第4章 离子聚合
合集下载
第4章 离子聚合生产工艺

(4)SBS的脱气 SBS的脱气段实际上只需脱除溶剂。
SBS的脱气可采用SBS胶液的干法脱气和湿法脱气两种方式:
① 干法脱气 含20%的嵌段共聚物胶液,首先进入以蒸气夹套加热,并在 装有搅拌装置的卧式浓缩器中,浓缩至聚合物含量约26%。 然后进入双辊脱气箱。该箱分为上下两室,当共聚物胶液落
到热辊上后.即均匀地分布在整个辊上,从而在脱气箱上室中 初步脱除溶剂,而在下室的工作辊上彻底脱气。
第4章 离子聚合生产工艺
1 阳离子聚合的单体
阳离子聚合要求单体的特性: 单体易于被阳离子引发,并持续增长,不易终止。 单体必须是亲核性的电子给予体。
如(1)双键上带有强供电子取代基的α—烯烃(异丁烯)
(2)具有共轭效应基团的单体(苯乙烯、丁二烯、异戊二烯) (3)含氧、氮杂原子的不饱和化合物或环状化合物(甲醛、四氢 呋喃、乙烯基醚、环戊二烯)等。
第4章 离子聚合生产工艺
2 阳离子聚合过程
链引发
链增长
链转移与终止:可以向单体或溶剂进行链转移
向单体链转移
第4章 离子聚合生产工艺
3 阳离子聚合的引发剂或催化剂
共性:阳离子聚合所用的催化剂为“亲电试剂”。 作用:提供氢质子或碳阳离子与单体作用完成链引发过程。
类型 化合物 特点
含氢酸
Lewis酸
HClO4、H2SO4、H3PO4、 CH3COOH
③ 回收 来自干燥系统的未反应单体和溶剂进入精馏分离系统。 工业上的闪蒸气脱水干燥可兼用乙二醇吸收和固体吸附干燥 两种方法。 乙二醇干燥脱水的流程为:在操作压力170-340kPa(表 压)、温度40-50℃下,乙二醇吸收闪蒸气中大部分的水和 部分毒物及少量氯中烷和从塔底排出。解析再生。而塔顶出 来的物料含水量小于50ppm,送往固体吸附干燥塔进一步脱 水。固体吸附干燥塔采用活性氧化铝或沸石、分子筛作为吸 附剂。
阴离子聚合

丙烯腈 甲基丙烯腈 甲基丙烯酮
偏二氰乙烯
a-氰基丙烯酸乙酯
硝基乙烯
单体活性
低
中
较高
高
苯乙烯在自由基聚合是活性单体,在阴离子聚合成低活性单体?
四. 阴离子聚合机理
1.机理:引发、增长、終止。
链引发:I
链增长: 链終止:
极快
M-
慢 M nM M n1M
M n1M 难終止
烷基卤化镁RMgX由于其C-Mg键极性弱,不能直 接引发阴离子聚合,但制成格氏试剂后使C-Mg键的 极性增大,可以引发活性较大的单体聚合。
以丁基锂和萘钠最为重要也最为常用的引用剂。
三. 阴离子聚合引发剂和单体的匹配
阴离子聚合与自由基聚合相比,单体对引发剂 有较强的选择性,只有当引发剂与单体活性相 匹配才能得到所需的聚合物。
甲基丙烯酸甲酯
CH3
H2C CH CH CH2
H2C C
CH CH2
苯乙烯
甲基苯乙烯
丁二烯
异戊二烯
乙烯基单体,取代基的吸电子能力越强,双键上的电子云密度 越低,越易与阴离子活性中心加成,聚合反应活性越高。
二. 阴离子聚合引发体系和引发 阴离子聚合引发剂——电子给体,即亲核 试剂,属于碱类。
直接转移引发
一. 阴离子聚合的单体 (1)带吸电子取代基的乙烯基单体
一方面,吸电子性能能使双基上电子云密度降低,有利 于阴离子的进攻,另一方面,形成的碳阴离子活性中心由于 取代基的共轭效应而稳定,因而易阴离子聚合:
H2C CH X
降低电子云密度,易 与富电性活性种结合
H2C CH X
H R CH2 C X
分散负电性,稳定活性中心
强碱性高活性引发剂能引发各种活性的单体,而弱碱 性低活性引发剂只能引发高活性的单体。
高分子复习资料(准确情报)

因为:
所以:
即:
答……
第四章.离子、配合聚合
一.叙述下列定义:
1.离子聚合
离子聚合是单体在引发剂或催化中心作用下,按离子反应历程转化为聚合物的化学过程。
2.阴离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
3.阳离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
4.配位聚合
配位聚合也称配位离子聚合,是由两种或两种以上组分组成的配位催化剂引发的聚合反应。单体首先在过渡金属活性中心的空位上配位,形成σ→п配位化合物,进而这种被活化的的单体插入过渡金属-碳键进行链增长,最后形成大分子的过程。
综合各种情况,聚合速率方程可表达为:
Rp=K[I]n[M]m
一般情况下,式中指数n=0.5~1.0;m=1~1.5(个别为2)
2.局限性:主要是基于稳态法的基本假定
.不考虑链转移,为双基终止;
.单体总消耗速率=聚合反应总速率;链增长速率等于聚合反应总速率Rp=-d[M]/dt=Ri+Rp;
.游离基活性与链增长无关,Kp为常数;
O
2.-[HN-(CH2)5-C]n-聚合物名称:聚w-氨基己酸
单体名称:w-氨基己酸
合成式:
n H2N-(CH2)5-COOH→H-[N-(CH2)5-CO]n-OH + (n-1)H2O3.-[CH2-C-CH2]n-聚合物名称:聚1-甲基环丙烷
CH3单体名称:1-甲基环丙烷
合成式:CH3
C →-[CH2-C-CH2]n-
(3)
.链终止
偶合终止:
岐化终止:
(4)
式中
根据假定自由基浓度不变,进入稳定状态,或者说引发速率和终止速率相等,即Ri=Rt构成平衡,则
所以:
即:
答……
第四章.离子、配合聚合
一.叙述下列定义:
1.离子聚合
离子聚合是单体在引发剂或催化中心作用下,按离子反应历程转化为聚合物的化学过程。
2.阴离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
3.阳离子聚合
以带负电荷的离子或离子对为活性中心的一类连锁反应。
4.配位聚合
配位聚合也称配位离子聚合,是由两种或两种以上组分组成的配位催化剂引发的聚合反应。单体首先在过渡金属活性中心的空位上配位,形成σ→п配位化合物,进而这种被活化的的单体插入过渡金属-碳键进行链增长,最后形成大分子的过程。
综合各种情况,聚合速率方程可表达为:
Rp=K[I]n[M]m
一般情况下,式中指数n=0.5~1.0;m=1~1.5(个别为2)
2.局限性:主要是基于稳态法的基本假定
.不考虑链转移,为双基终止;
.单体总消耗速率=聚合反应总速率;链增长速率等于聚合反应总速率Rp=-d[M]/dt=Ri+Rp;
.游离基活性与链增长无关,Kp为常数;
O
2.-[HN-(CH2)5-C]n-聚合物名称:聚w-氨基己酸
单体名称:w-氨基己酸
合成式:
n H2N-(CH2)5-COOH→H-[N-(CH2)5-CO]n-OH + (n-1)H2O3.-[CH2-C-CH2]n-聚合物名称:聚1-甲基环丙烷
CH3单体名称:1-甲基环丙烷
合成式:CH3
C →-[CH2-C-CH2]n-
(3)
.链终止
偶合终止:
岐化终止:
(4)
式中
根据假定自由基浓度不变,进入稳定状态,或者说引发速率和终止速率相等,即Ri=Rt构成平衡,则
高分子化学第四章(离子聚合)

(2)Lewis酸
这类引发剂包括AlCl3、BF3、SnCl4、SnCl5、ZnCl2和TiCl4 等金属卤化物,以及 RAlCl2,R2AlCl 等有机金属化合物,其中 以铝、硼 、钛、锡的卤化物应用最广。
Lewis 酸引发阳离子聚合时,可在高收率下获得较高分子量 的聚合物,因此从工业上看,它们是阳离子聚合的主要引发剂。
(5)聚合方法
自由基聚合可以在水介质中进行,但水对离子聚合的引发剂和 链增长活性中心有失活作用,因此离子聚合一般采用溶液聚合, 偶有本体聚合,而不能进行乳液聚合和悬浮聚合。
4.2 阳 离 子 聚 合
4.2.1 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的亲核性烯类单体,包 括以下三大类:
(1)带给电子取代基的烯烃如:
Lewis 酸引发时常需要在质子给体(又称质子源)或正碳离 子给体(又称正碳离子源)的存在下才能有效。
质子给体或正碳离子给体是引发剂,而 Lewis 酸是助引发剂 (或称活化剂),二者一起称为引发体系。
质子给体 一类在 Lewis 酸存在下能析出质子的物质,如水、卤 化氢、醇、有机酸等;以 BF3 和 H2O引发体系为例:
阳离子聚合反应过程中的异构化反应
碳阳离子可进行重排形成更稳定的碳阳离子,在阳离子聚合 中也存在这种重排反应,如 β-蒎烯的阳离子聚合:
4.2.2.3 链转移和链终止 链转移反应 链转移反应是阳离子聚合中常见的副反应,有以下几种形式:
(1)向单体链转移: 增长链碳阳离子以 H+ 形式脱去 β-氢给单体,这是阳离子聚
(Ph)3C+ClO4- + OR
Ph Ph
Ph
CH2 CH ClO4OR
(4)卤素 卤素 I2 也可引发乙烯基醚、苯乙烯等的聚合,其引发反应被认
离子聚合与配位聚合生产工艺

一、离子聚合生产工艺特点
选择溶剂的原则 <1>应考虑溶剂极性大小,对离子活性中心的溶剂化能 力; <2>可能与引发剂产生的作用以及熔点或沸点高低; <3>是否容易精制提纯; <4>与单体、引发剂和聚合物的相容性等因素.
由于引发剂和增长链对水和杂质很灵敏.所以要求 溶剂应为高纯度、反应器及其辅助设备和溶剂要经过 充分干燥.
第四章 离子聚合与配位聚合工艺
本章内容
一、离子聚合生产工艺特点 二、配位聚合生产工艺特点 三、生产工艺过程
1、原料准备 2、催化剂制备 3、聚合工艺过程 4、后处理
概述
离子聚合与配位聚合都使用相应的催化剂‘或 称为引发剂进行催化聚合反应,由于有些催化剂对 H2O 的作用是灵敏的.或由于反应过程中生成的碳正 离子增长链〔-C+X-、碳负离子增长链〔-C - M+、阴离子配位键对H2O 的作用是灵敏的,所以不 能采用H 2O 为反应介质.因此与游离基聚合不同,不 能采用以H2O 为反应介质的悬浮聚合生产方法和乳 液聚合生产方法进行生产.而采用无反应介质的本体 聚合方法,包括气相法和液相法;或有反应介质存在 的溶液聚合方法,包括淤浆法和溶液法进行工业生产.二、配位聚合生产工艺特点
5、产品分子量分布: 配位聚合所得聚合物分子量分布宽,分布指数通
常大于10.共聚反应所得共聚物的非均一性也很大. 对此现象的解释是活性中心的活性度不一致,而且扩 散效应限制了单体向活性中心的传递所致.
三、生产工艺过程
离子聚合与配位聚合生产工艺过程一般包括原 料准备、催化剂制备、聚合、分离、有的生产过程 中还有溶剂回收与后处理等工序.
一、离子聚合生产工艺特点
2、反应温度:聚合反应温度影响收率、聚合度、 聚合反应速度、副反应、聚合物空间结构规整度 以及共聚反应的竟聚率等.
聚合物共混原理第四章聚合物间的增容作用

•两种高聚物配成溶液,浇注成膜,透明,则相容性好。
整理课件
35
整理课件
3
什么叫增容作用?
增容有两方面含义:
1. 使得聚合物之间易于相互分散,得到宏观均匀 的共混物;
2. 改善聚合物之间相界面的性能,增加相间的粘 合力,使得共混物具有长期稳定的性能。
整理课件
4
4.1 增容作用的类型及物理本质(或增容原理)
4.1.1 增容作用的类型
按增容机理看,增容作用可分为两类:
整理课件
31
* 王琪、刘长生,湖北化工, 2001 No.03
整理课件
32
4.5.3 PA6/ABS
PA6/ABS(60/40)共混物中加入2phr.的反应增容剂 (主干含羧基,支链为PMMA),经247℃熔融混炼, 共混物的伸长率比未增容的同样共混物高出6倍多, 冲击强度提高了1倍 。
整理课件
第四章 聚合物间的增容作用
本节主要内容:
4.1 增容作用的类型及物理本质(或增容原理) 4.2 常用的增容方法 4.3 增容剂的类型以及制备方法 4.4 增容剂增强机理及其与共混体系的相形态的关系 4.5 增容剂在聚合物共混体系中的应用举例
整理课件
1
前面第三章讲到了P-P之间的相容性及其分类、研究了 相容性的判据、判定相容性好坏的方法、以及相容性 与P-P形态结构的关系。 如何实现相容性的提高,实现增容效果?
(Ⅱ) 一般而言,嵌段共混物的增容效果要大于相同成分的 接枝共聚物,即:A-b-B优于A-g-B。这是由于接枝共 聚物的结构所致:长主链短支链。
(Ⅲ) 两嵌段共聚物(A-B)的增容效果大于三嵌段共聚 物(A-B-A或者B-A-B)的增容效果。这是由于中 间嵌段的构象运动受到较大抑制所致 。
整理课件
35
整理课件
3
什么叫增容作用?
增容有两方面含义:
1. 使得聚合物之间易于相互分散,得到宏观均匀 的共混物;
2. 改善聚合物之间相界面的性能,增加相间的粘 合力,使得共混物具有长期稳定的性能。
整理课件
4
4.1 增容作用的类型及物理本质(或增容原理)
4.1.1 增容作用的类型
按增容机理看,增容作用可分为两类:
整理课件
31
* 王琪、刘长生,湖北化工, 2001 No.03
整理课件
32
4.5.3 PA6/ABS
PA6/ABS(60/40)共混物中加入2phr.的反应增容剂 (主干含羧基,支链为PMMA),经247℃熔融混炼, 共混物的伸长率比未增容的同样共混物高出6倍多, 冲击强度提高了1倍 。
整理课件
第四章 聚合物间的增容作用
本节主要内容:
4.1 增容作用的类型及物理本质(或增容原理) 4.2 常用的增容方法 4.3 增容剂的类型以及制备方法 4.4 增容剂增强机理及其与共混体系的相形态的关系 4.5 增容剂在聚合物共混体系中的应用举例
整理课件
1
前面第三章讲到了P-P之间的相容性及其分类、研究了 相容性的判据、判定相容性好坏的方法、以及相容性 与P-P形态结构的关系。 如何实现相容性的提高,实现增容效果?
(Ⅱ) 一般而言,嵌段共混物的增容效果要大于相同成分的 接枝共聚物,即:A-b-B优于A-g-B。这是由于接枝共 聚物的结构所致:长主链短支链。
(Ⅲ) 两嵌段共聚物(A-B)的增容效果大于三嵌段共聚 物(A-B-A或者B-A-B)的增容效果。这是由于中 间嵌段的构象运动受到较大抑制所致 。
北京化工大学-聚合物合成与制备课件-碳材料部分-(7)

24.5
胺
4. 添加剂
能够起到增加或降低活性种活性、提高或降 低聚合反应速度、调节聚合物微观结构、 共聚竞聚率和在非极性溶剂中负离子活性 种的缔合或解缔、达到活性聚合物偶联或 活性末端官能化等目的。所以,添加剂包 括微观结构调节剂、戴帽剂、解缔剂、偶 联剂等。实际上许多添加剂能够同时起到 多种作用,因此,聚合体系对添加剂的选 择需进行综合考虑。
CH2 =CH C = CH2 CH3
Ip
CH3 CH2 =C C = CH2
CH3
CH2 =CH
St
CH2 =CH
- Cl
CH2 =CH
N
CH2 =CH
N
杂原子负离子为活性种的阴离子聚合单体
CCl3CH = O
CnH2nCH = O
(n=0,1, 2, 3)
(CH3)2C = O
R CH - CH2 O
1. 共轭二烯烃负离子聚合 丁二烯聚合物的微观结构
CH2=CHCH=CH2
( CH2 CH = CH CH2 )
1,4-PB
( CH2 CH ) CH CH2
1,2-PB
( CH2
H
C=C
H
CH2 )
Trans-1,4-PB
H
H
C=C
( CH2
CH2 )
Cis-1,4-PB
异戊二烯聚合物结构
CH3 CH2=CHC=CH2
(R=H, CH3, C6H5)
CH2 - CH2
R1
-[Si - O -]x R2
CH2 - S
(R1, R2=H, CH3, C2H5, C6H5)
CH2 - CH2
H2C
CH2
高分子物理-第4章-聚合物的分子量和分子量分布

[( M M w ) ] w
2 w 2
多分散系数
Mw Mn
Mz Mw
Polydispersity coefficient
试样是均一的,则 试样是不均一的,则 则 数值越大
=0,Mw=Mn; >0 ;并且不均一程度越大, =
如果相对摩尔质量均一,则
相对摩尔质量均一的试样, = 相对摩尔质量不均一的试样, >
T K ( ) C 0 C M
气相渗透压法测得的为数均分子量
优缺点 • 优点: 样品用量少,对溶剂纯度要求不高 测定速度快 可连续测定 测定温度选择余地大 • 缺点: 热效应小,仪器常数K低,分子量上限3~5万 (但也有文献指出已可测到10 ~20万,测温精度随 着新技术的出现提高)
4. 渗透压法——依数性 半透膜只允许溶剂分子透过而不允许溶质分子透过 纯溶剂蒸汽压>溶液 蒸汽压,纯溶剂向右 渗透,直至两侧蒸汽 压相等,渗透平衡。 此时半透膜两边的压 力差π叫做渗透压。
0
1/ a
为Mark-Houwink方程中的参数,当=1时, = 当=-1时, =
通常的数值在0.5~1.0之间,因此 介于 和 之间,更接近于 < <
;
,即
分子量分布的重要性在于它更加清晰而细致地表明聚合 物分子量的多分散性,便于人们讨论材料性能与微观结构的 关系。
单分散体系Monodispersity(阴离子聚合) MW /M n =1 M W / M >1或偏离1越远的体系,为多分散体系。
3. 气相渗透法(VPO) 原理:通过间接测定溶液的蒸汽压降低来测定溶质分子 量的方法 X T K 22
稀溶液
C T K M
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丁基橡胶合成的参考配方及典型工艺条件
名称 异丁烯 异戊二烯 配比 wt%
97
30~35 3.0
氯甲烷
三氯甲烷(引发剂/单体)
70~65
0.05~0.03
聚合温度/℃
釜内操作压力/kPa 单体浓度/% 单体转化率/%
-100~-96
240~380 30~35 70~80
原料纯度
名称 异丁烯 异戊二烯 氯甲烷 纯度 >99.5% >96.5% >99.8%
CH2 CH R CH2 CH R CH3 CH R B
例:BF3引发异丁烯聚合
CH3
+ -
B F3
H 2O
H (B F 3 O H )
nC H 3
CH
CH2
~ CH2
+ ~ CH2
CH3 CH3
CH3
+
C (B F3 O H) + H 2C
CH3
CH C ( B F-3 O H ) + H 2 C 3 C C CH3
阳离子聚合
一. 概述
(1) 根据中心离子电荷的不同,可分为阳离子聚合或阴离子 聚合。烯类单体及一些杂环化合物可发生离子聚合。 (2) 发展情况 a. 20世纪初已有人进行了离子聚合的研究。
b. 1956年发现活性阴离子聚合以后,使离子聚合真正 发展。
c. 几十年来,阴离子聚合的研究发展很快,相比较而 言阳离子聚合的研究比较缓慢。
类型 含氢酸 化合物 HClO4、H2SO4、H3PO4、CH3COOH BF3、AlCl3、SbCl5 FeCl3、SnCl4、TiCl4 BiCl3、ZnCl2 较弱 较强 中强 特点 反离子亲核能力较强,一般只能形成低 聚物 需要加入微量水、醇、酸等助催化剂才 能引发单体
Lewis酸
其它物质
I2、Cu2+等阳离子型化合物 AlRCl2等金属有机化合物
回收系统
回收
来自干燥系统的未反应单体和溶剂进入精馏分离系统。 工业上的闪蒸气脱水干燥可兼用乙二醇吸收和固体吸附干燥 两种方法。 乙二醇干燥脱水的流程为:在操作压力170-340kPa(表压)、 温度40-50℃下,乙二醇吸收闪蒸气中大部分的水和部分毒 物及少量氯中烷和从塔底排出。解析再生。而塔顶出来的物 料含水量小于50ppm,送往固体吸附干燥塔进一步脱水。固 体吸附干燥塔采用活性氧化铝或沸石、分子筛作为吸附剂。
催化剂的配制可采取常温配制法和低温配制法两种。
AlCl3颗粒
丙烯气进压缩机
液体丙烷 液体乙烯
乙烯气去冷冻工段
3 1
7
N2
6
8
引发剂溶液 去聚合
4
2 2 5
氯甲烷 不合格引发 剂溶液贮罐 9
1-漏斗;2-催化剂浓溶液;3-分离器;4-贮罐;5-泵;6-冷却器;8-过滤器; 9-不合格溶液贮罐
催化剂溶液制备流程
(2) 实例:丁基橡胶
• 丁基橡胶( IIR)是世界上第 4 大
合成橡胶。 • 丁基橡胶是由异丁烯和异戊二烯 在 Friedel-Craft 引发剂作用下 进行阳离子聚合反应的产物。
• 丁基橡胶具有优良的气密性和良好的耐热、 耐老化、
耐臭氧、 耐溶剂、 电绝缘、 减震及低吸水等性能。
异丁烯与异戊 二烯共聚物
• 聚合过程 操作方式:采用淤浆聚合法操作
反应器:热交换器型的强制循环多管式聚合反
应器
阳离子聚合过程
保持聚合温度在- 100 ℃ —通入液化乙烯。 防止聚合物的沉淀与挂胶—淤浆在反应器内有 2~5m/s的流速
丁基橡胶聚合反应器的结构
如图所示,保持聚合温度在-100℃左右右。
• 分离、后处理、回收
聚合体系单体浓度与丁基橡胶分子量的关系 单体转化率75~85%,聚合温度-100℃
分子量 MX10-6
生产控制因素
3) 聚合温度
90
分子量 MX10-4
80
70 60 50 -100
随着聚合温度的提高,聚 合物的分子量直线下降。
(1) 阳离子聚合工业应用
●聚异丁烯:在阳离子引发剂AlCl3、BF3等作用下聚合,可 改变反应条件得到不同分子量的产品。
●聚甲醛:三聚甲醛与少量二氧五环 经阳离子引发剂AlCl3、BF3 等引发聚 合。用作热熔粘合剂、橡胶配合剂。
●聚乙烯亚胺:主要是环乙胺、环丙胺等经阳离子聚合反应。 用作絮凝剂、粘合剂、涂料以及表面活性剂。
共价化合物
紧密离子对
自由离子
X
它们还可与有关的离子进 行缔合而处于平衡状态。
2
M
X
M X
M
二.
阳离子聚合反应及其工业应用
1 阳离子聚合过程
链引发
链增长
A B
CH2 CH R
A CH2 CH R
B
A CH2 CH R
B
nCH2 CH R
CH2 CH R
B
链转移与终止
CH2 CH R B
可以向单体或溶剂进行链转移
1)杂质 按照其作用原理,杂质可以分为给电子体和烯烃两类。 给电子体:水、甲醇、氯化氢、二甲醚、二氧化硫和氨等。导 致聚合物分子量明显降低,也能使转化率明显降低。 烯烃类杂质:主要是由原料异丁烯带入的正丁烯,包括1-丁 烯、反-2-丁烯,顺-2-丁烯和异戊二烯等。发生链转移反应, 使分子量降低。
生产控制因素
第四章
离子聚合生产工艺
概述 阳离子聚合工艺 阴离子聚合工艺
离子聚合反应
定义
单体在阳离子或阴离子作用下,活化为带正电荷或带负 电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应, 统称为离子聚合反应(ionic polymerization)。
1、请写出异丁烯在BF3/H2O引发下的聚合反 应过程。 离子聚合反应 阴离子聚合 2、请写出St与丁二烯在BuLi引发下合成SBS 配位离子聚合 的聚合反应过程。
溶液法 溶液法是以烷基氯化铝与水的络合物为引发剂,在烃类溶 剂(如异戊烷)中于-90~-70℃下异丁烯和少量异戊二烯共聚而 成。其工艺流程有聚合反应、脱气、回收精制3大部分。
•丁基橡胶的生产工艺过程——阳离子聚合
原料和配方 单体: 异丁烯 (>99.5%) 异戊二烯(>96.5%) 溶剂: 氯甲烷 (>99.8%) 引发剂:三氯化铝(>99.8%)
反应器
闪蒸塔
闪蒸气 蒸汽喷射器 蒸气 真空脱气塔
乙烯 振动筛 引发剂 蒸气 添加剂 补充水 循环水槽 两段脱气挤出机 脱水脱气挤出机 去下水
压缩挤出机
采用脱水膨胀干燥机组的丁基橡胶生产工艺流程
• 催化剂的配制
配制催化剂时,先把一部分溶液直接加到固体AlCl3的容器 中,调制成含AlCl3 4%-5%的溶液,然后再稀释到1%左右并 经冷至-90-95℃后送入聚合反应器。
3)同时配制好催化剂溶液并冷却。
4)聚合反应在 -98℃左右进行,几乎瞬时完成。聚合物在氯 甲烷中沉淀形成颗粒状浆液。
5)聚合后的淤浆液从反应器中溢流出来进入盛有热水的闪蒸 罐,在此蒸发氯甲烷和未反应单体。
6)橡胶的水淤浆液用泵达到挤出干燥系统,干燥后包装为成 品。 7)闪蒸罐出来的蒸气经活性氧化铝干燥、分馏后送到进料和 催化剂配制系统循环使用。
异丁烯
异戊二烯
1
1-进料混合;2,4-C2H4冷却器;3-NH3冷却器;5-反应器;6-闪蒸器;7-过滤器; 8-脱水挤出机;9-干燥挤出机;10-打包机
丁基橡胶生产工艺流程图
1)将粗异丁烯和氯甲烷分别在脱水塔和精馏塔进行脱水和精 制以后,与异戊二烯在混合槽中按一定的比例混合。
2)混合液在冷却器里冷至 -100℃,然后送入反应器。
三氯化铝
>99.8%
杂质含量
名称 纯度
烯炔烃
醇类 水 环戊二烯 过氧化物(以H2O2计)
<0.5%
<0.005% <0.005% <1% <10pp
硫化物(以硫计)
羰基含量(以丙酮计)
<500ppmm
<500ppm
丁基橡胶制造过程简化流程图
氯甲烷
氯甲烷
AlCl3 2 5 6 异丁烯 异戊二烯 7 水 8 9 3 4 蒸气 硬脂酸锌 抗氧剂等 下水道 水 蒸汽 10 至再循环
第一精馏塔塔板数约120块,塔顶蒸出烯烃含量< 50ppm的氯甲烷。塔底引出的异丁烯、异戊二烯和残 余的氯甲烷被送入约含有30个塔板数的第二蒸馏塔。 从第二蒸馏塔顶部得到含3-10%异丁烯的氯甲烷可再作 为进料使用,从塔的底部得到异丁烯和异戊二烯。经过 除去高沸点的精制系统,可作原料用。
生产控制因素
(3) 离子与对应离子在体系中存在着几种状态的动态平衡。
极化 R X - + R X 极化分子 离子化 R X 溶剂化 R // X 溶剂分离离子对 离解 R + X
共价化合物
紧密离子对
自由离子
离解程度增加 反应活性增加
极化 R X + R X 极化分子 离子化 R X 溶剂化 R // X 溶剂分离离子对 离解 R + X
2)单体浓度和配料比
9
7
5
0 10 20 30 40 50 单体浓度/%(体积)
单体浓度过高,反应温 度升高很快,反应过于 激烈难以控制,容易导 致结块,甚至催化剂还 未加足量就被迫停止反 应。 单体浓度过低时,结冰 现象严重,(氯甲烷冰点 为-97.7℃)也不能获得较 高的转化率。单体浓度 一般为30% ~ 35% 。
CH3 CH3
[~ CH
[~ CH
2
CH3+
2
CH3 C
+
C
H 3C