振动大实例与原因分析

合集下载

“空调中的振动和噪音问题”案例分析

“空调中的振动和噪音问题”案例分析

“空调中的振动和噪音问题”案例分析一.配管振动过大及断管1.该机型振幅最大的部位B图2.11 该机型振幅最大的部位示意图日前我们碰到一个案例,某新开发的机型排气管振动非常大。

通常情况下,由于压缩机的机械振动传递到排气管上引发的振动,排气管振幅最大的部位会发生在图2.11所示的A 部位,而该机型振幅最大的部位发生在图中所示的B部位。

同时,采取增加配重块,粘贴防振胶的效果也不很明显。

根据以上现象判断,排气管振动大的主要原因可能是管内冷媒压力波动引发的配管振动,并且该部位位于一个90o弯位附近,这种可能性大大增加。

根据我们的分析,结合前面理论分析的结果,制定了图2.12和2.13所示的两种解决方案,经过实验测试,两种解决方案都可以使排气管振动有明显地改善,证明了我们的分析结论和整改措施是有效的。

图2.12 排气管整改措施(一)图2.13 排气管整改措施(二)2.为了减小运输过程中配管组件可能受到的较大载荷,需要解决两个问题,一个是减小汽车加速和制动过程中压缩机惯性力作用下对配管产生的较大的瞬间载荷,另一个即是减小配管发生共振的可能性及减小路面冲击对空调器包装箱的作用。

为了减小压缩机惯性力对配管可能产生的较大的瞬间载荷,可以在装配中先将压缩机底脚螺栓锁紧,等运输到达目的地之后装机过程中再按照要求松开底脚螺栓。

而调整管路的刚度、质量等使其低阶固有频率尽量高于20Hz ,同时改进包装形式减小汽车悬架振动对机器的传递可以有效降低配管发生共振的可能性。

例如,某新型号柜式空调投放市场前的系列实验结束后,发现有制冷剂泄漏现象,经检查发现在毛细管和过渡管的连接处出现裂纹,如图3.7所示,但是究竟在哪个环节发生的问题需要进一步分析才能得出结论。

图3.7 裂纹发生部位示意图可以初步肯定的是,在实验中某个环节毛细管组件振动过大是裂纹发生的最根本原因,从裂纹发生阶段来看,可能的原因主要有以下三个:⑴ 高压阀毛细管组件在运行中振动过大或发生了共振;出现裂纹处⑵运输过程中高压阀毛细管组件受到的振动、冲击过大;⑶毛细管与过渡管焊接质量缺陷;长期运行实验中,如果毛细管组件振动过大或已经发生了共振,可能会在毛细管与过渡管的焊口位置产生较大弯矩,该处应力长时间处于较高水平,有可能超过材料的疲劳极限从而导致裂纹的产生。

磨煤机振动大原因分析及预防措施

磨煤机振动大原因分析及预防措施

磨煤机振动大原因分析及预防措施磨煤机在使用过程中出现振动大的问题,可能会给设备的正常运行产生影响,甚至会导致设备的故障。

下面对磨煤机振动大的原因进行分析,并提出相应的预防措施。

1.设备零件磨损严重:长时间使用后,磨煤机的一些零件会产生磨损,如轴承、齿轮等;当这些零件磨损到一定程度时,会导致设备振动加大,从而影响设备的正常运行。

2.设备安装不稳定:设备的安装稳定与否直接影响设备的运行情况,若设备在安装的过程中没有进行稳固的固定,或者底座不平整、松动等问题都会导致设备的振动加大。

3.磨煤机内部物料不均匀:在磨煤机内部,如果物料堆积不均匀或者物料硬度不一致,就会导致设备的振动加大。

4.电机故障:设备的电机是磨煤机正常运行的重要组成部分,如果电机存在断相、电流不平衡等问题,就会导致设备振动大。

5.设备平衡性差:在旋转时,磨煤机需要保持平衡,若设备内部的叶轮、风轮等存在不平衡或者损坏,会引起设备的振动加大。

1.定期检查维护设备:定期检查磨煤机的各个零件,对于老化、磨损严重的零件及时更换,这样可以延长设备的寿命,并减少设备振动。

2.设备安装稳固:设备在安装的过程中,要保证其底座稳固、平整,要正确使用螺栓进行固定。

安装人员要严格按照设备的安装说明书进行操作,确保设备的稳固。

3.调整物料堆积状态:在磨煤机内部,应该保持物料的均匀堆积,可以通过设备的控制系统来调整物料进出的速度和量,保证物料的均匀堆积。

4.检查电机情况:定期检查磨煤机的电机,确保电机各项指标正常,如电流平衡、各相电压平衡等。

针对发现的问题,要及时进行维修或更换。

磨煤机振动大的原因主要包括设备零件磨损严重、设备安装不稳定、物料不均匀、电机故障和设备平衡性差等。

要预防磨煤机振动大问题的发生,可以定期检查维护设备、保持设备安装稳固、调整物料堆积状态、检查电机情况和保持设备平衡等措施。

这些措施的实施可以减少设备振动,保证磨煤机的正常运行。

磨煤机振动大原因分析及预防措施

磨煤机振动大原因分析及预防措施

磨煤机振动大原因分析及预防措施磨煤机振动大的原因主要有以下几点:1. 设备安装不稳定:磨煤机的振动大部分是由于设备的安装不稳定引起的。

在安装过程中,如果基础不牢固,或者安装不平稳,都会导致设备在运行过程中出现振动。

2. 零部件磨损:磨煤机是一种长时间运行的设备,其中的零部件容易受到磨损。

如果零部件磨损严重,会导致设备不平衡,产生振动。

3. 设备设计缺陷:设备设计上存在缺陷也是引起振动的重要原因之一。

包括设备结构不合理、配重不当等问题,都会导致设备振动加大。

为了预防和解决磨煤机振动大的问题,可以采取以下措施:1. 设备安装稳定:在安装磨煤机时,需要确保设备的基础稳固,并且采用正确的安装方法。

可以使用螺栓、焊接等方式将设备固定在基础上,确保其稳定性。

2. 定期维护保养:定期对磨煤机进行维护保养,检查和更换设备的磨损部件,保证设备的运行状态良好。

特别是关键零部件需要定期更换,以确保设备平衡。

3. 设备设计优化:完善设备的设计,增强设备的结构强度和稳定性。

可以通过增加设备支撑点、增加配重等方式来减小设备的振动。

4. 定期检测设备状态:定期进行设备状态的监测和检测,及时发现设备的异常情况,例如振动增大等问题。

可以借助专业的设备监测工具,如振动传感器、温度传感器等。

5. 加强操作培训:加强对磨煤机操作人员的培训,提高操作人员的技术水平和操作规范性。

合理使用设备,注意设备的运行状态,及时发现并处理问题,减小振动的发生。

要减小磨煤机振动大的问题,需要从设备安装、维护保养、设计优化、检测监测和操作培训等多个方面进行改进和措施的采取,以确保设备的正常运行和减小振动的发生。

汽轮机振动大的原因分析及其解决方法

汽轮机振动大的原因分析及其解决方法

汽轮机振动大的原因分析及其解决方法对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。

这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。

任何一种异常振动都潜伏着设备损坏的危险。

比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。

而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。

异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。

因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。

振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。

一、汽轮机异常振动原因分析汽轮机组担负着火力发电企业发电任务的重点。

由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。

汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。

由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。

因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。

针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。

二、汽轮机组常见异常震动的分析与排除引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。

(一)汽流激振现象与故障排除汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。

其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。

磨煤机振动大原因分析及预防措施

磨煤机振动大原因分析及预防措施

磨煤机振动大原因分析及预防措施磨煤机是一种用于煤炭粉碎的设备,广泛应用于热电厂、水泥厂等工业领域。

在使用过程中,有时会出现磨煤机振动大的问题,影响设备的正常运行和使用寿命。

本文将对磨煤机振动大的原因进行分析,并提出预防措施,以期帮助相关行业更好地解决这一问题。

1. 设备不平衡磨煤机的旋转部件如果不平衡,就会产生较大的振动。

这可能是由于设备在使用过程中受到外力撞击导致零部件偏移,或者是因为设备在生产过程中磨损不均匀造成的。

设备本身的不平衡是磨煤机振动大的主要原因之一。

2. 设备磨损磨煤机使用时间过长或者在使用过程中由于操作不当等原因导致磨损加剧,就会产生振动大的问题。

设备磨损会导致旋转部件间的摩擦增大,同时也会影响设备的平衡性,从而产生振动。

3. 设备安装不当磨煤机的安装如果不符合要求,如地基不坚实、基础不牢固等,就有可能会导致设备振动大。

如果设备的支座、固定螺栓等连接部件安装不紧密,也会加剧振动的发生。

4. 零部件松动设备在使用过程中,由于零部件未经过及时的检修和紧固,就有可能产生振动。

零部件的松动会影响设备的平衡状态,导致振动加剧。

5. 设备设计缺陷有些磨煤机在设计和制造过程中存在一些缺陷,如结构刚度不足、动平衡不良等问题,会导致设备振动大。

二、预防措施1. 设备定期维护为了提高磨煤机的使用寿命和稳定性,需要对设备进行定期维护,及时更换磨损零部件、调整设备的几何参数,保证设备在使用过程中的平衡状态。

定期维护是保障设备稳定运行的重要措施。

3. 设备质量检验购买磨煤机设备时,应该对设备的质量进行认真检查,确保设备经过了严格的质量检验,包括结构刚度、动平衡等性能。

避免购买到质量不合格的设备。

4. 设备运行监控在磨煤机的日常使用过程中,需要对设备进行运行监控,及时发现可能出现的问题。

可以通过振动传感器、温度传感器等设备监控装置,实时监测设备的运行状态,及时发现异常情况。

5. 设备使用规范在磨煤机的使用过程中,操作人员要严格按照设备的使用规范进行操作,避免造成设备的不必要磨损。

设备运行时振动过大问题分析

设备运行时振动过大问题分析

设备运行时振动过大问题分析设备运行时振动过大是工业生产中常见的问题,它不仅会降低设备的工作效率,还可能引发设备故障和安全隐患。

本文将从几个方面对设备运行时振动过大问题进行分析,并提出相应的解决方案。

一、振动过大的原因分析1. 设备本身问题:设备的制造质量、结构设计和加工精度等因素会对设备的振动产生直接影响。

例如,设备零部件安装不牢固、不平衡或损坏等情况都可能导致振动过大。

2. 工艺参数不合理:设备在运行过程中,工艺参数的设定对振动也起着重要影响。

例如,轴承润滑不良、设备运行速度过高或过低、工作负荷超过设备承载能力等都会导致振动异常增大。

3. 环境条件影响:环境条件也是设备振动的一个重要因素。

例如,温度过高会导致设备材料膨胀而引起振动增大,而湿度过高则可能导致设备腐蚀和结构松动。

二、解决方案1. 设备维护保养:定期检查、清洁和润滑设备,及时发现和修复设备故障和损坏,保证设备的正常运行。

此外,还可以针对设备的特点和工作环境制定合理的维护计划,包括清理灰尘、调整零部件、更换磨损的零件等。

2. 优化工艺参数:根据设备的特点和工作要求,合理设定工艺参数,避免负荷过重或过轻,控制设备的运行速度在合理范围内,确保设备的平稳运行。

此外,合理选择润滑剂、提高轴承的润滑状态,也能有效减少振动。

3. 改善工作环境条件:合理调控工作环境温度、湿度等因素,避免极端条件对设备产生不利影响。

对于温度过高的情况,可以考虑增加散热装置或采取降温措施;对于湿度过大的情况,可以增加通风设备或者加强设备的防腐措施。

4. 加强设备检测与监控:安装振动传感器、温度传感器等设备,监测设备的运行状况,及时发现振动异常的预兆,并采取相应的措施。

通过建立设备运行数据的数据库,对设备的振动情况进行持续监测和分析,能够提前发现潜在故障,并及时采取维修措施。

结语设备运行时振动过大问题的分析和解决需要综合考虑设备本身、工艺参数、环境条件以及设备检测与监控等多个因素。

电机振动大原因分析

电机振动大原因分析

进行电磁或机械的原因判定。

在生产中采用断电法来检查区分是由于电磁还是机械原因引起的振动。

将电动机运转至最高转速后突然切断电源,若此时的振动比之前测得的值小,则可判定是由于电磁原因引起的。

若此时的振动值与之前测得的相差不多,则可能是机械方面原因引起的。

1、电磁原因造成振动值超标的处理方法(1)用试灯检查绕组接地故障,接地处重新进行绝缘处理。

用万用表测量定子三相绕组的电阻值,如果不平衡则有开焊现象;观察绕组绝缘表面是否有烧焦痕迹,若有则说明定子绕组的匝间有短路。

应重绕绕组或更换部分绕组元件。

(2)再从电源入手开始检查,用钳形电流表测量三相电流是否平衡,若电流不平衡且指针摆动,此时立即停止电动机运行,切断电源,将电动机解体抽出转子,检查鼠笼转子是否有松动或断笼缺陷;若笼条松动先清洗转子铁心后烘干,用扁铲将转子槽内笼条顶端挤压墩粗,使笼条与铁心槽接触牢靠,用环氧树脂将笼条与槽壁粘牢。

若焊缝开焊则首先矫正边形的笼条,将开焊和甩开的笼条整形后嵌入端环槽内,注意笼条与端环间隙要均匀,然后进行焊接,焊接时要将转子立放,对称焊接,防止端环严重变形,焊好后将端环表面铣平。

(3)采用四点法检查电动机转子气隙,测量垂直和水平4个位置的气隙,测四组16个数据取平均值。

通过改变基础垫片厚度来改变气隙大小,调整顺序为先上下后左右。

凡是大中修过或更换轴承后的高压电机必须测量定转子气隙,并做好记录,其误差值应小于百分之五。

2、机械原因造成振动超标的处理方法(1)查看电动机安装地脚是否牢固,松动则紧固地脚螺栓。

基础台面若倾斜、不平或刚性不足,则进行平整或更换,加固基础。

(2)检查联轴器的加工、装配,必要时将联轴器解开,检查每个转子的平衡状态,从而采取相应的措施,例如更换联轴器或转子重新平衡等,联轴器间保证3mm—5mm间隙。

(3)由于定、转子铁芯磁中心不一致产生的振动,对一般中小型电机可通过调整轴承的位置---轴档车深(可车削去1mm—2mm)或加垫圈进行消除;对于有单独轴承座的大型电机,可通过调整定子的轴向位置加以解决。

循环水泵振动大分析与处理

循环水泵振动大分析与处理

循环水泵振动大分析与处理循环水泵是工业生产中常用的一类水泵,常见于供水、输送油料、航空、船舶等领域。

然而,在使用中,循环水泵可能会出现振动较大的问题,影响其正常运行并带来安全隐患。

因此,为了保证循环水泵的安全稳定运行,需要对其振动大的原因进行分析,并采取相应的处理方法。

一、循环水泵振动大的原因1.不平衡原因:循环水泵转子的不平衡是导致振动的主要原因之一、当转子的质量分布不均匀时,会导致离心力的不平衡,从而引起振动。

2.轴承磨损原因:轴承在运转中会因为摩擦而磨损,当磨损严重时,会导致循环水泵的转子不稳定,产生振动。

3.机械松动原因:循环水泵在长期使用过程中,由于设备老化或者松动,往往会导致机械部件之间出现摩擦松动,从而引起振动。

4.叶轮损坏原因:循环水泵叶轮的损坏也可能是振动大的原因之一、当叶轮出现磨损、断裂或者腐蚀等情况时,会导致不平衡,从而引起振动。

二、循环水泵振动大的处理方法1.定期维护:针对循环水泵进行定期的维护和检修,包括检查轴承的润滑情况、紧固件的松动情况等。

及时发现并修复问题,可以有效减少振动。

2.平衡处理:对于循环水泵转子的不平衡问题,可以采取静、动平衡的方法进行处理。

通过在转子上增加适当的平衡块,使得转子的质量达到均匀分布,从而减少振动。

3.更换轴承:当循环水泵的轴承磨损严重时,需要进行及时更换,并确保新轴承的品质良好。

此外,还应注意正确的轴承安装和润滑。

4.加强连接点的紧固:循环水泵在运行过程中,部分螺钉和连接件可能会因为振动松动。

及时检查和紧固这些松动的连接点,能有效减少振动。

5.更换叶轮:当循环水泵的叶轮受损时,需要及时更换。

如果叶轮是可调式的,可以通过调整叶轮的角度来减少振动。

6.引入减振装置:可以在循环水泵上安装减振装置,如减震垫、减震支架等,以吸收和分散振动能量,减少振动产生。

三、循环水泵振动大的预防措施1.加强维护管理:定期对循环水泵进行维护保养,包括定期检查润滑情况、紧固件状态等,及时发现问题并进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1倍频振动大除了动平衡还应检查什么?750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。

检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。

振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。

据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。

重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。

再试车振动比原来还大了点,频谱和原来一样。

我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。

请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了?除了动平衡还要检查其他什么?可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减请注意:动平衡的速度不是工频,平衡本身可能是合格的联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固有频率下降较多,更接近工频。

所以振动愈发的大其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。

现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。

一、单一一倍频信号转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。

频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。

当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。

由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。

振动强烈程度对工作转速的变化很敏感。

1.力不平衡频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。

2.偶不平衡频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。

3.动不平衡频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

4.外力作用下(旋转)产生的共振各个零部件、结构件在外力作用下所产生的固有共振为自激振动,其频率与不同的结构对应,即刚度不同引起的不同共振。

频谱特征为时域波形为正弦波,振动频率以一倍频为主。

二、相关一倍频信号1.转子永久弯曲振动类似于动不平衡和不对中,以一倍转频为主,也会产生二倍转频振动;振动随转速增加很快;通常振幅稳定,轴向振动较大,两支承处相位相差180度。

2.转子存在裂纹使挠度增大转子系统的转轴上出现横向疲劳裂纹,可能引发断轴事故,危害很大。

及时确定裂纹可防止突然断裂的灾难性事故。

转轴裂纹常用的诊断方法是监测机器开停机过程中通过“半临界转速”的振幅变化,以及监测转子运行中振幅和相位的变化。

转轴的横向疲劳裂纹为半月状的弧形裂纹,由于裂纹区所受的应力状态不同,转轴的横向裂纹呈现张开、闭合、时张时闭三种情况。

当裂纹区转轴总受拉应力时,裂纹处于张开或具有张开倾向的状态,轴刚度小于无裂纹时的刚度,挠度大于无裂纹时的挠度,在一定工作转速下振幅及相位都发生变化。

当裂纹区转轴总受压应力时,裂纹处于闭合状态,轴的刚度略小于无裂纹时,裂纹对转子的振动特性基本没有影响。

当裂纹区转轴受交变应力时,裂纹周期性时闭时开,对振动的影响比较复杂。

出现横向疲劳裂纹时,轴的刚度呈各向异性,振动带有非线性性质。

一倍频和二倍频分量随时间逐渐增大,特别是二倍频分量,随裂纹深度的增加而明显增大。

3.滑动轴承间隙变大轴与轴承间隙过大,类似于不对中和机械松动,应注意区别。

此时径向振动较大,特别是垂直径向;可能有较大的轴向振动,止推轴承可能有较高次谐波分量;径向和轴向时域为稳定的周期波形占优势,每转一圈有13个峰值;没有较大的加速度冲击现象。

若轴向振动与径向振动大小接近,表明问题严重。

4.轴承压盖松动振动频率为转频,并有高次谐波和分数谐波。

振动具有方向性,幅值稳定。

5.轴系同轴度差造成轴系不对中的原因很多,如安装误差、调整不够、承载后的变形、机器基础的沉降不均匀等。

转子径向振动以一倍频和二倍频为主,轴向振动在一倍频、二倍频和三倍频处有稳定的高峰,一般可达径向振动50%以上。

若与径向振动一样大或更大,表明情况严重。

三、其它与一倍频有关的原因1.电机、风机等底座龟裂,引起刚度变化,易产生共振。

2.联轴器制造安装偏差造成的磨损;不配套的连接螺帽/螺栓缺损;联轴器螺帽磨损。

3.转子温度梯度影响。

4.润滑油温度变化引起的失稳。

5.转子或轴承刚性变化。

6.电磁异常。

7.齿轮机构中齿轮的累积制造误差。

1、质量不平衡所谓不平衡即是质量和几何中心线不重合所导致的一种故障状态。

当转子旋转时,其"重心"产生一个离心力作用在轴承上,该力的大小随着转子的旋转而稳定的变化。

不平衡的类型有三种:静不平衡或力不平衡、力矩不平衡或偶不平衡和动不平衡。

不平衡时频谱的表象:波形为正弦波;轴心轨迹为圆或椭圆;1X频率为主;径向(水平和垂直)振动为主;振幅随转速升高而增大;过临界转速有共振峰;悬臂转子不平衡水平和垂直轴向振动都很大。

另外,如果滑轮、齿轮、轴承或转子的旋转中心偏离几何中心线就会出现偏心。

2、不对中不对中的现象较为普遍,且非常重要,因为它而增加的旋转力会对轴承和密封件施加异常的应力。

不对中的类型有:平行不对中、角度不对中、平行和角度不对中。

典型的不对中主要由以下原因引起:原部件的不精确装配,如电机、泵等;安装后原部件间的相对位置发生移动;因为管道系统的压力而造成的扭曲变形;由于扭矩而引起的柔性支撑扭曲变形;温度变化引起的机器变形;耦合面与轴线不垂直;由于地基柔性太大,在旋紧固定螺栓时机器发生移动。

实际上大多数不对中案例都是轴线角度不对中和平行不对中的组合。

一般原则是:诊断应该根据轴向和垂直(或水平)方向上随着1X转速的增加,对应的2X处的振动级的变化情况来判断。

对于齿轮联轴器,一般认为存在以下振动特征:1)对中不良引起转子2倍频振动分量,不对中越严重,2倍频分量所占比例越大;2)不对中量和联轴器内阻尼越大,倍频振动的幅值越大;3)不对中产生的振动幅值,随着转速的升高而增大;4)对中不良引起的弯曲振动中有工频的2,4,6,8…等偶数倍频振动分量,且靠近联轴器处的轴承的弯曲振动振幅大于远离联轴器处的轴承振幅;扭转振动有工频的1,3,5,7…等奇数倍频振动分量,靠近联轴器处的轴承的弯曲振动振幅小于远离联轴器处的轴承振幅。

3、机械松动由于松动会产生非常明显的1X基频波峰。

在实际中存在有两种类型的松动:旋转松动和非旋转松动。

轴承磨损可能会导致出现旋转松动,此故障在检测时首先会测到轴承磨损的迹象,然后才能出现轴承松动。

当滑动轴承出现间隙问题时,它的频谱上会显示出与旋转松动非常相似的特征:出现很强的1X谐波。

在大多数情况下,其垂直方向上的振动要高于水平方向上的振动。

对于结构松动(弹性地基)非旋转松动,机器与地基之间的松动会使其最小刚性方向上的1X振动升高,通常在水平方向上,同时还取决于机器的安装和布局方式。

松动既可能导致机器的其他故障也可能因其它故障所引起,机械部件的磨损变形、轴系的不对中、不平衡等与松动相互影响。

因为松动引发的振动多为中低频振动,一般在1000Hz以下,振动频率通常为转频或转频的分数谐波及高次谐波。

4、轴承故障轴承故障的分类:1)滚动轴承疲劳剥落、磨损、塑性变形、锈蚀、胶合和保持架损坏等。

2)滑动轴承巴士合金松脱、巴士合金损坏、轴承壳体配合松动和轴承间隙过大等。

一、振动实例1、汽轮机出现的问题。

某公司2号汽轮发电机组(简称#2机)为200MW三缸两排汽采暖、凝汽两用式机组;该机组轴系较长,由高压转子、中压转子、低压转子、发电机转子和励磁机转子组成,各转子之间为刚性靠背轮联接,共有12个支持轴承及1个推力轴承。

2、振动特征。

在机组不停机的情况下,对#2机振动进行了测试,其间多次测到振动增大的过程,发现#2机振动呈现如下特征:(1)异常振动主要表现在#1、#2瓦轴振,它们分别可增大到160微米和240微米,#1瓦瓦振可达32微米,偏心测点振动最大大于450微米。

(2)通频振幅增大的主要成分是1倍频分量,即工频,占通频振幅的85%以上;通频振幅增大时,测点1X、1Y、2Y的2倍频、3倍频振幅同时也有增加;(3)振幅增大的同时,#1、#2瓦轴振相位有明显增加,最大变化量到500;因测试没有安装键相传感器,只好利用3X和4X作为基准比较得到的相位变化结果。

(4)测振表明,各次振动增大的过程可以分为两个阶段,第一阶段,1X、2X振幅缓慢增加,1Y、2Y振幅以及各测点间隙电压基本保持不变,持续约一小时左右后,进入第二阶段,偏心读数大于50微米,各测点振幅明显增大,同时,#2瓦、#1瓦轴颈向上偏南(右)移动,这时开始调整负荷,持续数近1小时,振幅达到最高值后,开始缓慢下降,振幅下降恢复需要的时间约2小时,大于增大的时间。

二、引起汽轮机振动的原因分析1、排除汽流激振。

虽然在过去的处理过程中有单位将#2机的振动定性为汽流激振,但现已经确切排除汽流激振的可能。

汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性;这两点#2机均不具备。

在测振中只测到了很低的27~28Hz的分量,有单位称在#2机上测到量值为工频振幅四分之一的28Hz分量,并以此判断为汽流激振。

根据现场经验,至少应该接近或等于一倍振幅。

汽流激振的低频振幅和工频振幅量值相当。

2、排除转子热变形等。

造成在高负荷工况下汽轮机转子以一倍频振幅为主缓慢增大通常还有两个原因——转子热变形和中心孔进油。

转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。

#2机在正常带负荷运行中振动增大,整个转子和缸体的温度场已经均匀,如果存在内应力,应在这之前早已释放。

相关文档
最新文档