2020年九年级上册数学第七单元专练平移与旋转(含答案)

合集下载

九年级数学上册《旋转》练习与答案

九年级数学上册《旋转》练习与答案

九年级数学上册《旋转》练习一、单选题1.如图,ABC 与A'B'C'是成中心对称,下列说法不正确的是( )A .ABCA'B'C'SS=B .AB A'B'=,AC A'C'=,BC B'C'= C .AB//A'B',AC //A'C',BC //B'C'D .ACOA'B'OSS=2.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A 1B 1C ,连接AA 1,若∠AA 1B 1=15°,则∠B 的度数是( )A .75°B .60°C .50°D .45°3.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .1个B .2个C .3个D .4个4.如图,在正方形网格中,线段是线段绕某点逆时针旋转角得到的,点与对应,则角的大小为( )A .B .C .D .5.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A .1个B .2个C .3个D .4个6.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是( )A .正方形B .正六边形C .五角星D .圆7.下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是( ) A .B .C .D .8.下列图形中,既是中心对称又是轴对称的图形是( ) A .B .C .D .9.时钟上的分针匀速旋转一周需要60min ,则经过20min ,分针旋转了( )A .20B .60C .90D .12010.如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE=CF ,连接CE 、DF .将△BCE 绕着正方形的中心O 按逆时针方向旋转到△CDF 的位置,则旋转角是A .45°B .60°C .90°D .120°二、填空题11.在平面直角坐标系中,P 点关于原点的对称点为P 1(﹣3,﹣83),P 点关于x 轴的对称点为P 2(a ,b )12.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.13.已知点()3,2P ,则点P 关于y 轴的对称点1P 的坐标是________,点P 关于原点O 的对称点2P 的坐标是________.14.已知点()M 2m 1,m 1+-与点N 关于原点对称,若点N 在第二象限,则m 的取值范围是________.15.已知坐标平面上的机器人接受指令“(a ,A )”﹙a≥0,0°<A <180°﹚后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________. 16.如图,在Rt AOB 中,90A ∠=,60AOB ∠=,在边长为1的小正方形组成的网格中,AOB 的顶点O 、A 均在格点上,点B 在x 轴上,点A 的坐标为()1,2-.()1点A 关于点O 中心对称的点的坐标为________;(2)AOB 绕点O 顺时针旋转60后得到11A OB ,那么点1A 的坐标为________;线段AB 在旋转过程中所扫过的面积是________.三、解答题17.如图,P 是矩形ABCD 下方一点,将△PCD 绕点P 顺时针旋转60°后,恰好点D 与点A 重合,得到△PEA ,连接EB ,问:△ABE 是什么特殊三角形?请说明理由.18.如图,在中,,,点分别在上(点与点不重合),且.将绕点逆时针旋转得到.当的斜边、直角边与分别相交于点(点与点不重合)时,设.(1)求证:;(2)求关于的函数解析式,并直接写出自变量的取值范围.19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°后'''.的A B C20.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.(1)求证:OC=AD;(2)求OC的长.21.明明在办手抄报的时候,他想用图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.22.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.23.如图网格中每个小正方形的边长均为1,线段AB 、CD 的端点都在小正方形的顶点上.()1图()1中,画一个以线段AB 一边的四边形ABEF ,且四边形ABEF 是面积为7的中心对称图形,点E 、F 都在小正方形的顶点上,并直接写出线段BE 的长;()2在图()2中,画一个以线段CD 为斜边直角三角形CDG ,且CDG 的面积是2,点G在小方形的顶点上.24.等边OAB 在平面直角坐标系中,已知点()2,0A ,将OAB 绕点O 顺时针方向旋转(0360)a a <<得11OA B .()1求出点B 的坐标;()2当1A 与1B 的纵坐标相同时,求出a 的值; ()3在()2的条件下直接写出点1B 的坐标.25.如图,P 是正ABC 内的一点,若将PAC 绕点A 逆时针旋转到P'AB , (1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求APB ∠的度数.九(上)数学《旋转》练习答案一、单选题1.如图,ABC 与A'B'C'是成中心对称,下列说法不正确的是( )A .ABCA'B'C'SS=B .AB A'B'=,AC A'C'=,BC B'C'= C .AB//A'B',AC //A'C',BC //B'C'D .ACOA'B'OSS=【答案】D2.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A 1B 1C ,连接AA 1,若∠AA 1B 1=15°,则∠B 的度数是( )A .75°B .60°C .50°D .45°【答案】B3.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A .1个B .2个C .3个D .4个【答案】D4.如图,在正方形网格中,线段是线段绕某点逆时针旋转角得到的,点与对应,则角的大小为()A.B.C.D.【答案】C5.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个【答案】A6.下列几何图形中,绕其对称中心点旋转任意角度后,所得到的图形都和原图形重合,这个图形是( )A.正方形B.正六边形C.五角星D.圆【答案】D7.下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是()A.B.C.D.【答案】C8.下列图形中,既是中心对称又是轴对称的图形是()A.B.C.D.【答案】D9.时钟上的分针匀速旋转一周需要60min,则经过20min,分针旋转了()A.20B.60C.90D.120【答案】D10.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A .45°B .60°C .90°D .120°【答案】C二、填空题11.在平面直角坐标系中,P 点关于原点的对称点为P 1(﹣3,﹣83),P 点关于x 轴的对称点为P 2(a ,b ) 【答案】﹣2.12.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.【答案】13.已知点()3,2P ,则点P 关于y 轴的对称点1P 的坐标是________,点P 关于原点O 的对称点2P 的坐标是________. 【答案】()3,2- ()3,2--14.已知点()M 2m 1,m 1+-与点N 关于原点对称,若点N 在第二象限,则m 的取值范围是________. 【答案】1m 12-<<.15.已知坐标平面上的机器人接受指令“(a ,A )”﹙a≥0,0°<A <180°﹚后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令(2,60°)后,所在位置的坐标为____________.【答案】(-1)16.如图,在Rt AOB 中,90A ∠=,60AOB ∠=,在边长为1的小正方形组成的网格中,AOB 的顶点O 、A 均在格点上,点B 在x 轴上,点A 的坐标为()1,2-.()1点A 关于点O 中心对称的点的坐标为________;(2)AOB 绕点O 顺时针旋转60后得到11A OB ,那么点1A 的坐标为________;线段AB 在旋转过程中所扫过的面积是________. 【答案】()1,2- ()1,2 52π三、解答题17.如图,P 是矩形ABCD 下方一点,将△PCD 绕点P 顺时针旋转60°后,恰好点D 与点A 重合,得到△PEA ,连接EB ,问:△ABE 是什么特殊三角形?请说明理由.【答案】解:△ABE 是等边三角形.理由如下:……………………………………… 1分 由旋转得△PAE ≌△PDC∴CD=AE ,PD=PA,∠1=∠2……………………3分 ∵∠DPA=60°∴△PDA 是等边三角形…………4分 ∴∠3=∠PAD =60°.由矩形ABCD 知,CD =AB ,∠CDA =∠DAB =90°. ∴∠1=∠4=∠2=30°………………………6分 ∴AE =CD =AB ,∠EAB =∠2+∠4=60°, ∴△ABE 为等边三角形…………………………7分 18.如图,在中,,,点分别在上(点与点不重合),且.将绕点逆时针旋转得到.当的斜边、直角边与分别相交于点(点与点不重合)时,设.(1)求证:;(2)求关于的函数解析式,并直接写出自变量的取值范围.【答案】(1)见解析;(2)19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°'''.后的A B C【答案】详见解析.20.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.(1)求证:OC=AD;(2)求OC的长.【答案】(1)证明见解析;(2)OC=2√3.21.明明在办手抄报的时候,他想用图形“○○、△△、=”(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.【答案】见解析22.如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.【答案】(1)如图所示见解析;(2)如图所示见解析;(3)如图所示见解析. 23.如图网格中每个小正方形的边长均为1,线段AB 、CD 的端点都在小正方形的顶点上.()1图()1中,画一个以线段AB 一边的四边形ABEF ,且四边形ABEF 是面积为7的中心对称图形,点E 、F 都在小正方形的顶点上,并直接写出线段BE 的长;()2在图()2中,画一个以线段CD 为斜边直角三角形CDG ,且CDG 的面积是2,点G 在小方形的顶点上.【答案】见解析24.等边OAB 在平面直角坐标系中,已知点()2,0A ,将OAB 绕点O 顺时针方向旋转(0360)a a <<得11OA B .()1求出点B 的坐标;()2当1A 与1B 的纵坐标相同时,求出a 的值; ()3在()2的条件下直接写出点1B 的坐标.【答案】(1)( . (2) 120a =或300a = (3)( -或(1, 25.如图,P 是正ABC 内的一点,若将PAC 绕点A 逆时针旋转到P'AB , (1)求PAP'∠的度数. (2)若AP 3=,BP 4=,PC 5=,求APB ∠的度数.【答案】(1)PAP'60∠=;(2)APB 150∠=.。

人教版九年级上册数学《旋转》单元测试(含答案)

人教版九年级上册数学《旋转》单元测试(含答案)
21.如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0),B(6,0),D(0,4)
(1)根据图形直接写出点C的坐标;
(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.
22.△ABC中,∠A=36°,将△ABC绕平面中的某一点D按顺时针方向旋转一定角度得到△ .
A.点PB.点QC.点RD.点S
【答案】A
【解析】
【分析】
根据旋转的性质,对应点的连线的垂直平分线必过旋转中心,根据网格结构作BB′、CC′的垂直平分线,交点即为旋转中心.
【详解】如图,BB′、CC′的垂直平分线相交于点P,
所以旋转中心一定是P点.
故选A.
【点睛】本题考查了旋转的性质,熟练掌握旋转中心的确定方法是解题的关键.
三、解答题(共8题,共72分)
17.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC是等腰三角形.
18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B'C,连接AA',若∠1= 20°,求∠B的度数.
19.如图2,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD上,则BP的长是( )
【分析】
把△PBC绕点B逆时针旋转90°得到△ABP′,根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出PP′,然后求出∠APP′=90°,再利用勾股定理列式计算求出P′A,从而得解.
【详解】如图,把△PBC绕点B逆时针旋转90°得到△ABP′(点C的对应点C′与点A重合),

人教版九年级上学期数学《旋转》单元测试题附答案

人教版九年级上学期数学《旋转》单元测试题附答案

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .4.正方形ABCD中的顶点A在平面坐标系中的坐标为()1,1,若将正方形ABCD绕着原点O按逆时针旋转135.则旋转后的点A坐标为( )A .(-1, 1)B .(1, -1)C .(0, -D .(-5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A .1个B .2个C .3个D .4个6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行8.根据指令[],(0,0360)s A s A ≥≤<机器人在平面上能完成如下动作:先在原地顺时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点()3,0-,应下的指令是( ) A . 3,90?⎡⎤⎣⎦ B . 90,3⎡⎤⎣⎦ C . 3,90⎡⎤-⎣⎦ D . 3,270⎡⎤⎣⎦9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形10.如图,Rt △A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为( )A .4B .6C .8D .1011.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )A B .5 C .8 D .412.如图,Rt ABC 中,C 90∠=,A 60∠=,AC 6=,以斜边AB 的中点D 为旋转中心,把这个三角形按逆时针方向旋转90得到Rt A'B'C',则旋转后两个直角三角形重叠部分的面积为( )A .6B .9C .D .二、填空题 13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E重合连接C D ,则∠B D C 的度数为_____度.14.在平面直角坐标系中,O为坐标原点,点A 的坐标为,1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A ,O,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A ,O,B ,P 四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标_____(写出1 个即可).16.如图,在△B D E中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .三、解答题17.如图,P是正ABC内的一点,若将PAC绕点A逆时针旋转到P'AB,(1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求PAB ∠的度数.18.如图,ABC 的顶点坐标分别为()A 2,2-,()B 4,4,()C 1,2.将ABC 绕坐标原点O 逆时针旋转90,得到A B C '''(A '、B '、C '分别为A 、B 、C 的对应点),在坐标系中画出A B C ''',并写出A '、B '、C '三点的坐标.19.如图1,ABC 中,C 90∠=,BC 3=,AC 4=,AB 5=,将ABC 绕着点B 旋转一定的角度,得到DEB .(1)若点F 为AB 边上中点,连接EF ,则线段EF 的范围为________.(2)如图2,当DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.22.如图①,在Rt ABC 中,90C ∠=.将ABC 绕点C 逆时针旋转得到''A B C ,旋转角为α,且0180α<<.在旋转过程中,点'B 可以恰好落在AB 的中点处,如图②.()1求A ∠的度数;()2当点C 到'AA 的距离等于AC 的一半时,求α的度数.23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,D E .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.24.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示. ()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.参考答案一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°[答案]B[解析][分析]由旋转的性质可知∠B =∠A B 1C 1,A B =A B 1,由等腰三角形的性质和三角形的内角和定理可求得∠B =∠B B 1A =∠A B 1C 1=40°,从而可求得∠B B 1C 1=80°.[详解]由旋转的性质可知:∠B =∠A B 1C 1,A B =A B 1,∠B A B 1=100°.∵A B =A B 1,∠B A B 1=100°,∴∠B =∠B B 1A =40°.∴∠A B 1C 1=40°.∴∠B B 1C 1=∠B B 1A +∠A B 1C 1=40°+40°=80°.故选:B .[点评]本题主要考查的是旋转的性质,由旋转的性质得到△A B B 1为等腰三角形是解题的关键.2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)[答案]D[解析][分析]根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.[详解]解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D .[点评]本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .[答案]C[解析][分析]根据两三角形的位置关系确定几何变换类型,继而得出答案.[详解]A 、图形通过旋转得到;B 、图形通过旋转得到;C 、图形通过平移得到;D 、图形通过旋转得到;故选:C .[点评]本题考查了几何变换的类型,属于基础题,关键是掌握几种几何变换的特点.4.正方形中的顶点在平面坐标系中的坐标为,若将正方形绕着原点按逆时针旋转.则旋转后的点坐标为( )A .(-1, 1)B .(1, -1)C .(0, -)D .(-, 0)[答案]D[解析][分析]根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A 的对称图形A ′,求得OA 的长度,也就求得了OA ′的长度,可得所求点的坐标.[详解]如图:∵∴OA ′=O,∴A′0).故选:D .[点评]本题考查了由图形旋转得到相应坐标,根据旋转中心,旋转方向及角度得到相应图形是解决本题的关键.ABCD A ()1,1ABCD O 135A5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个[答案]B[解析][分析] 根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.[详解]解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .[点评]此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握6.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )A .B .C .或D .或OABC OA OC x y ()5,3D AB C CDB △90︒D 'D ()2,10()2,0-()2,10()2,0-()10, 2()2,0-[答案]C[解析][分析]先根据正方形的性质求出B D 、B C 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.[详解]四边形OA B C 是正方形,由题意,分以下两种情况:(1)如图,把逆时针旋转,此时旋转后点B 的对应点落在y 轴上,旋转后点D 的对应点落在第一象限由旋转的性质得:点的坐标为(2)如图,把顺时针旋转,此时旋转后点B 的对应点与原点O 重合,旋转后点D 的对应点落在x 轴负半轴上由旋转的性质得:点的坐标为综上,旋转后点D 的对应点的坐标为或故选:C .(5,3)D 5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒CDB △90︒B 'D 2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴D (2,10)CDB △90︒B ''D ''2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴D ''(2,0)-D (2,10)(2,0)-[点评]本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键. 7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行 [答案]D[解析][分析]根据三种变换得到的图形都与原图形全等,进行分析.[详解]解:根据平移、旋转和轴对称的基本性质,知A . B . C 都是正确的;D . 在旋转中,对应线段不一定平行,故错误.故选D .[点评]本题主要考查几何变换的类型,熟悉掌握是关键.8.根据指令机器人在平面上能完成如下动作:先在原地顺时针旋转角度,再朝其面对的方向沿直线行走距离.现在机器人在平面直角坐标系的原点,且面对轴的负方向,为使其移动到点,应下的指令是( ) [],(0,0360)s A s A ≥≤<A s y ()3,0-A .B .C .D .[答案]A[解析][分析] 若顺时针旋转90°,则机器人面对x 轴负方向,根据向x 轴负半轴走3个单位可得相应坐标.[详解]解:根据点(0,0)到点(−3,0),即可知机器人先顺时针转动,再向左平移3个单位,于是应下指令为[3,].故选A .[点评]本题主要考查坐标与图形变化-旋转,熟悉掌握是关键.9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形[答案]C[解析][分析]直接利用等腰三角形的性质分别分析得出答案.[详解]A 、等腰三角形两底角相等,正确,不合题意;B 、等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合,正确,不合题意;3,90?⎡⎤⎣⎦ 90,3⎡⎤⎣⎦ 3,90⎡⎤-⎣⎦ 3,270⎡⎤⎣⎦9090C 、等腰三角形的三边相等,错误,符合题意;D 、等腰三角形是轴对称图形但不是中心对称图形,正确,不合题意;故选:C .[点评]此题主要考查了等腰三角形的性质,正确掌握等腰三角形的性质是解题关键.10.如图,Rt△A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为()A .4B .6C .8D .10[答案]C[解析][分析]过点B '作B 'E⊥A C 于点E,由题意可证△A B C ≌△B 'A E,可得A C =B 'E=4,即可求△A B 'C 的面积.[详解]如图:过点B '作B 'E⊥A C 于点E∵旋转∴A B =A B ',∠B A B '=90°∴∠B A C +∠B 'A C =90°,且∠B 'A C +∠A B 'E =90°∴∠B A C =∠A B 'E ,且∠A EB '=∠A C B =90°,A B =A B '∴△A B C ≌△B 'A E (A A S )∴A C =B 'E =4∴S △A B 'C =×A C ×B 'E =×4×4=8 故选C .[点评]本题考查了旋转的性质,全等三角形的判定和性质,熟练运用旋转的性质是解决本题的关键. 11.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )AB .5C .8D .4[答案]A[解析][分析] 利用旋转的性质得出四边形A EC F 的面积等于正方形A B C D 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.[详解]把顺时针旋转的位置,1212ADE ABF四边形A EC F 的面积等于正方形A B C D 的面积等于25,,,中,故选A .[点评]此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 12.如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )A .B .C .D .[答案]B[解析][分析] 如图,先计算出A B =2A C =12,根据中点定义则可得B D =6,根据旋转的性质可得 D =B D =6,在Rt △BD M 中,可求得D M 、B M 的长,从而可求得B ′M 的长,然后在Rt △B ′MN 中求出MN 的长,继而求得B N 的长,在Rt △B NG 中求出B N 的长,然后利用S 阴影=S △B NG -S △B MD 进行计算即可得.[详解]如图,∵∠C =90°,∠A =60°,A C =6,∴A B =2A C =12,∠B =30°,∵点D 为A B 的中点,∴AD DC 5∴==DE 3=Rt ADE ∴AE ==Rt ABC C 90∠=A 60∠=AC 6=AB D 90Rt A'B'C'69B'∴B D =6,∵△A B C 绕点D 按逆时针方向旋转得到, ∴ D =B D =6,在Rt △B D M 中,∠B =30°,∠B D M=90°, ∴B M=2D M ,B D 2+D M 2=B M 2,∴D M=∴B ′M=B ′D -D M=6-在Rt △B ′MN中,∠B ′=30°,∴MN= B ′M=3∴,在Rt△B NG 中,B G=2NG ,B G2=NG 2+B N 2, ∴∴S 阴影=S △B NG -S △B MD ==9, 故选B .[点评]本题考查了旋转的性质、含30度角的直角三角形的性质、勾股定理、三角形的面积等,熟练掌握旋90Rt A'B'C'B'12((1133622⨯+⨯+-⨯转的性质是解题的关键.二、填空题13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E 重合连接C D ,则∠B D C 的度数为_____度.[答案]15[解析][分析]根据△EB D 由△A B C 旋转而成,得到△A B C ≌△EB D ,则B C =B D ,∠EB D =∠A B C =30°,则有∠B D C =∠B C D ,∠D B C =180﹣30°=150°,化简计算即可得出.[详解]解:∵△EB D 由△A B C 旋转而成,∴△A B C ≌△EB D ,∴B C =B D ,∠EB D =∠A B C =30°,∴∠B D C =∠B C D ,∠D B C =180﹣30°=150°,∴; 故答案为:15.[点评]此题考查旋转的性质,即图形旋转后与原图形全等.14.在平面直角坐标系中,O 为坐标原点,点A 的坐标为1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____. 15BDC ∠=︒()1180150152BDC BCD ∠=∠=︒-︒=︒[答案](﹣1[解析][分析]根据旋转的性质可知△OC A ≌△OD B ,进而得即可解题.[详解]解:如下图,由旋转的性质可知,△OC A ≌△OD B , ∵A 的坐标为1),∴∴∴B 的坐标为(﹣1)[点评]本题考查了图形的旋转,属于简单题,熟悉概念是解题关键.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子 A ,O ,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子 P ,使 A ,O ,B ,P 四颗棋子成为一个中心对称图形,请写出棋子 P 的位置坐标_____(写出 1 个即可).[答案](0,1).[解析][分析]直接利用中心对称图形的性质得出答案.[详解]如图所示:点P(0,1)答案不唯一.故答案为:(0,1).[点评]此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.如图,在△B D E 中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E 旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .[答案](3,[解析][分析]根据旋转的性质,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD,过P 作PF ⊥x轴于F ,再根据点C 在B D 上确定出∠PD B =45°并求出PD 的长,然后求出∠PD O=60°,根据直角三角形两锐角互余求出∠D PF=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得D F=PD ,利用勾股定理列式求出PF ,再求出OF ,即可得到点P ,即旋转中心的坐标.[详解]如图,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F ,∵点C 在B D 上,∴点P 到A B 、B D 的距离相等,都是 B D ,即× ∴∠PD B =45°,121212=4,∵∠B D O=15°,∴∠PD O=45°+15°=60°,∴∠D PF=30°,∴D F=PD =×4=2, ∵点D 的坐标是(5,0),∴OF=OD -D F=5-2=3,由勾股定理得,∴旋转中心的坐标为(3,. 故答案为:(3,.[点评]本题考查了坐标与图形变化-旋转,熟练掌握旋转的性质确定出旋转中心的位置并得到含有30°角的直角三角形是解题的关键.三、解答题17.如图,是正内的一点,若将绕点逆时针旋转到,(1)求的度数.(2)若,,,求的度数.[答案](1);(2).1212P ABC PAC A P'AB PAP'∠AP 3=BP 4=PC 5=PAB ∠PAP'60∠=APB 150∠=[解析][分析](1)根据旋转的性质,找出∠PA P′=∠B A C ,根据等边三角形的性质,即可解答;(2)连接PP′,根据旋转的性质及已知可得到△A PP′是等边三角形,△B PP′是直角三角形,从而求得答案.[详解]如图,根据旋转的性质得,,∵是等边三角形,∴,∴;如图,连接,由旋转可知:,所以,,又∵,∴,()1PAP'BAC ∠∠=ABC BAC 60∠=PAP'60∠=()2PP 'P AB PAC ≅'CAP BAP ∠∠'=AP AP 3='=CP BP 5='=CAP PAB 60∠∠+=P AP BAP BAP 60∠∠∠=+=''∴是等边三角形,∴,∴,∵,∴,∴是直角三角形,∴∴.[点评]本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.如图,的顶点坐标分别为,,.将绕坐标原点逆时针旋转,得到(、、分别为、、的对应点),在坐标系中画出,并写出、、三点的坐标.[答案],,,画图见解析.[解析][分析]根据点的坐标的特点可知,点A 在第四象限的平分线上,所以绕点O 逆时针旋转90°在第一象限的平分线上,点B 在第一象限的平分线上,所以绕点O 逆时针旋转90°后在第二象限的平分线上,分别求出点A ′,B ′的坐标,然后再找出点C 旋转后的点C ′,顺次连接即可.P AP 'AP AP PP 3=='='APP 60∠'=222345+=222P P PB P B '='+P PB 'P PB 90∠'=APB P PB APP 150∠∠∠=+=''ABC ()A 2,2-()B 4,4()C 1,2ABC O 90A B C '''A 'B 'C 'A B C A B C '''A 'B 'C'()A 2,2'()B 4,4'-()C 2,1'-[详解]∵,,,∴,,.画图[点评]本题考查旋转变换作图,做这类题的关键是按要求旋转后找对应点,然后顺次连接.19.如图,中,,,,,将绕着点旋转一定的角度,得到 .(1)若点为边上中点,连接,则线段的范围为________.(2)如图,当直角顶点在边上时,延长,交边于点,请问线段、、具有怎样的数量关系,请写出探索过程.[答案](1);(2)A G+EG=D E ,理由见解析.[解析][分析](1)图1中,利用旋转的性质得B E=B C =3,再根据三角形三边的关系得B E-B F≤EF≤B E+B F(当且仅当B 、()A 2,2-()B 4,4()C 1,2()A 2,2'()B 4,4'-()C 2,1'-1ABC C 90∠=BC 3=AC 4=AB 5=ABC B DEB F AB EF EF 2DEB E AB DE AC G DE EGAG 0.5EF 5.5≤≤E 、F 共线时取等号),从而得到线段EF 的范围;(2)图2中,利用旋转的性质得B E=B C =3,B D =B A =5,D E=A C =4,∠A =∠D ,再判断△A GE ∽△D EB ,然后利用相似比计算出A G 、EG ,从而可得到线段D E 、EG 、A G 的数量关系.[详解](1)∵点F 为A B 边上中点,∴B F=2.5,∵△A B C 绕着点B 旋转一定的角度得到△D EB ,∴B E=B C =3,∵B E-B F≤EF≤B E+B F(当且仅当B 、E 、F 共线时取等号),∴0.5≤EF≤5.5,故答案为0.5≤EF≤5.5;(2).理由如下:∵绕着点旋转一定的角度得到,∴,,,,∴,∵,,∴,∴,即, ∴,,∴,AG EG DE +=ABC B DE BE BC 3==BD BA 5==DE AC 4==A D ∠∠=AE AB BE 2=-=A D ∠∠=AEG BED ∠∠=AGE DEB ∽AG EG AE BD BE DE ==AG EG 2534==AG 2.5=EG 1.5=AG EG 4+=∴.[点评]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.[答案](1)3;(2)B E =D F ,B E ⊥D F .[解析][分析](1)根据旋转的性质可得A E =A F ,A D =A B ,然后根据D E =A D ﹣A E 计算即可得解;(2)根据旋转可得△A B E 和△A D F 全等,根据全等三角形对应边相等可得B E =D F ,全等三角形对应角相等可得∠A B E =∠A D F ,然后求出∠A B E +∠F =90°,判断出B E ⊥D F .[详解]解:(1)∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴A E =A F =4,A D =A B =7,∴D E =A D ﹣A E =7﹣4=3;(2)B E 、D F 的关系为:B E =D F ,B E ⊥D F .理由如下:∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴△A B E ≌△A D F , AG EG DE +=∴B E=D F,∠A B E=∠A D F,∵∠A D F+∠F=180°﹣90°=90°,∴∠A B E+∠F=90°,∴B E⊥D F,∴B E、D F的关系为:B E=D F,B E⊥D F.[点评]考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.[答案](1)见解析;(2)见解析;(3)D (﹣3,﹣2),F(﹣2,3),垂直且相等[解析][分析](1)分别延长B O,A O到占D ,C ,使D O=B O,C O=A O,再顺次连接成△C OD 即可;(2)将A ,B 绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;(3)利用图象即可得出点的坐标,以及线段B F和D F的关系.[详解](1)如图所示:(2)如图所示:(3)结合图象即可得出:D (﹣3,﹣2),F (﹣2,3),线段B F 和D F 的关系是:垂直且相等.[点评]此题考查了图形的旋转变换以及图形旋转的性质,难度不大,注意掌握解答此类题目的关键步骤. 22.如图①,在中,.将绕点逆时针旋转得到,旋转角为,且.在旋转过程中,点可以恰好落在的中点处,如图②.求的度数;当点到的距离等于的一半时,求的度数.[答案](1);(2).[解析][分析]Rt ABC 90C ∠=ABC C ''A B C α0180α<<'BAB ()1A ∠()2C 'AA AC α 30A ∠= 120α=(1)利用旋转的性质结合直角三角形的性质得出△C B B ′是等边三角形,进而得出答案;(2)利用锐角三角函数关系得出sin ∠C A D =,即可得出∠C A D =30°,进而得出α的度数. [详解] 将绕点逆时针旋转得到,旋转角为,∴∵点可以恰好落在的中点处,∴点是的中点.∵,∴, ∴,即是等边三角形.∴.∵,∴;如图,过点作于点,点到的距离等于的一半,即. 在中,,, ∴,∵,12CD AC =()1ABC C ''A B C α'CB CB ='B AB 'B AB 90ACB ∠=1''2CB AB BB ==''CB CB BB =='CBB 60B ∠=90ACB ∠=30A ∠=()2C 'CD AA ⊥D C 'AA AC 12CD AC =Rt ADC 90ADC ∠=1sin 2CD CAD AC ∠==30CAD ∠='CA CA =∴.∴,即.[点评]考查旋转的性质以及等边三角形的判定等知识,解题关键是正确掌握直角三角形的性质. 23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,DE .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.[答案](1)6+或[解析][分析](1)根据勾股定理得到 A C =6,根据全等三角形的性质得到A E=B D ,当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,于是得到结论;(2)当点D 在C F 的右侧,当点D 在C F 的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt △A B C 中,∠A C B =90°,'30A CAD ∠=∠='120ACA ∠=120α=∴A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E 与△BC D中, ,∴△A C E ≌△B C D (SA S),∴A E=B D ,∴△A D E 的周长=A E+A D +D E=AB +D E ,∴当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,当C D ⊥A B 时,C D 最短,等于3,此时∴△A D E 的周长的最小值是;(2)当点D 在C F 的右侧,∵C F= A B =3,C D =4, ∴∴A E=B D =B F ﹣D F=3;当点D 在C F 的左侧,同理可得=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩12综上所述:A E 的长度为3或.[点评]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.24.两块等腰直角三角形纸片和按图所示放置,直角顶点重合在点处,,.保持纸片不动,将纸片绕点逆时针旋转角度,如图所示. 利用图证明且;当与在同一直线上(如图)时,求的长和的正弦值.[答案](1)详见解析;(2)7,. [解析][分析] (1)图形经过旋转以后明确没有变化的边长,证明,得出A C =B D ,延长B D 交A C 于E ,证明∠A EB =90,从而得到.(2) 如图3中,设A C =x ,在Rt △A B C 中,利用勾股定理求出x ,再根据sinα=sin ∠A B C =即可解决问题[详解] 证明:如图中,延长交于,交于.AOB COD 1O 25AB =17CD =AOB COD O (090)αα<<2()12AC BD =AC BD ⊥()2BD CD 3AC α725AOC BOD ≅︒BD AC ⊥AC AB()12BD OA G AC E∵,∴,在和中,,∴,∴,,∵,∵,∴,∴,∴.解:如图中,设,∵、在同一直线上,,∴是直角三角形,90AOB COD ∠=∠=AOC DOB ∠=∠AOC BOD OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩AOC BOD ≅AC BD =CAO DBO ∠=∠90DBO GOB ∠+∠=OGB AGE ∠=∠90CAO AGE ∠+∠=90AEG ∠=BD AC ⊥()23AC x=BD CD BD AC ⊥ABC∴,∴,解得,∵,,∴,∴. [点评]本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型. 222AC BC AB +=222(17)25x x ++=7x =45ODC DBO α∠=∠+∠=45ABC DBO ∠+∠=ABC α∠=∠7sin sin 25AC ABC AB α=∠==。

九年级上册数学《旋转》单元检测题(含答案)

九年级上册数学《旋转》单元检测题(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。

九年级上册数学图形的旋转练习及答案

九年级上册数学图形的旋转练习及答案

九年级上册数学图形的旋转练习及答案1.下列事件中,属于旋转运动的是()A.小明向北走了4米B.小朋友们在荡秋千时做的运动C.电梯从1楼到12楼D.一物体从高空坠下2.将图23-1-8按顺时针方向旋转90°后得到的是()图23-1-83.如图23-1-9,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.格点M B.格点NC.格点P D.格点Q图23-1-9 图23-1-10 4.如图23-1-10,△ABO绕着点O旋转至△A1B1O,此时:(1)点B的对应点是______.(2)旋转中心是________,旋转角是____________.(3)∠A的对应角是________,线段OB的对应线段是__________.5.如图23-1-11,将△ABC绕点A逆时针旋转30°得到△AEF,连接EB,则∠AEB=____________.图23-1-11 图23-1-126.如图23-1-12,以点O为旋转中心,将∠1按顺时针方向旋转100°得到∠2,若∠1=40°,则∠2的余角为____________度.7.如图23-1-13,在画有方格图的平面直角坐标系中,△ABC的三个顶点均在格点上.(1)△ABC是__________三角形,它的面积等于________;(2)将△ACB绕点B按顺时针方向旋转90°,在方格图中用直尺画出旋转后对应的△A′C′B,则点A′的坐标是(__,__),点C′的坐标是(__,__).8.已知:如图23-1-14,点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.图23-1-149.如图23-1-15,四边形EFGH是由四边形ABCD经过旋转得到的.如果用有序数对(2,1)表示方格纸上点A的位置,用(1,2)表示点B的位置,那么四边形ABCD旋转得到四边形EFGH 时的旋转中心用有序数对表示是____________.图23-1-1510.如图23-1-16,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使点L,M在AK的同旁,连接BK和DM,试用旋转性质说明线段BK与DM的大小关系.图23-1-16答案:1.B 2.A 3.B4.(1)点B1(2)点O∠AOA1或∠BOB1(3)∠A1OB15.75° 6.507.(1)等腰直角三角形 5(2)按题意要求画出图形,由图D9可以看出,A′(3,3),C′(0,2).图D98.解:(1)△ABP旋转的旋转中心是点B,按顺时针方向旋转90°.(2)由旋转的性质,得PB=BE,∠PBE是旋转角,为90°.∴PE=PB2+BE2=2 2.9.(5,2)解析:首先确定坐标轴,根据旋转的性质,对应点连线的垂直平分线都经过旋转中心.故连接DH,AE,作它们的垂直平分线,垂直平分线的交点即为旋转中心.10.解:∵四边形ABCD,四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM=90°,且为旋转角.∴△ADM是以点A为旋转中心,∠BAD为旋转角,由△ABK按逆时针旋转而成的.∴BK=DM.。

数学九年级上学期《旋转》单元测试(含答案)

数学九年级上学期《旋转》单元测试(含答案)

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·扬州市梅岭中学初二期末)下列图形是中心对称图形的是( )A .B .C .D .2.(2020·江西省初三其他)小明有一个俯视图为等腰三角形的积木盒,现在积木盒中只剩下如图所示的九个空格,下面列有积木的四种搭配方式,其中恰好能放人盒中空格的有( )A .1种B .2种C .3种D .4种3.(2020·湖北省中考真题)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--4.(2019·山东省初三期末)如图,B A =B C ,∠A B C =80°,将△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点,连接D E ,则∠B ED 为( )A .50°B .55°C .60°D .65°5.(2020·辽宁省初二期末)如图,Rt ABC 中,∠B =30°,∠C =90°,将Rt ABC 绕点A 按顺时针方向旋转到11AB C △的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .60°B .90°C .120°D .150°6.(2020·山东省初二期中)如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),A C =2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)7.(2020·河北省中考真题)如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中”∵CB AD =,”和”∴四边形……”之间作补充.下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB CD =,C .应补充:且//AB CD D .应补充:且OA OC =,8.(2020·海南省中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .9.(2020·哈尔滨市萧红中学初三月考)如图,点D 是等边ABC ∆内一点,将BDC ∆以点C 为中心顺时针旋转60︒,得到ACE ∆,连接BE ,若45AEB ∠=︒,则DBE ∠的度数为( )A .25B .30C .20D .1510.(2020·辽宁省初二期中)如图,△A B C 绕点A 顺时针旋转45°得到△A B ′C ′,若∠B A C =90°,A B=A C ,则图中阴影部分的面积等于( )A .2B .1CD ﹣l11.(2020·无锡市凤翔实验学校初三月考)如图,平面直角坐标系中,矩形OA B C 的顶点A (﹣6,0),C (0,.将矩形OA B C 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为( )A .(-B .(4)-C .(-D .(-12.(2020·河南省初二期末)如图,在平面直角坐标系中有一边长为1的正方形OABC ,边OA ,OC 分别在 x 轴、y 轴上,如果以对角线OB 为边作第二个正方形11OBB C ,再以对角线1OB 为边作第三个正方形122OB B C ,照此规律作下去,则点2020B 的坐标为( )A .10101010(22)-,B .20202020(22)-,C .20202020(22)--,D .10101010(22)--,13.(2020·河南省初三学业考试)如图,在Rt ABC 中,90A ∠=,3AB =,4AC =,D 为A C 中点,P 为A B 上的动点,将P 绕点D 逆时针旋转90得到'P ,连'CP ,线段'CP 最小值为( )A .1.6B .2.4C .2D .14.(2020·黑龙江省初三月考)如图,已知正方形ABCD ,4=AD ,E 是CD 中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90︒得ABG ∆,则下列结论中:①ΔΔABG AED ≅;②ΔΔAEF ABF ≅;③AF 平分GAD ∠;④1GF =;⑤6CF =- )A .①③B .①③⑤C .①②④⑤D .①③④二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·湖南省初一期末)如图,将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA ′B ′(点A ′,B ′分别是点A ,B 的对应点),则∠1=_________度;16.(2019·湖南省初三学业考试)如图,P 是等边△A B C 内一点,△B MC 是由△B PA 绕点B 逆时针旋转所得,若MC //B P ,则∠B MC =_______°.17.(2020·江苏省初三三模)如图,在平面直角坐标系中,A (2,0),B (0,1),A C 由A B 绕点A 顺时针旋转90°而得,则A C 所在直线的解析式是____.18.(2020·河北省初三二模)在锐角ABC 中,4AB =,5BC =,45ACB ∠=︒ ,将ABC 绕点B 按逆时针方向旋转,得到111A B C △.(1)如图1,当点1C 在线段CA 的延长线上时,则11CC A ∠的度数为______________度;(2)如图2,点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,则线段1EP 长度最小值是_____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·湖南省初一期末)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△A B C 的顶点均在格点上,O 、M 也在格点上.(1)画出ABC 关于直线OM 对称的111A B C △;(2)画出ABC 绕点O 按顺时针方向旋转90°后所得的222A B C △;(3) 计算:111A B C △的面积为 ;(4)2CC A S 22CC B S (填”>“,”=“或”<“)20.(2020·南通市八一中学初一月考)如图①, 已知△A B C 中, ∠B A C =90°, A B ="A C ," A E 是过A 的一条直线, 且B 、C 在A E 的异侧, B D ⊥A E 于D , C E ⊥A E 于E.(1)求证: B D =D E+C E.(2)若直线A E 绕A 点旋转到图②位置时(B D <C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请给予证明;(3)若直线A E 绕A 点旋转到图③位置时(B D >C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请直接写出结果, 不需证明.(4)根据以上的讨论,请用简洁的语言表达B D 与D E,C E 的数量关系.21.(2020·湖北省中考真题)在58⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ;(2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.22.(2020·四川省内江市第六中学初三三模)如图,已知△A B C 中,A B =A C ,把△A B C 绕A 点沿顺时针方向旋转得到△A D E,连接B D ,C E 交于点F.(1)求证:AEC ADB ∆≅∆;(2)若A B =2,45BAC ︒∠=,当四边形A D FC 是菱形时,求B F 的长.23.(2020·辽宁省初二期末)如图,正方形A B C D 的边长为4,E 是边B C 上的一点,把ABE △平移到DCF ,再把ABE △逆时针旋转到ADG 的位置.(1)把ABE △平移到DCF ,则平移的距离为_______;(2)四边形A EFD 是_______四边形;(3)把ABE △逆时针旋转到ADG 的位置,旋转中心是______点;(4)若连接EG ,求证:AEG △是等腰直角三角形.24.(2020·北京育英中学初三三模)已知40AOB ∠=︒,M 为射线OB 上一定点,1OM =,P 为射线OA 上一动点(不与点O 重合),1OP <,连接PM ,以点P 为中心,将线段PM 顺时针旋转40︒,得到线段PN ,连接MN .(1)依题意补全图1;(2)求证:APN OMP ∠=∠;(3)H 为射线OA 上一点,连接NH .写出一个OH 的值,使得对于任意的点P 总有OHN ∠为定值,并求出此定值.25.(2020·山东省诸城市树一中学初三二模)如图1,点O 是正方形A B C D 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接A G ,D E .(1)求证:D E ⊥A G ;(2)正方形A B C D 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°< α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形A B C D 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.26.(2020·长春市新朝阳实验学校初三月考)(教材呈现)下图是华师版八年级下册数学教材第112页的部分内容.例2如图,已知菱形ABCD 的边长为2cm ,120BAD ∠=︒,对角线AC 、BD 相交于点O .试求这个菱形的两条对角线AC 与BD 的长.(结果保留根号)结合图①,写出求解过程.(应用)(1)如图②,过图①中的点A 分别作AE AD ⊥,AF AB ⊥,连结CE 、CF ,则四边形AECF 的面积为_________.(2)如图③,在菱形ABCD 中,120BAD ∠=︒,对角线AC 、BD 相交于点O .将其绕着点O 顺时针旋转90°得到菱形A B C D ''''.若1AB =,则旋转前后两个菱形重叠部分图形的周长为_________.参考答案一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·扬州市梅岭中学初二期末)下列图形是中心对称图形的是( )A .B .C .D .[答案]B[解析]解:A 、不是中心对称图形,不符合题意,故选项A 错误;B 、是中心对称图形,符合题意,故选项B 正确;C 、不是中心对称图形,不符合题意,故选项C 错误;D 、不是中心对称图形,符合题意,故选项D 错误;故选:B .2.(2020·江西省初三其他)小明有一个俯视图为等腰三角形的积木盒,现在积木盒中只剩下如图所示的九个空格,下面列有积木的四种搭配方式,其中恰好能放人盒中空格的有( )A .1种B .2种C .3种D .4种[答案]D [解析]解:∵将搭配①②③④组合在一起,正好能组合成九个空格的形状,∴恰好能放入的有①②③④.故选:D .3.(2020·湖北省中考真题)在平面直角坐标系中,点G 的坐标是,连接,将线段绕原点O 旋转,得到对应线段,则点的坐标为( )()2,1-OG OG 180︒OG 'G 'A .B .C .D .[答案]A [解析]根据题意可得,与G 关于原点对称,∵点G 的坐标是,∴点的坐标为.故选A .4.(2019·山东省初三期末)如图,B A =B C ,∠A B C =80°,将△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点,连接D E ,则∠B ED 为( )A .50°B .55°C .60°D .65°[答案]A [解析]∵△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点, ∴∠C B D =∠A B E ,B D =B E ,∵∠A B C =∠C B D +∠A B D ,∠EB D =∠A B E +∠A B D ,∠A B C =80°,∴∠EB D =∠A B C =80°,∵B D =B E ,∴∠B ED =∠B D E=(180°-∠EB D )=(180°-80°)=50°, 故选:A .5.(2020·辽宁省初二期末)如图,中,∠B =30°,∠C =90°,将绕点A 按顺时针方向旋转到的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .60°B .90°C .120°D .150°()2,1-()2,1()1,2-()2,1--G '()2,1-G '()2,1-1212Rt ABC Rt ABC 11AB C△[答案]C[解析]在中,由旋转的性质得:为旋转角,点C 、A 、在同一条直线上即旋转角等于故选:C .6.(2020·山东省初二期中)如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),A C =2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)[答案]A [解析]∵点C 的坐标为(﹣1,0),A C =2,∴点A 的坐标为(﹣3,0),如图所示,将Rt △A B C 先绕点C 顺时针旋转90°,Rt ABC 30,90B C ∠=︒∠=︒9060BAC B ∴∠=︒-∠=︒1CAC ∠1160B AC BAC ∠=∠=︒1B 11118018060120CAC B AC ∠=︒-∠=︒-︒=∴︒120︒则点A ′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A ′的对应点坐标为(2,2),故选:A .7.(2020·河北省中考真题)如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点,处,而点转到了点处.∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中”∵,”和”∴四边形……”之间作补充.下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且,C .应补充:且D .应补充:且, [答案]B[解析]根据旋转的性质得: C B =A D ,A B =C D ,∴四边形A B D C 是平行四边形;故应补充”A B =C D ”,故选:B .8.(2020·海南省中考真题)如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是( )ABC ∆AC O CDA ∆ABC ∆A C C A B D CB AD =ABCD CB AD =AB CD =//AB CD OA OC =Rt ABC 90,30,1,C ABC AC cm ∠=︒∠=︒=Rt ABC A Rt AB C ''△C 'AB BB 'BB 'A .B . CD .[答案]B [解析]解:∵由直角三角形中,30°角所对的直角边等于斜边的一半可知,∴ C m ,又∠C A B =90°-∠A B C =90°-30°=60°,由旋转的性质可知:,且,∴为等边三角形,∴.故选:B .9.(2020·哈尔滨市萧红中学初三月考)如图,点是等边内一点,将以点为中心顺时针旋转,得到,连接,若,则的度数为( )A .B .C .D .[答案]D [解析]∵,且任意三角形内角和都为180°∴∵为等边三角形∴°∵°1cm 2cm 90,30,1,C ABC AC cm ∠=︒∠=︒==2=2AB AC '=60∠∠=CAB BAB '=AB AB '∆BAB '==2BB AB D ABC ∆BDC ∆C 60︒ACE ∆BE 45AEB ∠=︒DBE ∠25302015AFE BFC ∠=∠1AEB FBC ACB ∠+∠=∠+∠ABC 60ACB ∠=45AEB ∠=∴∴∵以点C 为中心顺时针旋转60°得到∴∴故选:D10.(2020·辽宁省初二期中)如图,△A B C 绕点A 顺时针旋转45°得到△A B ′C ′,若∠B A C =90°,A B =A C,则图中阴影部分的面积等于( )A .2B .1 CD ﹣l[答案]D [解析]∵△A B C 绕点A 顺时针旋转45°得到△A ′B′C ′,∠B A C =90°,,∴B C =2,∠C =∠B =∠C A C ′=∠C ′=45°,A C ′=,∴A D ⊥B C ,B ′C ′⊥A B ,∴A D = B C =1,A F=FC ′= A C ′=1, ∴D C ′=A C ′-1,14560FBC ︒︒∠+=∠+115FBC ︒∠-∠=BDC ACE △1DBC ∠=∠115DBE DBC FBC FBC ︒∠=∠-∠=∠-∠=122∴图中阴影部分的面积等于:S△A FC ′-S△D EC ′=×1×1-×-1)2-1,故选D .11.(2020·无锡市凤翔实验学校初三月考)如图,平面直角坐标系中,矩形OA B C 的顶点A(﹣6,0),C (0,.将矩形OA B C 绕点O顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为()A .B .C . D.[答案]D[解析]解:连接OB 1,作B 1H⊥OA 于H,由题意,得OA =6,则tA n∠B OA =,∴∠B OA =30°,∴∠OB A =60°,由旋转的性质可知∠B 1OB =∠B OA =30°,1212(-(4)-(-(-3ABAO=∴∠B 1OH=60°,在△A OB 和△HB 1O , ∴△A OB ≌△HB 1O ,∴B 1H=OA =6,∴点B 1的坐标为(6),故选:D .12.(2020·河南省初二期末)如图,在平面直角坐标系中有一边长为的正方形,边,分别在轴、轴上,如果以对角线为边作第二个正方形,再以对角线为边作第三个正方形,照此规律作下去,则点的坐标为( )A .B .C .D . [答案]D [解析]解:∵正方形OA B C 边长为1,∴,∵正方形OB B1C 1是正方形OA B C 的对角线OB 为边,∴OB 1=2,∴B 1点坐标为(0,2),同理可知OB 2,∴B 2点坐标为(-2,2),同理可知OB 3=4,B 3点坐标为(-4,0),B 4点坐标为(-4,-4),B 5点坐标为(0,-8),111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩=,=,=,1OABC OA OC x y OB 11OBB C 1OB 122OB B C 2020B 10101010(22)-,20202020(22)-,20202020(22)--,10101010(22)--,B 6(8,-8),B 7(16,0),B 8(16,16),B 9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来倍,∵2020÷8=252…4,∴B 2020的横纵坐标符号与点B 4相同,横纵坐标互为相反数,且都在第三象限,∴ B 2020的坐标为(-21010,-21010).故选:D .13.(2020·河南省初三学业考试)如图,在中,,,,D 为A C 中点,P 为A B 上的动点,将P 绕点D 逆时针旋转得到,连,线段最小值为A .B .C .2D .[答案]C [解析]如图所示,过P'作P'E ⊥A C 于E ,则∠A =∠P'ED =90°,由旋转可得,D P=P'D ,∠PD P'=90°,∴∠A D P=∠EP'D ,在△D A P 和△P'ED 中,∴△D A P ≌△P'ED (A A S ),Rt ABC 90A ∠=3AB =4AC =90'P 'CP 'CP ()1.6 2.4ADP EP D A P EDDP P D ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴P'E=A D =2,∴当A P=D E=2时,D E=D C ,即点E 与点C 重合,此时C P'=EP'=2,∴线段C P′的最小值为2,故选C .14.(2020·黑龙江省初三月考)如图,已知正方形,,是中点,平分交于点,将绕点顺时针旋转得,则下列结论中:①;②;③平分;④;⑤()A .①③B .①③⑤C .①②④⑤D .①③④[答案]B[解析]过点F 作FM ⊥A D 于M ,FN ⊥A G 于N ,如图,∵四边形A B C D 是正方形,,是中点,∴∠D =∠C =∠A B C =90º,B C =A D =C D =A B =4,D E=C E=2,∴四边形C FMD 是矩形,且∴FM=C D =4,∵将绕点顺时针旋转得,∴,故①正确;且A G=A E= B G=D E=2,∠D A E=∠B A G ,∠D =∠B A G=90º,∴点G 在C B 的延长线上,∵平分交于点,∴∠EA F=∠B A F ,∴∠D A E+∠EA F=∠B A G+∠B A F 即∠D A F=∠GA F ,∴平分,故③正确;∴FN=FM=4, ABCD 4=AD E CD AF BAE ∠BC F ADE ∆A 90︒ABG ∆ΔΔABG AED ≅ΔΔAEF ABF ≅AF GAD ∠1GF =+6CF =-4=AD E CD AE =ADE ∆A 90︒ABG ∆ΔΔABG AED ≅AF BAE ∠BC F AF GAD ∠∵, ∴∴B F=,C F=B C +B G-B F=,故⑤正确;又A E≠A B ≠B F,,∴不成立,故②错误,∴正确的序号为①③⑤,故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·湖南省初一期末)如图,将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA ′B ′(点A ′,B ′分别是点A ,B 的对应点),则∠1=_________度;[答案]100[解析]解:∵将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA 'B ',∴,,∴,故答案为:100.16.(2019·湖南省初三学业考试)如图,P 是等边△A B C 内一点,△B MC 是由△B PA 绕点B 逆时针旋转所得,若MC //B P ,则∠B MC =_______°.1122AGF S GF AB AG FN ===16-ΔΔAEF ABF ≅'160BOB ∠=︒60AOB ∠=︒1'100BOB AOB ∠=∠-∠=︒[答案]120[解析]∵△B MC 是由△B PA 绕点B 逆时针旋转所得,∴,∴,又∵△A B C 是等边三角形,∴,又∵MC //B P ,∴,∴,∴.故答案为.17.(2020·江苏省初三三模)如图,在平面直角坐标系中,A (2,0),B(0,1),A C 由A B 绕点A 顺时针旋转90°而得,则A C 所在直线的解析式是____.[答案][解析]∵A (2,0),B (0,1),∴OA =2,OB =1,过点C 作C D ⊥x 轴于点D△△PBA MBC ≅PBA MBC ∠=∠60PBM MBC PBC ∠=∠+∠=︒MCB PBC ∠=∠+60MBC MCB ∠∠=︒18060120BMC ∠=︒-︒=︒120︒24y x =-则易知△A C D ≌△B A O (A A S ),∴A D =OB =1,C D =OA =2∴C (3,2),设直线A C 的解析式为,将点A 、点C 坐标代入得, ∴, ∴直线A C 的解析式为.故答案为:.18.(2020·河北省初三二模)在锐角中,,, ,将绕点按逆时针方向旋转,得到.(1)如图1,当点在线段的延长线上时,则的度数为______________度;(2)如图2,点为线段中点,点是线段上的动点,在绕点按逆时针方向旋转过程中,点的对应点是点,则线段长度最小值是_____________.[答案]90 [解析]解:(1)由旋转的性质可得:,,,y kx b =+0223k b k b =+⎧⎨=+⎩24k b =⎧⎨=-⎩24y x =-24y x =-ABC 4AB =5BC =45ACB ∠=︒ABC B 111A B C △1C CA 11CC A ∠E AB P AC ABC B P 1P 1EP 21145A C B ACB ∠=∠=︒1BC BC =1145CC B C CB;(2)如图1,过点作,为垂足,为锐角三角形,点在线段上,在中,, 当在上运动,与垂直的时候,绕点旋转,使点的对应点在线段上时,最小,最小值为:; 三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·湖南省初一期末)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△A B C 的顶点均在格点上,O 、M 也在格点上.(1)画出关于直线OM 对称的; (2)画出绕点O 按顺时针方向旋转90°后所得的; (3) 计算:的面积为;(4) (填”>“,”=“或”<“)[答案](1)答案见解析;(2)答案见解析;(3)1.5;(4)>.[解析](1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;11111454590CC A CC B AC B B BD AC ⊥D ABC ∆∴D AC Rt BCD ∆52sin 452BD BC P AC BP AC ABC ∆B P 1P AB 1EP 112EP BP BE BD BE =-=-=ABC 111A B C △ABC 222A B C △111A B C △2CC A S 22CC B S(3)△A 1B 1C 1的面积为:2×2-×1×2-×1×2-×1×1=; 故答案为:;(4)如图所示,, , ∴;故答案为:>.20.(2020·南通市八一中学初一月考)如图①, 已知△A B C 中, ∠B A C =90°, A B ="A C ," A E 是过A 的一条直线, 且B 、C 在A E 的异侧, B D ⊥A E 于D , C E ⊥A E 于E.(1)求证: B D =D E+C E.(2)若直线A E 绕A 点旋转到图②位置时(B D <C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请给予证明;1212121.51.5213232CC A S =⨯⨯=2211124241311111222CC B S =⨯-⨯⨯-⨯⨯-⨯⨯-⨯=222CC A CC B S S>(3)若直线A E 绕A 点旋转到图③位置时(B D >C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请直接写出结果, 不需证明.(4)根据以上的讨论,请用简洁的语言表达B D 与D E,C E 的数量关系.[答案](1)、证明过程见解析;(2)、B D =D E –C E ;证明过程见解析;(3)、B D =D E –C E ;(4)、当B ,C 在A E 的同侧时,B D =D E –C E ;当B ,C 在A E 的异侧时,B D =D E+C E.[解析](1)∵B D ⊥A E ,C E ⊥A E∴∠A D B =∠C EA =90°∴∠A B D +∠B A D =90°又∵∠B A C =90°∴∠EA C +∠B A D =90°∴∠A B D =∠C A E在△A B D 与△A C E∴△A B D ≌△A C E∴B D =A E,A D =EC∴B D =D E+C E(2)、∵B D ⊥A E ,C E ⊥A E∴∠A D B =∠C EA =90°∴∠A B D +∠B A D =90°又∵∠B A C =90°∴∠EA C +∠B A D =90°∴∠A B D =∠C A E在△A B D 与△A C E∴△A B D ≌△A C E∴B D =A E,A D =EC∴B D =D E –C E(3)、同理:B D =D E –C EADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(4)、归纳:由(1)(2)(3)可知:当B ,C 在A E 的同侧时,B D =D E –C E ;当B ,C 在A E 的异侧时,∴B D =D E+C E21.(2020·湖北省中考真题)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段绕点逆时针旋转,画出对应线段;(2)在线段上画点,使(保留画图过程的痕迹);(3)连接,画点关于直线的对称点,并简要说明画法.[答案](1)见解析;(2)见解析;(3)见解析[解析]解:(1)如图示,线段是将线段绕点逆时针旋转得到的;(2)∠B C E 为所求的角,点E 为所求的点.(3)连接(5,0)和(0,5)点,与A C 的交点为F,且F 为所求.58⨯OABC (0,0)O (3,4)A (8,4)B (5,0)C CB C 90︒CD ABE 45BCE ︒∠=AC E ACF CD CB C 90︒22.(2020·四川省内江市第六中学初三三模)如图,已知△A B C 中,A B =A C ,把△A B C 绕A 点沿顺时针方向旋转得到△A D E,连接B D ,C E 交于点F.(1)求证:;(2)若A B =2,,当四边形A D FC 是菱形时,求B F 的长.[答案](1)证明过程见解析;(2)-2[解析](1)∵△A B C ≌△A D E 且A B =A C∴A E=A D ,A B =A C∠B A C +∠B A E=∠D A E+∠B A E∴∠C A E=∠D A B∴△A EC ≌△A D B(3)∵四边形A D FC 是菱形且∠B A C =45°∴∠D B A =∠B A C =45°由(1)得A B =A D∴∠D B A =∠B D A =45°∴△A B D 是直角边长为2的等腰直角三角形∴又∵四边形A D FC 是菱形AEC ADB ∆≅∆45BAC ︒∠=∴A D =D F=FC =A C =A B =2∴-223.(2020·辽宁省初二期末)如图,正方形A B C D 的边长为4,E是边B C 上的一点,把平移到,再把逆时针旋转到的位置.(1)把平移到,则平移的距离为_______;(2)四边形A EFD 是_______四边形;(3)把逆时针旋转到的位置,旋转中心是______点;(4)若连接EG,求证:是等腰直角三角形.[答案](1)4;(2)平行;(3)A ;(4)证明见解析.[解析](1)四边形A B C D 是边长为4的正方形由平移的性质可知,平移的距离为故答案为:4;(2)由平移的性质可知,平移距离为,且点在一条直线上又四边形A EFD 是平行四边形故答案为:平行;(3)由旋转的定义得:把逆时针旋转到的位置,旋转中心是A 点故答案为:A ;(4)由旋转的性质得:是等腰三角形,即ABE △DCF ABE△ADGABE△DCFABE△ADGAEG△4,//,90BC AD AD BC BAD∴==∠=︒4BC=4EF BC==,,,B EC F4EF AD∴==//AD BC//AD EF∴∴ABE△ADG,AG AE DAG BAE=∠=∠∴AEG90BAD∠=︒90BAE DAE∠+∠=︒,即是等腰直角三角形.24.(2020·北京育英中学初三三模)已知,M 为射线上一定点,,P 为射线上一动点(不与点O 重合),,连接,以点P 为中心,将线段顺时针旋转,得到线段,连接.(1)依题意补全图1;(2)求证:;(3)H 为射线上一点,连接.写出一个的值,使得对于任意的点P 总有为定值,并求出此定值.[答案](1)见解析;(2)见解析;(3)的值为1,110°[解析](1)补全图形,如图所示.;(2)证明:根据题意可知,,∵,∴;(3)解:的值为1.在射线上取一点G ,使得,连接,根据题意可知,,在和中 90DAG DAE ∴∠+∠=︒90EAG ∠=︒∴AEG 40AOB ∠=︒OB 1OM =OA 1OP <PM PM 40︒PNMN APN OMP ∠=∠OA NH OH OHN ∠OH 40MPN AOB ∠=∠=︒MPA AOB OMP MPN APN ∠=∠+∠=∠+∠APN OMP ∠=∠OH PA PG OM =GN MP NP =OMP ∆GPN ∆∵,∴,∴,∵,∴,∴,∴,∴.25.(2020·山东省诸城市树一中学初三二模)如图1,点O 是正方形A B C D 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接A G ,D E .(1)求证:D E ⊥A G ;(2)正方形A B C D 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°< α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形A B C D 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.OM PG OMP GPN MP NP =⎧⎪∠=∠⎨⎪=⎩OMP GPN ∆∆≌,40OP GN AOB NGP =∠=∠=︒PG OH =OP HG =NG HG =70NHG ∠=︒110OHN ∠=︒[答案](1)D E⊥A G (2)①当∠OAG′为直角时,α=30°或150°.②315°[解析]解:(1)如图1,延长ED 交A G于点H,∵点O是正方形A B C D 两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,{OA=OD∠AOG=∠DOE=90∘OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90∘,∴∠GAO+∠DEO=90∘,∴∠AHE=90∘,即DE⊥AG;(2)①如图2,在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0∘增大到90∘过程中,当∠OAG′=90∘时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠A GO=OAOG′=12,∴∠AG′O=30∘,∵OA ⊥OD ,OA ⊥AG′,∴OD//AG′,∴∠DOG′=∠AG′O =30∘,即α=30∘;(Ⅱ)α由90∘增大到180∘过程中,当∠OAG′=90∘时,同理可求∠BOG′=30∘,∴α=180∘−30∘=150∘.综上所述,当∠OAG′=90∘时,α=30∘或150∘.②如图3,当旋转到A 、O 、F′在一条直线上时,AF′的长最大,∵正方形A B C D 的边长为1,∴OA =OD =OC =OB =√22, ∵OG =2OD ,∴OG′=OG =√2,∴OF′=2,∴AF′=AO +OF′=√22+2,∵∠COE′=45∘,∴此时α=315∘.26.(2020·长春市新朝阳实验学校初三月考)(教材呈现)下图是华师版八年级下册数学教材第112页的部分内容.例2如图,已知菱形的边长为,,对角线、相交于点.试求这个菱形的两条对角线与的长.(结果保留根号)ABCD 2cm 120BAD ∠=︒AC BD O AC BD结合图①,写出求解过程.(应用)(1)如图②,过图①中的点分别作,,连结、,则四边形的面积为_________.(2)如图③,在菱形中,,对角线、相交于点.将其绕着点顺时针旋转90°得到菱形.若,则旋转前后两个菱形重叠部分图形的周长为_________.[答案][教材呈现],A C =2C m ;[应用](1) C m 2;(2).[解析]教材呈现:∵四边形是菱形, A AE AD ⊥AF AB ⊥CE CF AECF ABCD 120BAD ∠=︒AC BD O O A B C D ''''1AB =BD =34-ABCD∴,.∴.∴.∴是等边三角形.∴ C m .∵,∴是直角三角形.∴. ∴ C m .应用:(1)由[教材呈现]知:是等边三角形 ∵四边形是菱形∴° ∵∴,,° ∵A B =2C m∴同理可得: C m ,° ∴为等边三角形∴C m ∴S 四边形A EC F = A C ∙EF=×22. (2)设与交于点E//AD BC AB BC =180BAD ABC ∠+∠=︒18060ABC BAD ∠=︒-∠=︒ABC ∆2AC AB ==AC BD ⊥AOB BO =2BD BO ==ABC ABCD 1302ABO ABC ∠=∠=AF AB ⊥2BF AF =AB =60AFE ∠=AE =60AEF ∠=AEF 1212AB B C ''由菱形A B C D 性质可知:°∵∴∴∴∴∴∴ ∵菱形A B C D 与菱形的重叠部分是正八边形 ∴其周长为:=. 故答案为:.30EBC BEC AEB EB A ''''∠=∠=∠=∠=,OB OB OA OC ''==AB C B ''=C EB AEB ''≅△△AE EC BC ''==BE=1AB AE BE AE =+==12AE =A B C D ''''182⨯44。

九年级上册数学《旋转》单元测试附答案

九年级上册数学《旋转》单元测试附答案
6.如图图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
7.已知点A(a,﹣1)与B(2,b)是关于原点O的对称点,则()
A.a=﹣2,b=﹣1B.a=﹣2,b=1C.a=2,b=﹣1D.a=2,b=1
8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()
A 黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)
9.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()
A. B. C. D.
10.如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠B的大小为( )
A. B. C. D.
二.填空题(共8小题)
21.如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.
(1)旋转中心是点,旋转了度;
(2)如果AB=7,AC=4,求中线AD长的取值范围.
22.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
23.如图,△A1AC1是由△ABC绕某点P按顺时针方向旋转90°得到的,△ABC的顶点坐标分A(﹣1,6),B(﹣5,0),C(﹣5,6).
A. 点AB. 点BC. 点CD. 点D
【答案】C
【解析】
【分析】
旋转前后对应点的连线段的垂直平分线的交点是旋转中心.
【详解】由旋转的性质可得,旋转前后对应点的连线段的垂直平分线交于一点,如图所示
故选C.
【点睛】本题考查的是旋转中心,熟练掌握旋转中心的性质是解题的关键.

人教版九年级上册数学《旋转》单元测试卷(含答案)

人教版九年级上册数学《旋转》单元测试卷(含答案)
12.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.
13.如图,在△ABC中,∠ACB=90∘,AC=BC=1cm,如果以AC的中点O为旋转中心,将△ABC旋转180∘,点B落在点D处,连接BD,那么线段BD的长为___cm.
A.4B.5C.6D.8
10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=4 ,BC 中点为D.将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是( )
A. 4 B. 6C. 2+2 D. 8
二、填空题
11.请写出一个是中心对称图形的几何图形的名称:.
A 内部B. 外部C. 边上D. 以上都有可能
8.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()
A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)
9.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()
(1)延长MP交CN于点E(如图2).j求证:△BPM@△CPE;k求证:PM = PN;
(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变.此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变.请直接判断四边形MBCN
9.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建2020九年级上册数学第七单元专练:平移与旋转|夯实基础|1.下列四个图形中,可以由图K37-1通过平移得到的是( )图K37-1 图K37-22.如图K37-3,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移,得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为( )图K37-3A.(1,2)B.(2,1)C.(1,4)D.(4,1)3.如图K37-4,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是( )图K37-4A.AC=ADB.AB⊥EBC.BC=DED.∠A=∠EBC4.如图K37-5,在平面直角坐标系中,边长为2的正方形的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是( )图K37-5A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)5.把图K37-6中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为( )图K37-6A.30°B.90°C.120°D.180°6.如图K37-7,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB 绕点O逆时针旋转90°,点B的对应点B'的坐标是( )图K37-733A.(-1,2+)B.(-,3)333C.(-,2+)D.(-3,)7.下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到的,第2019个图案与第1个至第4个中的第 个箭头方向相同(填序号).图K37-88.如图K37-9,将等边三角形AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将△AOB绕点O顺时针旋转180°得到△A'OB',则点B'的坐标是 .图K37-99.如图K37-10,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为20,DE=2,则AE的长为 .图K37-1010.如图K37-11,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕点A逆时针旋转70°得到△ADE,连接EC,BD,则tan∠DEC的值是 .图K37-1111.如图K37-12,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.(1)求证:AE=CE;2(2)若BC=,求AB的长.图K37-12|能力提升|12.[如图K37-13,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF= .图K37-1313.如图K37-14,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A'B',则点B的对应点B'的坐标是( )图K37-14A.(-4,1)B.(-1,2)C.(4,-1)D.(1,-2)14.如图K37-15,在正方形网格中,格点三角形ABC绕某点顺时针旋转角α(0°<α<180°)得到格点三角形A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α= 度.图K37-1515.如图K37-16,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为 .图K37-16316.已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图K37-17;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.图K37-17答案1.D2.B [解析]由A (-3,5),A 1(3,3)可知四边形ABCD 先向下平移2个单位长度,再向右平移6个单位长度得到四边形A 1B 1C 1D 1,∵B (-4,3),∴B 1的坐标为(2,1).3.D [解析]由旋转的性质可知,AC=CD ,但∠A 不一定是60°,所以不能证明AC=AD ,所以选项A 错误;由于旋转角度不确定,所以选项B 不能确定;因为AB=DE ,不确定AB 和BC 的数量关系,所以BC 和DE 的数量关系不能确定;由旋转的性质可知∠ACD=∠BCE ,AC=DC ,BC=EC ,所以2∠A=180°-∠ACD ,2∠EBC=180°-∠BCE ,从而可证选项D 是正确的.4.C [解析]如图,由旋转得:CB'=CB=2,∠BCB'=90°,D ,C ,B'三点共线.∵四边形ABCD 是正方形,且O 是AB 的中点,∴OB=1,∴B'(2+1,2),即B'(3,2),故选C .5.C6.B [解析]如图,作B'H ⊥y 轴于H.由题意:OA'=A'B'=2,∠B'A'H=60°,∴∠A'B'H=30°,∴A'H=A'B'=1,B'H=,123∴OH=3,3∴B'(-,3),故选B.7.3 [解析]2019÷4=504……3,故第2019个图案中的箭头方向与第3个图案相同,故答案为3.38.(-2,-2) [解析]作BH⊥y轴于H,如图,333∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,B点坐标为(2,2),3∵等边三角形AOB绕点O顺时针旋转180°得到△A'OB',∴点B'的坐标是(-2,-2).3故答案为(-2,-2).659.2 [解析]由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,∴AD=2,∵DE=2,∴在Rt△ADE中,AE= AD2+DE26=2,故选D.10.1 [解析]根据旋转的性质得∠EAC=70°,EA=CA,∠AED=∠ACB=180°-∠CAB-∠ABC=100°,∴∠AEC=(180°-70°)÷2=55°,∴∠DEC=45°,∴tan∠DEC=tan45°=1.11.解:(1)证明:∵将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,∴△ABC≌△DBE,∴∠BAC=∠CDF,∵∠BAC+∠ACB=90°,∴∠CDF+∠ACB=90°,∴∠DFC=90°,∴DF⊥AC,又点F是AC中点,∴DF垂直平分AC,∴AE=CE.(2)∵△ABC≌△DBE,∴BE=BC=,2∴CE=AE=2,∴AB=AE+BE=2+.21312. [解析]∵α+β=∠B,∴∠EAF=∠BAC+∠B=90°,AE2+AF213∴△AEF是直角三角形,∵AE=AB=3,AF=AC=2,∴EF==.13.D [解析]如图,点B'的坐标为(1,-2).14.90 [解析]∵旋转图形的对称中心到对应点的距离相等,∴分别作AA1,CC1的垂直平分线,两直线相交于点D,则点D即为旋转中心,连接AD,A1D,∠ADA1=α=90°.315.2-2 [解析]过点C作CF⊥AE,垂足为F,由△ABC绕点A顺时针旋转30°得到△ACD,可得∠BAC=∠CAD=30°,AD=AC=4,∵AB=AC,∴∠ABC=∠ACB=75°.∴∠E=∠ACB -∠CAE=45°.在Rt△ACF 中,∵∠CAF=30°,AC=4,∴CF=AC=2.∴AF==2.1242-223在Rt△ECF 中,∵∠E=45°,∴EF=CF=2.∴DE=AF +EF -AD=2+2-4=2-2.33故答案为2-2.316.解:(1)如图所示:(2)证明:在△OPM 中,∠OMP=180°-∠POM -∠OPM=150°-∠OPM ,∠OPN=∠MPN -∠OPM=150°-∠OPM ,∴∠OMP=∠OPN.(3)过点P 作PK ⊥OA 于点K ,过点N 作NF ⊥OB 于点F.∵∠OMP=∠OPN ,∴∠PMK=∠NPF.在△NPF 和△PMK 中,{∠NPF =∠PMK,∠NFO =∠PKM =90°,PN =PM,∴△NPF ≌△PMK (AAS),∴PF=MK ,∠PNF=∠MPK ,NF=PK.在Rt△NFO 和Rt△PKQ 中,{ON =PQ,NF =PK,∴Rt△NFO≌Rt△PKQ(HL),∴KQ=OF.设MK=y,PK=x,∵∠POA=30°,PK⊥OQ,33∴OP=2x,∴OK=x,OM=x-y,33∴OF=OP+PF=2x+y,MH=OH-OM=+1-(x-y),33KH=OH-OK=+1-x,∵M与Q关于点H对称,∴MH=HQ,333333∴KQ=KH+HQ=+1-x++1-x+y=2+2-2x+y,∵KQ=OF, 33∴2+2-2x+y=2x+y,33整理得2+2=x(2+2),∴x=1,即PK=1,∴OP=2.。

相关文档
最新文档