ⎪⎝⎭r 为,则l 与m 垂直C .直线l 的方向向量为()1,1,2a =- ,平面α的法向量为10,1,2n ⎛⎫= ⎪⎝⎭ ,则l ⊥αD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,()1,,=rn u t 是平面α的法向量,则u +t =1【答案】ABD【分析】由基底的概念以及空间位置关系的向量证明依次判断4个选项即可.【详解】解:对于A ,A ,B ,M ,N 是空间四点,若,,BA BM BN不能构成空间的一个基底,则,,BA BM BN共面,可得A ,B ,M ,N 共面,故A 正确;对于B ,2110a b ⋅=--=,故a ⊥ ,可得l 与m 垂直,故B 正确;对于C ,0110a n ⋅=-+= ,故a n ⊥,可得在α内或l ∥α,故C 错误;对于D ,()1,1,1AB =- ,易知AB n ⊥,故﹣1+u +t =0,故u +t =1,故D 正确.故选:ABD .(二)已知直线、平面的垂直关系求参数例7.(2023春·北京海淀·高二中央民族大学附属中学校考开学考试)已知平面α的法向量为()1,2,0n = ,直线l 的方向向量为v,则下列选项中使得l α⊥的是()A .()2,1,0v =-B .()2,1,0v =C .()2,4,0v =D .()1,2,0v =-【答案】C【分析】根据法向量与方向向量的定义,即可求得本题答案.【详解】若l α⊥,则直线l 的方向向量v垂直于平面α,所以v与平面α的法向量()1,2,0n = 平行,显然只有选项C 中2v n = 满足.故选:C变式1.(江苏省扬州市2022-2023学年高二下学期6月期末数学试题)已知直线l 的方向向量为()2,1,2e =-,平面α的法向量为()()2,,,n a b a b a b =--+∈R.若l α⊥,则3a b +的值为()A .5-B .2-C .1D .4【答案】A【分析】根据题意得到//e n ,进而得到方程组12a b a b -=⎧⎨+=-⎩,求得,a b 的值,即可求解.【详解】由直线l 的方向向量为()2,1,2e =-,平面α的法向量为()2,,n a b a b =--+ ,因为l α⊥,可得//e n ,所以2212a b a b--+==-,即12a b a b -=⎧⎨+=-⎩,解得13,22a b =-=-,所以193522a b +=--=-.故选:A.变式2.(2023春·高二课时练习)已知()()3,,,R u a b a b a b =-+∈ 是直线l 的方向向量,()1,2,4n =r是平面α的法向量.若l α⊥,则ab =______.【答案】27【分析】根据线面垂直的概念,结合法向量的性质可得u n ∥,进而求得,a b ,即得.【详解】∵l α⊥,∴//u n ,∴3124a b a b-+==,故612a b a b -=⎧⎨+=⎩,解得93a b =⎧⎨=⎩,∴27ab =.故答案为:27.变式3.(2022秋·广东珠海·高二珠海市实验中学校考阶段练习)若直线l 方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m 为()A .1B .2C .4D .54-【答案】C【分析】由l α⊥可知l 的方向向量为与平面α的法向量平行,再利用向量共线定理即可得出.【详解】l α⊥ ,l ∴的方向向量为()2,1,m 与平面α的法向量11,,22⎛⎫⎪⎝⎭平行,∴1(2,1,)(1,,2)2m λ=.∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得4m =.故选:C .变式4.(2023春·江苏盐城·高二江苏省响水中学校考阶段练习)如图,在正三棱锥D -ABC中,AB =,2DA =,O 为底面ABC 的中心,点P 在线段DO 上,且PO DO λ=uu u r uuu r,若PA ⊥平面PBC ,则实数λ=()A .12B .13-C.4D.6【答案】D【分析】由正棱锥的结构特征构建空间直角坐标系,根据已知条件确定相关点坐标并求出面PBC 的法向量,结合线面平行及向量共线定理求参数λ即可.【详解】由题设,△ABC2DA DB DC ===,等边△ABC32=,在正棱锥中,以O 为原点,平行CB 为x 轴,垂直CB 为y 轴,OD 为z 轴,如上图示,则11(0,1,0),(,,0),(,,0),2222A B C D --,且)P ,所以)AP =,1,)2PB =,CB = ,若(,,)m x y z = 为面PBC的法向量,则1020PB m y z CB m ⎧⋅=+=⎪⎨⎪⋅==⎩ ,令1z =,则(0,,1)m = ,又PA ⊥平面PBC ,则AP km = 且k为实数,101k k λ⎧=⎪⎪=⎨⎪≤≤⎪⎩,故λ=.故选:D(三)证明直线、平面的垂直问题例8.(2023春·高二课时练习)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3,试证明AM ⊥平面BMC .。

待定系数法

待定系数法

待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组:1.设f(x)=x2+m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。

A. 52, -2 B. -52, 2 C.52, 2 D. -52,-22.二次不等式ax2+bx+2>0的解集是(-12,13),则a+b的值是_____。

A. 10B. -10C. 14D. -143.在(1-x3)(1+x)10的展开式中,x5的系数是_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 10 讲 待定系数法(高中版)
(第课时)
D
重点:1.
;2.;3.。

难点
:1.;2.;
3.;。

其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

待定系数法是中学数学常用的方法,它常用在求代数式的值、因式分解、恒等变形、求函数表达式、数列求和、求复数、求曲线方程等等方面。

使用待定系数法解题的基本步骤是:第一步,针对所求问题,确定含有待定系数的解析式;第二步,列出一组含待定系数的方程;第三步,解方程组确定待定系数或者消去待定系数。

确定待定系数的值常用比较系数法或特殊值法。

二次函数解析式有三种表达形式,
1.一般式:y=ax 2+bx+c ;其中 a≠0, a, b, c 为常数 2.顶点式:y=a(x-h)2+k ;其中a≠0, a, h, k 为常数,(h,k )为顶点坐标。

3.交点式:y=a(x-x 1)(x-x 2);其中a≠0, a, x 1,x 2 为常数,x 1,x 2是抛物线与横轴两交点的横坐标。

每种形式都有三个待定的系数,所以用待定系数法求二次函数解析式应注意以下几点: 根据题目给定的条件注意选择适当的表达形式,一般已知抛物线的顶点,用顶点式;已知抛物线与x 轴的两个交点(或与x 轴的一个交点及对称轴),用交点式。

解题过程中待定的系数越少,需构造的方程也越少,这样可以大大简化计算过程,故尽量由已知条件先行直接确定某些系数。

若题目给定二次函数解析式的某种形式(如y=ax 2+ bx+c=0 (a≠0)),那么最后的结果必须写成此种形式。

1.待定系数法在求数列通项中的应用
例.(高三)数列{a n }满足a 1=1,a n =
21
a 1
n +1(n ≥2),求数列{a n }的通项公式。

分析:一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解,只要设 a 1+n +k=p (a n +k )并与原式比较系数可得出 k ,从而得等比数列{a n +k }。

解:令 a n +k =
21(a 1-n +k ) ,即 a n =21a 1-n -21
k ,与原式比较系数可得 k=-2 , 则由a n =21a 1-n +1(n ≥2)得 a n -2=2
1
(a 1-n -2),而 a 1-2=1-2=-1 ,
∴ 数列{ a n -2}是以21
为公比,-1为首项的等比数列,
∴ a n -2=-(21)1-n ,∴ a n =2-(2
1)1
-n 。

点评:本题使用待定系数法求数列通项。

例.(高三)数列{a n }满足23,5,21221+-==++n n a a a a n a =0,求数列{a n }的通项公式。

分析:对于 n n n qa pa a +=++12 型的递推式,通过对系数p 的分解,可得等比数列
}{1--n n a a ,这只要设 )(112n n n n ka a h ka a -=-+++ ,再比较系数得 q hk p k h =-=+,
q hk =- 可解得h 、k 。

本题递推式 02312=+-++n n n a a a 中含相邻三项,因而考虑每相邻两项的组合,即把中间一项1+n a 的系数分解成1和2,适当组合,可发现一个等比数列}{1--n n a a 。

解:由 02312=+-++n n n a a a 得 0)(2112=---+++n n n n a a a a , 即 )n n n n a a a a -=-+++112(2 ,且 32512=-=-a a ,
∴ }{1n n a a -+是以2为公比,3为首项的等比数列,∴ 1123-+⋅=-n n n a a , 利用逐差法可得112111)()()(a a a a a a a a n n n n n +-++-+-=-++
=223232
3021
+⋅++⋅+⋅-- n n
=2)1222(32
1+++++⋅-- n n
=221213+--⋅
n
=123-⋅n
∴ 1231-⨯=-n n a 。

2.待定系数法在求复数中的应用
3.待定系数法在三角中的应用
4.待定系数法在立几中的应用
5.待定系数法在求曲线方程中的应用
解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设曲线方程→条件转换成关于待定系数的方程(组)→求出系数→把系数代入所设的曲线方程。

例.(高三)一个圆经过 )1,2(-p 点,和直线 1=-y x 相切,并且圆心在直线 x y 2-=上,求它的方程。

解:设圆的方程为2
2
2
)()(r b y a x =-+-,
则 ⎪⎪

⎪⎪⎨⎧-==+-=-+--a b r
b a r b a 221)1()2(222 解之得 ⎪⎩⎪⎨⎧=-==214189r b a 或 ⎪⎩

⎨⎧=-==2221r b a
故所求方程为 392)18()9(22=++-y x 或 8)2()1(22=++-y x 。

1 2 3 4 5 6 7 8 求数列通项
√ √ 复数 求复数 三角 立几
解几
求曲线方程

1.(高三)数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。

解:由 0731=-++n n a a 得 3
7
3
11+
-=+n n a a , 设 a )(311k a k n n +-=++ ,比较系数得 373=--k k ,解之得 47
-=k ,
∴ {47-n a }是以31-为公比,以 43
471471-=-=-a 为首项的等比数列,
∴ 1
)31(4347--⨯-=-n n a ,
∴ 1
)3
1(4347--⨯-=n n a 。

点评:本题使用待定系数法求数列通项。

2.(高三)数列{a n }中,n n n a a a a a +===++122123,2,1,求数列{a n }的通项公式。

解:由n n n a a a +=++1223得,3
1
3212n n n a a a +=++设)(112n n n n ka a h ka a -=-+++ 比较系数得3132=-=+kh h k ,,解得31,1-==h k 或1,31
=-=h k 若取31,1-==h k ,则有)(3
1
112n n n n a a a a --=-+++
∴}{1n n a a -+是以31
-为公比,以11212=-=-a a 为首项的等比数列
∴1
1)3
1(-+-=-n n n a a
由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---
=11)3
1
()31()31()
3
1(232
++-+-++-+--- n n
=13
11)31
(11
++---n =11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n
点评:若本题中取1,31=-=h k ,则有n n n n a a a a 3131112+=++++即得}3
1
{1n n a a ++为常
数列,故3
73123131311211=+=+==+=+
-+a a a a a a n n n n 。

3.(高三)设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程。

【分析】求椭圆方程,根据所给条件,确定几何数据a 、b 、c 之值,问题就全部解决了。

设a 、b 、c 后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为a -c 的值后列出第二个方程。

【解】 设椭圆长轴2a 、短轴2b 、焦距2c ,则|BF ’|=a ∴ a b c a a b a c 222
222
2105
=++=-=-⎧⎨⎪⎩⎪() 解得:a b ==⎧⎨⎪⎩⎪105
∴ 所求椭圆方程是:x 210+y 2
5
=1
点评:本题使用待定系数法求曲线方程。

本题也可由垂直关系推证出等腰Rt △BB ’F ’后,由
其性质推证出等腰Rt △B ’O ’F ’,再解 b c a c a b c
=-=-=+⎧⎨⎪
⎩⎪105222 ,更容易求出a 、b 的值。

相关文档
最新文档