最新八年级数学平移与旋转拔高题型

合集下载

八年级上数学第四章+图形的平移与旋转(题+答案)

八年级上数学第四章+图形的平移与旋转(题+答案)

第四章图形的平移与旋转单元测试卷一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A. 3B. 4C. 5D. 62.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置.若∠CAB′=25°,则∠CAC′的度数为( )A. 25°B. 40°C. 65°D. 70°3.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A. ∠EAB=30°B. ∠EAB=45°C. ∠EAB=60°D. ∠EAB=75°4.在平面直角坐标系中,P点关于原点的对称点为P1(−3,−8),P点关于x轴的对称点为33=( )P2(a,b),则√abA. −2B. 2C. 4D. −45.如图直角梯形ABCD中,AD//BC,AB⊥BC,AD=2,BC=3,将CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )A. 1B. 2C. 3D. 不能确定6.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2√3,P是BC边上一动点,连接AP,把线段AP绕点A逆时针旋转60°到线段AQ,连接CQ,则线段CQ的最小值为( )A. 1B. 2C. 3D. √37.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O( )A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为( )A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)9.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 ( )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)10.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 48B. 96C. 84D. 42二、填空题(本大题共8小题,共24分)11.如图,已知直线AB与y轴交于点A(0,2),与x轴的负半轴交于点B,且∠ABO=30°,点C为x轴的正半轴上一点,将线段CA绕点C按顺时针方向旋转60°得线段CD,连接BD,若BD=√41,则点C的坐标为.12.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.13.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是.14.在所示的数轴上,点B与点C关于点A成中心对称,A、B两点对应的实数分别是√3和−1,则点C所对应的实数是.15.如图所示,已知AB=3,AC=1,∠D=90∘,△DEC与△ABC关于点C成中心对称,则AE的长是.16.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是______.17.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG,则下列结论:a2; ③FC平分∠BFG; ①∠FCG=∠CDG; ②△CEF的面积等于14 ④BE2+DF2=EF2.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共66分。

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题

初二数学图形的对称平移与旋转试题1.下列运动中,是平移的是()A.开门时,门的移动B.走路时手臂的摆动C.移动电脑的鼠标时,显示屏上鼠标指针的移动D.移动书的某一页时,这一页上的某个图形的移动【答案】C.【解析】根据平移的定义,对题中给出的选项进行分析,选择正确答案:A.开门时,门的移动,属于旋转现象;B.走路时手臂的摆动,属于旋转现象;C.移动电脑的鼠标时,显示屏上鼠标指针的移动,属于平移现象;D.移动书的某一页时,这一页上的某个图形的移动,属于旋转现象.故选C.【考点】生活中的平移现象.2.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形3.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.4.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.【答案】2,4,有2.【解析】与三角形1成轴对称图形是三角形2与三角形4,对称轴有2条.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.7.小亮在镜中看到身后墙上的时钟如图,你认为实际时间最接近八点的是()【答案】D.【解析】根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.【考点】镜面对称.8.在以下四个图形中,对称轴条数最多的一个图形是()A. B. C. D.【答案】B【解析】由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题,A选项有两条对称轴,B选项有四条对称轴,C选项不是轴对称图形,无对称轴,D选项有一条对称轴,故选B.【考点】对称轴.9.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(-2, -1).(1)在图中作出关于轴对称的.(2)写出点的坐标.A1 _________ B1________ C1________.【答案】(1)详见解析;(2)【解析】已知三点坐标,根据在平面直角坐标系中,关于轴对称的点的坐标特点直接确定出的坐标,然后连线即可.试题解析:解:(1)如图,即为所求关于轴对称的图形.考点:画轴对称图形.10.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析11.如图,在正方形网格中每个小正方形的边长都是单位长度1,△的顶点都在格点上,且△与△关于点成中心对称.(1)在网格图中标出对称中心点的位置;(2)画出将△沿水平方向向右平移5个单位后的△.【答案】【解析】(1)连CF、BE后,所得交点即为O点(2)将A、B、C点各平移5个单位后,所得到的3个新的点互相连接,所得到的的图形即为所求图形【考点】图形的对称与平移点评:题目难度不大,学生可以通过多做此类题得出12.下列现象属于图形平移的是()A.轮船在大海上航行B.飞速转动的电风扇C.钟摆的摆动D.迎面而来的汽车【答案】D【解析】平移的定义:把一个图形沿一定的方向移动一定的距离叫做图形的平移,简称平移. A、轮船在大海上航行,B、飞速转动的电风扇,C、钟摆的摆动,均不属于平移;D、迎面而来的汽车,符合平移的定义,本选项正确.【考点】平移的定义点评:本题属于基础应用题,只需学生熟练掌握平移的定义,即可完成.13.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A.75°B.60°C.45°D.15°【答案】B【解析】旋转角的定义:旋转对应边的夹角是旋转角。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A.2B.3C.4D.5【答案】C.【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C.【考点】轴对称图形.3.下面四个图案中,是轴对称图形的是A. B. C. D.【答案】D.【解析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.考点: 轴对称图形.4.如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】∵△和△都是等腰直角三角形,∴∠∠.又∵△绕着点沿逆时针旋转度后能够与△重合,∴旋转中心为点,旋转角度为45°,即45.若把图(1)作为“基本图形”绕着点沿逆时针旋转度可得到图(2),则454590,故选A.5.作一直线,将下图分成面积相等的两部分(保留作图痕迹).【答案】见解析【解析】解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.6.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()A.1B.2C.3D.4【答案】C【解析】其中第一、三、四既是轴对称图形又是中心对称图形,第二个图形只是轴对称图形,故选C.7.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化8.已知点A(a,-5)与点B(-4,b)关于y轴对称,则a+b= ;【答案】-1.(-x,y),点A(a,-5)与点B(-4,b)关于y轴对【解析】P(x,y)关于y轴对称的点的坐标P1称,所以,a=4,b=-5,所以,a+b=-1.【考点】关于y轴对称的点的坐标.9.等腰三角形是轴对称图形,最多有条对称轴.【答案】3【解析】由题, 等腰三角形是轴对称图形,而等边三角形是等腰三角形,它有3条对称轴.轴对称图形的定义是图形按照某条直线对折后,图形重合,这条直线叫做图形的对称轴,由题, 等腰三角形是轴对称图形,而等边三角形是等腰三角形,它有3条对称轴.【考点】对称轴的定义.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.下列图形既是轴对称又是中心对称图形的是()A.平行四边形B.正三角形C.矩形D.等腰梯形【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.△ABC在平面直角坐标系中的位置如图所示。

2023年八年级数学图像的平移和旋转知识点经典例题和习题

2023年八年级数学图像的平移和旋转知识点经典例题和习题

图形旳平移与旋转【考纲】图形旳平移与旋转是近几年中考命题旳重点和热点.考察考点重要通过详细实例认识平移、旋转,并探索平移、旋转旳基本性质.【复习考纲】1.探索图形平移、旋转旳性质,发展空间观念;结合详细实例,理解平移、旋转旳基本内涵.2.掌握平移、旋转旳画图环节和措施,掌握图形在坐标轴上旳平移和旋转.【考点梳理】一、平移定义和规律1.平移旳定义:在平面内,将一种图形沿某个方向移动一定旳距离,这样旳图形运动称为平移.注意:(1)平移不变化图形旳形状和大小(也不会变化图形旳方向,但变化图形旳位置);(2)图形平移三要素:原位置、平移方向、平移距离.2.平移旳规律(性质):通过平移,对应点所连旳线段平行且相等,对应线段平行且相等、对应角相等.注意:平移后,原图形与平移后旳图形全等.3.简朴旳平移作图平移作图,就是把整个图案旳每一种特性点按一定方向和一定旳距离平行移动.平移作图要注意:①方向;②距离.二、旋转旳定义和规律1.旋转旳定义:在平面内,将一种图形饶一种定点沿某个方向转动一种角度,这样旳图形运动称为旋转.这个定点称为旋转中心,转动旳角称为旋转角.关键:(1)旋转不变化图形旳形状和大小(但会变化图形旳方向,也变化图形旳位置);(2)图形旋转四要素:原位置、旋转中心、旋转方向、旋转角.2.旋转旳规律(性质):通过旋转,图形上旳每一种点都绕旋转中心沿相似方向转动了相似旳角度,任意一对对应点与旋转中心旳连线所成旳角都是旋转角,对应点到旋转中心旳距离相等.(旋转前后两个图形旳对应线段相等、对应角相等.) 注意:旋转后,原图形与旋转后旳图形全等.3.简朴旳旋转作图:旋转作图,就是把整个图案旳每一种特性点绕旋转中心按一定旳旋转方向和一定旳旋转角度旋转移动.旋转作图要注意:①旋转方向;②旋转角度.【典题探究】【例1】、在下列实例中,不属于平移过程旳有( )①时针运行旳过程;②火箭升空旳过程;③地球自转旳过程;④飞机从起跑到离开地面旳过程。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选C.【考点】轴对称图形和中心对称图形.3.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.4.下列说法中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.正确的有()A.1个B.2个C.3个D.4个【答案】A【解析】①两个全等三角形合在一起,由于位置关系不确定,不能判定是否为轴对称图形,错误;②等腰三角形的对称轴是底边上的中线所在的直线,而非中线,故错误;③等边三角形一边上的高所在的直线是这边的垂直平分线,故错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选A.5.把边长为3、5、7的两个全等三角形拼成四边形,一共能拼成____________种不同的四边形,其中有____________个平行四边形.【答案】6、3【解析】因为将三角形的三边分别重合一次,可拼得3个四边形,通过旋转后可得3个,所以共有6个.其中有3个是平行四边形6.如图,已知△ABC和△DCE是等边三角形,则△ACE绕着点按逆时针方向旋转度可得到△.【答案】,60,【解析】因为△和△是等边三角形,故∠,则∠.要由△通过旋转得到△,只需要将△绕着点按逆时针方向旋转60°即可得到.7.点P(-3,5)关于y轴的对称点的坐标是()A.(-3,-5)B.(3,-5)C.(5,-3)D.(3,5)【答案】D.【解析】根据关于y轴对称的点的坐标规律:纵坐标相同,横坐标互为相反数可直接得到答案.∵P(-3,5),∴关于y轴的对称点P′的坐标是(3,5),故选D.考点: 关于x轴、y轴对称的点的坐标.8.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.【答案】130°.【解析】依题意有∠AOB=2(∠A+∠ACO)=2(∠A+∠BCO)=130°.【考点】轴对称的性质.9.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.【答案】答案见试题解析.【解析】作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.试题解析:如图所示:【考点】1.利用轴对称设计图案;2.网格型.10.点P(-3,2)关于x轴对称的点P′的坐标是.【答案】(3,2).【解析】点P(m,n)关于x轴对称点的坐标P′(m,-n),然后将题目已经点的坐标代入即可求得解.根据轴对称的性质,得点P(3,-2)关于x轴对称的点的坐标为(3,2).【考点】关于x轴、y轴对称的点的坐标.11.下列是我国几家银行的标志图象,其中哪一个不是轴对称图形?()【答案】D【解析】由题,ABC选项是轴对称图形,而D图形找不到这样的直线,所以D选项不是轴对称图形,选D.轴对称图形的定义是图形按照某条直线对折后,图形重合,由题,ABC选项是轴对称图形,而D 图形找不到这样的直线,所以D选项不是轴对称图形,选D.【考点】轴对称图形.12.如图,△ABC是格点三角形,且A(-3,-2),B(-2,-3),C(1,-1).(1)请在图中画出△ABC关于y轴的对称△A’B’C’.(2)写出△A’B’C’各点坐标,并计算△A’B’C’的面积.【答案】(1)作图见解析;(2) △A’B’C’的面积=2.5.【解析】(1)要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’; (2)将要求三角形放在一个矩形里面,三角形的面积等于矩形的面积减去三个直角三角形的面积,如图,作矩形FEC’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.试题解析:(1)如图,过点A作y轴的垂线交y轴与点G,延长AG至点A’,使得AG=" A’G," 点A’是点A关于y 轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B’,使得BI=" B’I," 点B’是点B关于y 轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C’,使得CH= C’H, 点C’是点C关于y轴的对称点,连接A’B’C’,得到图形△A’B’C’.(2)如图,作矩形FE C’D,△A’B’C’的面积=矩形FE C’D的面积-△B’C’D的面积-△A’C’E-△A’B’F的面积=2×4-×2×3-×1×4-×1×1= 8-3-2-=2.5.【考点】三角形关于直线对称的作图和格点三角形面积的求法.13.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.14.如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出△ABC关于y轴对称图形△A1B1C1.【答案】作图见解析.【解析】要作出一个三角形关于y轴的对称图形,只需要作出三个顶点关于y轴对称的对称点,然后连接这三个对称点即可,如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G,点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I,点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH=C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.试题解析:如图,过点A作y轴的垂线交y轴与点G,延长AG至点A1,使得AG= A1G, 点A1是点A关于y轴的对称点, 过点B作y轴的垂线交y轴与点I,延长BI至点B1,使得BI= B1I, 点B1是点B关于y轴的对称点, 过点C作y轴的垂线交y轴与点H,延长CH至点C1,使得CH= C1H, 点C1是点C关于y轴的对称点,连接A1B1C1,得到图形△A1B1C1.【考点】轴对称图形的作图.15.画出将左图绕点O逆时针旋转90°后的图形,画出将右图以直线MN为对称轴翻折后的图形.【答案】作图详见解析【解析】(1)根据图形旋转的方法,把三角形左边的两条边绕左边的顶点逆时针旋转90°,再把第三条边连接起来,即可得出旋转后的三角形.(2)根据轴对称的性质,先找出6个顶点关于直线MN的对称点,再依次连接起来即可得出图形.试题解析:作图如下:考点: 1.网格问题;2.作图(旋转变换和轴对称变换).16.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.17.如图,将△沿着射线的方向平移到△的位置,若cm,则平移的距离是 cm.【答案】7【解析】由于BC平移得到CE,即,由于cm,所以cm,即平移7cm【考点】图形的平移,中点的定义点评:此题难度不大,关键在于C为BE中点18.下列图案中,是轴对称图形的有A.4个B.3个C.2个D.1个【答案】C【解析】如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫轴对称图形.根据轴对称图形的定义可得第二个图形和第三个图形都不是轴对称图形,故选C.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.19.下面的图形中,既是轴对称图形又是中心对称图形的是()【答案】B【解析】根据轴对称图形与中心对称图形的定义依次分析各选项即可判断.A、D只是轴对称图形,C只是中心对称图形,B既是轴对称图形又是中心对称图形,故选B.【考点】轴对称图形,中心对称图形点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.20.下列图形中,既是轴对称图形又是中心对称图形有()A.1个B.2个C.3个D.4个【答案】B【解析】中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

八年级数学平移旋转在几何证明中的应用(图形的平移与旋转)拔高练习(含答案)

八年级数学平移旋转在几何证明中的应用(图形的平移与旋转)拔高练习(含答案)

八年级数学平移旋转在几何证明中的应用(图形的平移与旋转)拔高练习试卷简介:本试卷共5道选择题,全面考察学生对旋转和平移这一部分知识的掌握学习建议:北师版八年级上册第三章图形的平移与旋转,平移和旋转的定义和性质要熟练掌握。

一、单选题(共5道,每道20分)1.(呼和浩特)把∠A是直角的△ABC绕A点沿顺时针方向旋转85°,点B转到点E得△AEF,则以下列结论错误的是()A.∠BAE=85°B.AC=AFC.EF=BCD.∠EAF=85°答案:D解题思路:旋转前后的两个图形是全等的,所以∠EAF=∠BAC=90°易错点:旋转的定义,性质试题难度:一颗星知识点:旋转的性质2.如图,在△ABC中,∠CAB=70°. 在同一平面内, 将△ABC绕点A旋转到△AB′C′ 的位置, 使得CC′∥AB, 则∠B′AB = _________A.70°B.35°C.45°D.40°答案:D解题思路:解:∵△ABC旋转得到△AB′C′,∴△ABC≌△AB′C′,∴∠B ′AC′=∠BAC=70°,从而∠1+∠2=70°,∠2+∠3=70°,∴∠1=∠3.∵C′C∥AB,∴∠C′CA=∠CAB=70°。

而AC=AC′,∴∠AC′C=70°,∴∠C′AC=40°,从而∠3=40°。

易错点:利用平行进行角度的转移,利用全等找到线段的等量关系。

旋转前后的两个图形是全等图形试题难度:三颗星知识点:全等三角形的性质3.如图,△ABC中,AC=5,中线AD=7,△EDC是由△ADB绕D点旋转所得到的,则AB边的取值范围是( )A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19答案:D解题思路:解:旋转不改变图形的形状和大小,△EDC≌△ADB ∴AB=CE,DE=AD=7 在△ACE中,三角形三边关系定理得:AE-AC易错点:旋转前后对应线段试题难度:二颗星知识点:旋转的性质4.已知两个全等的直角三角形纸片ABC、DEF,如图放置,点B、D重合,点F在BC上,AB 与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.若纸片DEF不动,问△ABC绕点F逆时针旋转最小()度时,四边形ACDE成为以ED为底的梯形.A.120°B.90°C.60°D.30°答案:D解题思路:解:要使四边形ACDE为以ED为底得梯形,则AC∥DE ∵BC⊥AC ∴BC⊥DE ∵∠E=30°∴∠EDF=60°从而∠BFD=30°即转过的最小角度为30°易错点:旋转角度试题难度:二颗星知识点:旋转的性质5.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE 于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2 ;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤答案:D解题思路:过B做BF⊥AE的延长线于点F①AE=AP,AB=AD,∠EAB+∠BAP=∠BAP+∠PAD=90°,∴∠BAE=∠DAP,△AEB≌△APD(SAS),①正确;②∠AEB=∠APD=135°,∴∠BEF=45°,AF⊥BF,∴△BEF为等腰直角三角形;△BEP为直角三角形,,BE=,BF=∴②错③∵∠ABE=∠ADE,∠ADE+∠AGD=90°,∠AGD=∠BGE∴∠BGE+∠ABE=90°,DE⊥BE,∴③正确,④错。

最新八年级数学平移与旋转拔高题型

最新八年级数学平移与旋转拔高题型

考纲要求】1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为 ________ ,它是由移动的 和所决定.2. 平移的特征是: 经过平移后的图形与原图形的对应线段 ,对应 ,图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转, 叫做旋转中心, 叫做旋转角.4. 图形的旋转由 、 和 所决定. 其中①旋转 在旋转过程中保持不动. ② 旋转 分为 时针和 时针 . ③旋转 一般小于360o.5. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化 . 也就是旋转前后的两个图形.6. 中心对称: 【教学重难点】平移、旋转在全等图形中的应用。

【本讲命题方向】填空题、选择题、作图以及证明题的形式都可以出现典型题例精讲】5.如图,在长 20 米,宽 10 米的长方形草地内修建了宽 2 米的道路,则草地的面积为 .【反思与小结】 平移不仅是全等变换,平移过程中对应边、对应点连线等都具备平行且相等的性质,所以常作为转化 的工具 .【举一反三】1.如果将一图形沿北偏东 30°的方向平移 3厘米,再沿某方向平移 3 厘米,所得的图形与将原图形向正东方向平移 3 厘米所得的图形重合,则这一方向应为( )A .北偏东 60°B .北偏东 30°C .南偏东 60°D .南偏东 30°平移与旋转一、平移的概念与性质【例 1】 1.直径为 4cm 的⊙ O 1,平移 5cm 到⊙ O 2,则圆中阴影部分面积为( A . 2.(2015 春?杭州期末)如图,在长方形 A . 20 B .10 C .25 D .1613 B . 23 C .24 D .26 )cm 2.中, AB=8 ,BC=5 ,则图中四个小长方形的周长和为(3.如图,将 A .14cmB . △ABC 沿 BC 方向平移 3cm 得到 △DEF ,若 △ABC 的周长为 17cm C .20cm D .23cm 1=70°,直线 a 平移后得到直线 b ,则∠ 2﹣∠3=ABCD ABFD 的周长为(2.如图,等腰直角三角形ABC 中,AD 是底边BC 上的高,现将△ABD 沿DC 方向平移,使点 D 和点 C 重合,若重叠部分(阴影部分)的面积是4,则△ABC 的腰长为.2.如图,在8×8 的方格中建立平面直角坐标系,有点 A (﹣2,2)、B (﹣3,1)、C(﹣1,0),P(a,b)是△ ABC的AC 边上点,将△ABC 平移后得到△A1B1C1,点P 的对应点为P1(a+4,b+2).(1)画出平移后的△A1B1C1,写出点A1、C1 的坐标;(2)若以A、 B 、C、D 为顶点的四边形为平行四边形,写出方格中 D 点的坐标.【反思与小结】平移的距离和方向会影响点坐标的变化. 水平或是竖直平移时,横坐标或是纵坐标进行加减运算. 斜向运动时呢?三、旋转的概念与性质【例3】1.如图,E,F分别是正方形ABCD 的边BC,CD 上的点,CD 上的点,BE=CF ,连接AE ,BF,将△ABE 绕正方形的对角线的交点O 按顺时针方向旋转到△BCF,则旋转角是()2.如图,在正方形ABCD 中,AB=3 ,点 E 在CD 边上,DE=1 ,把△ADE 绕点 A 顺时针旋转90°,得到△ABE ′,连接EE′,则线段EE ′的长为()A .B.C.4 D .3.三角板ABC 中,∠ ACB=90 °,∠ B=30 °,AC=2 ,三角板绕直角顶点 C 逆时针旋转,当点 A 的对应点A′落在AB 边的起始位置上时即停止转动,则 B 点转过的路径长为()A .πB .π C.2 π D.3π【反思与小结】从旋转的定义来看,旋转离不开对于角度的研究. 另外一个重要的研究内容就是旋转中点运动的轨迹. 轨迹就是指点运动的路径.【举一反三】二、坐标系中的平移问题【例2】1.如图,在平面直角坐标系中,正三角形OAB 的顶点 B 的坐标为(2,限内,将△OAB 沿直线OA 的方向平移至△O′A ′B′的位置,此时点A′的横坐标为 3 (A.)4, 2 ) B .(3, 3 )C.(4, 3 )D.(3,2 )3.如图, 相交于点 A .12﹣6【例 4】中心对称3.根据题意作出图形, 并回答相关问题: 请在网格中设计一个图案 (图中每个小三角形都是边长为 1 要求所设计的图案既是轴对称图形,又是中心对称图形,并且图案的顶点在格点上,面积等于 3 . 图案用铅笔涂黑. 【反思与归纳】 (1)中心对称的性质和应用的关键是要明确中心对称的性质: ① 关于中心对称的两个图形能够完全重 合; ② 关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.四、坐标系中的旋转问题【例 5】在平面直角坐标系中, △ABC 的点坐标分别是 A (2,4)、B (1,2)、 C (5, 3),如图:(1)以点( 0,0)为旋转中心,将 △ABC 顺时针转动 90°,得到 △A 1B 1C 1,在坐标系中画出 △A 1B 1C 1,写出 A 1、B 1、 C 1 的坐标;(2)在( 1)中,若 △ABC 上有一点 P (m ,n ),直接写出对应点 P 1 的坐标. 1.如图 1,教室里有一只倒地的装垃圾的灰斗, (如图 2),则灰斗柄 AB 绕点 C 转动的角度为 2.如图,在 Rt △ABC 中, C 的对应点是点 C ′),连接 A .32 BC 与地面的夹角为 50°,∠ C=25°,小贤同学将它扶起平放在地面上 B .64° C .77° ∠ BAC=90 °,将 △ABC 绕点 A 顺时针旋转 CC ′.若∠ CC ′B ′=32°,则∠ B 的大小是( D .87°90°后得到的 △AB ′C ′(点 B 的对应点是点 B ′,点 )等腰直角三角形 ABC 的直角边 AB H ,则图中 △AHC ′的面积等于( B .14﹣6 C .18﹣ 6 D . 的长为 6cm ,将△ABC 绕点 A 逆时针旋转 15°后得到 △AB ′C ′,AC 与 B ′C ′ )18+61.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有(A .1个B .2 个C .3个D .4个2.如图,正方形 ABCD 于正方形 A 1B 1C 1D 1 关于某点中心对称,已知 A ,D 1,D 三点的坐标分别是( (0, (1) (2) 0,4),(0,3), 2). 求对称中心的坐标.写出顶点 B ,C ,B 1,C 1 的坐标.的等边三角形) , 请将你所设计的【反思与小结】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.五、旋转中的最值问题【例5】——选作例题,根据实际上课情况选作.1.如图,在Rt△POQ 中,OP=OQ=4 ,M 是PQ 中点,把一三角尺的直角顶点放在点M 处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与△POQ 的两直角边分别交于点A、B.连结AB ,在旋转三角尺的过程中,△AOB 的周长的最小值.2.如图,边长为6的等边三角形ABC 中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点 E 运动过程中,DF 的最小值是.【拔高限时训练】1.如图,A,B 的坐标为(2,0),(0,1),若将线段AB 平移至A1B1,则a+b 的值为()A .2B .3 C.4 D .52.如图,把Rt△ABC 放在直角坐标系内,其中∠ CAB=90 °,BC=5,点A、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点 C 落在直线y=2x ﹣6上时,线段BC 扫过的面积为()A .4B .8 C.16 D .83.如图,长方形ABCD 中,AB=6 ,第一次平移长方形ABCD 沿AB 的方向向右平移 5 个单位,得到长方形A1B1C1D1,第 2 次平移将长方形A1B1C1D1沿 A 1B1的方向向右平移 5 个单位,得到长方形 A 2B 2C2D2⋯,第n 次平移将长方形A n ﹣1B n﹣1C n﹣1D n﹣1 沿A n﹣1B n﹣1 的方向平移5 个单位,得到长方形A n B n C n D n(n>2),若AB n 的长度为56,则n= .4.已知一副直角三角板如图放置,其中BC=3 ,EF=4,把30°的三角板向右平移,使顶点 B 落在45°的三角板的斜边DF 上,则两个三角板重叠部分(阴影部分)的面积为.【课后作业】(20-30 分钟做完)5.如图,矩形 ABCD 在平面直角坐标系的位置如图, A (0, 0)、B (6,0)、D (0,4).( 1)根据图形直接写出点 C 的坐标: ;( 2)已知直线 m 经过点 P (0, 6)且把矩形 ABCD 分成面积相等的两部分,请只用直尺准确地画出直线 m ,并求该 直线 m 的解析式.课堂检测(A ) (0, 1) B )( 2, 1) C )(4,1) D )(2,3) 二、填空题3. 如图,在 Rt △ABC 中,∠ ACB=90°,∠ ABC=30°,将△ ABC 绕点C 顺时针旋转至△ A ′ B ′,C 使得点 A ′恰好落在 AB 上,则旋转角度为 ()A . 30 °B . 60°C . 90°D . 150°一、选择题1.如图, 在 10 6 的网格中, 是( (A ) (B ) (C ) (D )2. 将点 A ( 2, 1)向.左.平移每个小方格的边长都是 1个单位 ,将△ ABC 平移到 △DEF 的位置,下面正确的平移步骤 ). 先把 先把 先把 先把 △ ABC 向左平移△ ABC 向右平移 △ ABC 向左平移 △ ABC 向右平移 2个单位 2 个单位2 个单位 2个单位 5 个单位,再向下平移 5 个单位,再向下平移 5 个单位,再向上平移 5 个单位,再向上平移 2 个单位长度得到点 A ,则点 A 的坐标是( ).4. 正方形绕其中心旋转一定的角度与原图形重合,则这个角至少为度5.在平面直角坐标系中,点P(1,1),N (2,0),△MNP 和△M1N1P1的顶点都在格点上,△MNP 与△M 1N 1P1 是关于某一点中心对称,则对称中心的坐标为三、解答题6.如图,方格纸中每个小正方形的边长都是单位1,△ ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移3个单位长度再向下平移 2 个单位长度,画出两次平移后的△A1B1C1.(2)写出A1、C1 的坐标;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平移与旋转【考纲要求】1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是由移动的和所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段,对应,图形的与都没有发生变化,即平移前后的两个图形;且对应点所连的线段.3. 图形旋转的定义:把一个图形的图形变换,叫做旋转,叫做旋转中心,叫做旋转角.4. 图形的旋转由、和所决定.其中①旋转在旋转过程中保持不动.②旋转分为时针和时针. ③旋转一般小于360º.5. 旋转的特征是:图形中每一点都绕着旋转了的角度,对应点到旋转中心的相等,对应相等,对应相等,图形的都没有发生变化.也就是旋转前后的两个图形 .6. 中心对称:【教学重难点】平移、旋转在全等图形中的应用。

【本讲命题方向】填空题、选择题、作图以及证明题的形式都可以出现【典型题例精讲】一、平移的概念与性质【例1】1.直径为4cm的⊙O1,平移5cm到⊙O2,则圆中阴影部分面积为()cm2.A.20 B.10 C.25 D.162.(2015春•杭州期末)如图,在长方形ABCD中,AB=8,BC=5,则图中四个小长方形的周长和为()A.13 B.23 C.24 D.263.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm4.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=°.5.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则草地的面积为.【反思与小结】平移不仅是全等变换,平移过程中对应边、对应点连线等都具备平行且相等的性质,所以常作为转化的工具.【举一反三】1.如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为()A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°2.如图,等腰直角三角形ABC中,AD是底边BC上的高,现将△ABD沿DC方向平移,使点D和点C重合,若重叠部分(阴影部分)的面积是4,则△ABC的腰长为.二、坐标系中的平移问题【例2】1.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,2)B.(3,3)C.(4,3)D.(3,2)2.如图,在8×8的方格中建立平面直角坐标系,有点A(﹣2,2)、B(﹣3,1)、C(﹣1,0),P(a,b)是△ABC 的AC边上点,将△ABC平移后得到△A1B1C1,点P的对应点为P1(a+4,b+2).(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;(2)若以A、B、C、D为顶点的四边形为平行四边形,写出方格中D点的坐标.【反思与小结】平移的距离和方向会影响点坐标的变化.水平或是竖直平移时,横坐标或是纵坐标进行加减运算.斜向运动时呢?三、旋转的概念与性质【例3】1.如图,E,F分别是正方形ABCD的边BC,CD上的点,CD上的点,BE=CF,连接AE,BF,将△ABE 绕正方形的对角线的交点O按顺时针方向旋转到△BCF,则旋转角是()A.30°B.45°C.60°D.90°2.如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A. B. C.4 D.3.三角板ABC中,∠ACB=90°,∠B=30°,AC=2,三角板绕直角顶点C逆时针旋转,当点A的对应点A′落在AB 边的起始位置上时即停止转动,则B点转过的路径长为()A.πB.πC.2πD.3π【反思与小结】从旋转的定义来看,旋转离不开对于角度的研究.另外一个重要的研究内容就是旋转中点运动的轨迹.轨迹就是指点运动的路径.【举一反三】1.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.2.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°3.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6 B.14﹣6C.18﹣6D.18+6【例4】中心对称1.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A.1个B.2个C.3个D.4个2.如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.3.根据题意作出图形,并回答相关问题:请在网格中设计一个图案(图中每个小三角形都是边长为1的等边三角形),要求所设计的图案既是轴对称图形,又是中心对称图形,并且图案的顶点在格点上,面积等于3.请将你所设计的图案用铅笔涂黑.【反思与归纳】(1)中心对称的性质和应用的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.四、坐标系中的旋转问题【例5】在平面直角坐标系中,△ABC的点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.【反思与小结】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.五、旋转中的最值问题【例5】——选作例题,根据实际上课情况选作.1.如图,在Rt△POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.连结AB,在旋转三角尺的过程中,△AOB的周长的最小值.2.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是.【拔高限时训练】1.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.52.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC 沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.83.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n=.﹣14.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.【课后作业】(20-30分钟做完)5.如图,矩形ABCD 在平面直角坐标系的位置如图,A (0,0)、B (6,0)、D (0,4).(1)根据图形直接写出点C 的坐标: ;(2)已知直线m 经过点P (0,6)且把矩形ABCD 分成面积相等的两部分,请只用直尺准确地画出直线m ,并求该直线m 的解析式.课堂检测一、选择题1.如图,在106⨯的网格中,每个小方格的边长都是1个单位,将ABC △平移到DEF △的位置,下面正确的平移步骤是( ).(A )先把ABC △向左平移5个单位,再向下平移2个单位(B )先把ABC △向右平移5个单位,再向下平移2个单位(C )先把ABC △向左平移5个单位,再向上平移2个单位(D )先把ABC △向右平移5个单位,再向上平移2个单位2. 将点A (2,1)向左..平移2个单位长度得到点A ',则点A '的坐标是( ). (A) (0,1) (B )(2,1-) (C )(4,1) (D )(2,3)二、填空题3. 如图,在Rt △ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C ,使得点A′恰好落在AB 上,则旋转角度为( )A . 30°B . 60°C . 90°D . 150°4. 正方形绕其中心旋转一定的角度与原图形重合,则这个角至少为 度 .5.在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为三、解答题6.如图,方格纸中每个小正方形的边长都是单位1,ABC △的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将ABC △向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的111.A B C △(2)写出11A C 、的坐标;。

相关文档
最新文档