膜分离技术提取木质素

合集下载

木质素提取方法

木质素提取方法

木质素提取方法
相对简易方法
方法一酶水解法:
1,丙酮抽提干燥,研磨;2 10g物料,500ml锥形瓶中加入200ml 醋酸/醋酸钠缓冲液和5g纤维素酶,40度恒温水浴震荡48h;3 酶水解后,离心分离,pH为2.0的酸性去离子水冲洗酶解粗木素,离心分离,如此重复2-3次,洗涤后真空冷冻,获得粗木质素;4 准确称取5g(绝干)干燥后的酶解粗木素,放入250ml三口烧瓶中,加入100ml 酸性二氧六环/水混合液,充分振荡使其混合均匀。

在80-90度环境(油浴)氮气气氛回流和抽提2h;5 静置过滤,用二氧六环/水混合液洗涤,收集滤液;6 滤液中和,旋转蒸发浓缩;7 浓缩液加入大量酸性去离子水(ph=2);8 沉淀的木质素,洗涤,干燥,最后正己烷洗涤去除残留抽出物。

方法二磨木质素
1、室温脱脂(用体积比为2:1的苯一乙醇提取7h)后干燥;
2、将木粉放在振动球磨中,在干燥状态或者悬浮于甲苯一类的非润涨性溶媒中,磨
碎48h或更长时间,以破坏木材的细胞构造;
3、用二氧己环和水(9:l)提取数次(48h),抽提液(加入少量苯,使含糖物质沉淀)
经浓缩(旋转蒸发器),再40度干燥,可得占原料中木质素50一70%的粗磨木木质素;
4、将粗磨木木质素溶于90%的醋酸中,再注入水中沉淀,经干燥而制得磨木木质素;
5、为了进一步精制,将其溶解于l,2一二氯乙烷和乙醇(2:l)的混合液中,再注入乙
醚中使其沉淀,之后洗涤、干燥。

最终磨木木质素的得率为原料木质素的20一25%。

一种从桉木中分离提取木质素的方法

一种从桉木中分离提取木质素的方法

一种从桉木中分离提取木质素的方法
桉木质素提取方法:
1. 将桉木原料经切片、粉碎等步骤预处理后,放入搅拌机进行混合,
调入足量的水分和酸碱溶液。

2. 用高压水触发机将木材经加压、湿热的方式淬灭,使木材中细胞壁
受挤压、溶解,释放质素。

3. 将淬灭后的木材放入酶液中,采用酶分解法进行木质素提取,利用
一定程度的酸性和酶分解有机物中的木质素,并分离提取。

4. 将提取的木质素进行沉淀,利用沉淀水中清除形成的杂质,使木质
素获得高纯度。

5. 将木质素提取物经过织布过滤、滤压等方法去掉杂质,对其中的有
机物进行大量消除,经烘乾处理后可直接使用。

以上就是从桉木中提取木质素的方法,以提取高纯度的木质素为目的,可协助生物降解建筑垃圾,是现在很流行的一种常见的环保材料。


了木材淬灭、酶分解技术之外,还可采用溶剂萃取法淬灭材料,为木
质素的提取提供新的技术支持,提升绿色环保能力。

木质素提取方法

木质素提取方法

相对简易方法
方法一酶水解法:
1,丙酮抽提干燥,研磨;2 10g物料,500ml锥形瓶中加入200ml醋酸/醋酸钠缓冲液和5g纤维素酶,40度恒温水浴震荡48h;3 酶水解后,离心分离,pH为2.0的酸性去离子水冲洗酶解粗木素,离心分离,如此重复2-3次,洗涤后真空冷冻,获得粗木质素;4 准确称取5g(绝干)干燥后的酶解粗木素,放入250ml三口烧瓶中,加入100ml酸性二氧六环/水混合液,充分振荡使其混合均匀。

在80-90度环境(油浴)氮气气氛回流和抽提2h;5 静置过滤,用二氧六环/水混合液洗涤,收集滤液;6 滤液中和,旋转蒸发浓缩;7 浓缩液加入大量酸性去离子水(ph=2);8 沉淀的木质素,洗涤,干燥,最后正己烷洗涤去除残留抽出物。

方法二磨木质素
1、室温脱脂(用体积比为2:1的苯一乙醇提取7h)后干燥;
2、将木粉放在振动球磨中,在干燥状态或者悬浮于甲苯一类的非润涨性溶媒中,磨
碎48h或更长时间,以破坏木材的细胞构造;
3、用二氧己环和水(9:l)提取数次(48h),抽提液(加入少量苯,使含糖物质沉淀)
经浓缩(旋转蒸发器),再40度干燥,可得占原料中木质素50一70%的粗磨木木质素;
4、将粗磨木木质素溶于90%的醋酸中,再注入水中沉淀,经干燥而制得磨木木质素;
5、为了进一步精制,将其溶解于l,2一二氯乙烷和乙醇(2:l)的混合液中,再注入乙
醚中使其沉淀,之后洗涤、干燥。

最终磨木木质素的得率为原料木质素的20一25%。

工业木质素分级分离研究进展

工业木质素分级分离研究进展

林业工程学报,2023,8(1):13-20JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202202028收稿日期:2022-02-28㊀㊀㊀㊀修回日期:2022-09-29基金项目:国家林业和草原局林草科技创新人才项目(2019132610)㊂作者简介:李明飞,男,教授,研究方向为生物质燃料及化学品㊂E⁃mail:limingfei@bjfu.edu.cn工业木质素分级分离研究进展李明飞,徐迎红(北京林业大学林木生物质化学北京市重点实验室,北京100083)摘㊀要:化学制浆及生物炼制工业产生了大量工业木质素,其结构不均一,影响了进一步高值转化利用㊂采用分级分离的方法处理工业木质素可获得分子质量分布窄㊁性能良好的组分,进而实现木质素的高值化㊂针对工业木质素的不均一性,简要阐述了多种分级分离的方法及其研究进展㊂分级分离的主要方法包括有机溶剂溶解/沉淀法㊁低共熔溶剂分离法㊁改变pH的梯度沉淀法㊁膜分离法㊂有机溶剂溶解/沉淀法依据木质素在系列溶剂中溶解度的差异,采用多级溶解法或多级沉淀法得到木质素组分,该法具有操作简单,处理时间短,对设备要求低的特点㊂低共熔溶剂法可通过设计含不同种类和数量的氢供体和氢受体的低共熔溶剂用于分离,从而得到不同分子质量的高反应活性木质素㊂改变pH的梯度沉淀法添加酸溶液不断降低pH,沉淀得到不同分子质量的木质素组分㊂膜分离采用不同截留分子质量的分离膜将木质素溶液分离,可以去除碳水化合物㊁灰分,得到不同分子质量的木质素㊂针对上述分级分离方法的研究现状,对今后研究方向进行了展望,以期为木质素的高值化利用提供理论依据㊂关键词:工业木质素;有机溶剂;低共熔溶剂;沉淀;膜分离中图分类号:O636.2㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:2096-1359(2023)01-0013-08Fractionationofindustriallignin:areviewLIMingfei,XUYinghong(BeijingKeyLaboratoryofLignocellulosicChemistry,BeijingForestryUniversity,Beijing100083,China)Abstract:Thechemicalpulpingandbiorefineryindustriesproducealargeamountoflignin,inwhichtheheterogeneousstructureofligninaffectsitsfurtherhigh⁃valueconversionandutilization.Currently,industrialligninismainlyusedasfuels,thusitsvalue⁃addedutilizationisofgreatsignificancetotheintegratedbiorefineryoflignocelluloseresourcesandthereductionofwastedischarge.Inordertoreducetheheterogeneityofligninstructure,fractionationisconsid⁃eredasapromisingmethodtoobtainligninfractionswithnarrowmolecularweightdistributionandgoodproperties,achievinghighvalueoflignin.Inthisarticle,variousmethodsoffractionationandthemainresearchprogressesoftheligninfractionationareintroduced.Currently,themainfractionationmethodsareorganicsolventdissolution/precipita⁃tion,deepeutecticsolventseparation,gradientprecipitationbychangingpH,andmembraneseparation.Theorganicsolventdissolution/precipitationmethodisbasedonthedifferencesinthesolubilityoforganicsolventsforlignin,andmulti⁃stagedissolution/multi⁃stageprecipitationmethodsareusedtoobtainligninfractions.Thismethodhasthead⁃vantagesofsimpleoperation,shortprocessingtime,andlowequipmentrequirements.Forthisprocess,ifthedissol⁃vingcapacitiesofsolventsvarynarrowly,ortheadjustmentofsolventdissolvingcapacityisnotfineenough,onlyafewfractionscanbeobtainedandtheirmolecularweightdistributionsarestillwide.Deepeutecticsolventsareusedforseparationbydesigningdifferenttypesandamountsofhydrogendonorsandhydrogenacceptorstoobtainhighlyreac⁃tiveligninwithdifferentmolecularweights.GradientprecipitationbychangingpHisoperatedbycontinuouslylower⁃ingpHwithacidtoobtainligninfractionsofdifferentmolecularweightsbyprecipitation,inwhichthelignincolloidwasdestroyedbyacidandtheresultingligninflocculatedparticlesareprecipitatedfromthesolution.Membranesepa⁃rationisconductedwithdifferentmolecularweightcut⁃offstoseparateligninsolution,whichcanremovecarbohy⁃dratesandashtoobtainligninwithdifferentmolecularweights.Theprocesscanbeoperatedcontinuouslywithoutad⁃ditionalreagents,chemicals,andenergyconsumption.Comparedwiththeacidprecipitation,themembraneseparationcanremoveimpurities(suchascarbohydrates,ash,etc.)fromthelignin,andtheobtainedligninhasahighpurityandgoodthermalperformance.Basedontheresearchstatusoftheabovefractionationmethods,thefutureresearchas⁃pectsareprospected,inordertoprovideatheoreticalbasisforthehigh⁃valueutilizationoflignin.Keywords:industriallignin;organicsolvents;deepeutecticsolvents;precipitation;membraneseparation㊀㊀木质素是木质纤维素的主要组分之一,占其质量的10% 30%,是芳香族化合物的重要来源㊂以林业工程学报第8卷木质素为原料,可聚合制备芳香族材料或降解生产酚类化合物㊂木质纤维素加工工业每年产生约5000万吨木质素,但以化学品和材料方式利用的木质素仅占2%[1]㊂木质素及其衍生物的市场规模不断增长,但当前制浆造纸和生物炼制工业中产生的工业木质素主要以燃料方式利用,附加值较低,木质素的增值利用对木质纤维素资源的综合利用和降低废物排放具有重要意义㊂因此,许多研究不仅对木质素产品的深度开发关注较多[2-4],对木质素的分级分离也有所报道[5-6]㊂木质素是松柏醇㊁芥子醇㊁对香豆醇3种单体脱氢聚合形成的具有苯丙烷结构的聚合物㊂不同的植物来源,同一植物的不同部位,木质素单体含量和官能团含量存在差异㊂植物的来源,决定了木质素侧链的游离酚羟基㊁甲氧基等含量,这对木质素的分离具有重要影响[7]㊂针叶材木质素主要由愈创木基单元组成,甲氧基含量少,结构稳定;阔叶材木质素主要含愈创木基和紫丁香基,甲氧基含量高,结构不够稳定,特别在碱溶液中易于降解;禾本科原料的木质素含有愈创木基㊁紫丁香基和对羟苯基单元,结构最不稳定,易于降解溶出㊂从木质纤维素中采用化学药品溶出木质素的分离方法,会导致木质素连接键断裂,分子质量降低,同时又由于木质素结构的不均一性,木质素降解程度并不完全一致,所得木质素的分子质量分布较宽㊂此外,木质素在降解溶出过程中会发生缩合,又进一步影响木质素的分子质量及其分布㊂一般而言,木质素分子质量与木质素的酚羟基含量之间有一定关系,低分子质量的木质素的酚羟基含量高㊂硫酸盐法㊁烧碱法和亚硫酸盐法等制浆工艺的主要目标是获得富含纤维素的纸浆㊂通过蒸煮废液回收所得木质素的杂质含量高,特别是硫酸盐木质素和亚硫酸盐木质素的硫含量高,反应活性差,这限制了木质素在材料及化学品方面的利用㊂针对木质素中的活性官能团进行改性,可拓展其在材料领域的应用㊂对木质素分级可以改善木质素的分子质量分布状况,得到高反应活性的木质素㊂木质素的分子质量及其分布影响着材料流变性能和热力学性能,这对材料的加工及产品的性质有着重要影响㊂木质素分子质量与自由基的作用有关,影响着木质素的还原能力,对抗氧化性能有影响㊂当获得木质素样品后,为得到结构均一㊁分子质量分布窄的木质素,可采用一些方法对木质素分级分离㊂通过分级处理,木质素性质更为均一,有利于进一步制备高品质木质素基材料和化学品㊂在此,笔者主要介绍木质素的分级分离方法 有机溶剂溶解/沉淀㊁低共熔溶剂分离㊁改变pH的梯度沉淀法㊁膜分离法㊂1㊀有机溶剂溶解/沉淀法分离木质素木质素在溶剂中的溶解度与溶剂种类密切相关,早期有研究者提出用溶解度参数描述有机溶剂对木质素的溶解能力㊂公式δ=E/V中,δ为溶解度参数,E为汽化能,V为溶剂的摩尔体积;E/V为内聚能,主要与色散力㊁极性力以及氢键有关㊂波长变化值(Δμ)与氢键结合能有关,一般认为Δμȡ0.14且溶解度参数δ在22(J/cm3)1/2附近的有机溶剂是木质素的良好溶剂[8]㊂为调节纯有机溶剂的溶解能力,可以添加其他低溶解能力的有机溶剂或水㊂木质素中的低分子质量部分对溶剂要求低,可以溶解到溶解度参数更为宽泛的溶剂中㊂醇类溶剂形成氢键的能力随着脂肪烷烃的增长而降低㊂硫酸盐木质素在甲醇中的溶解度高于在乙醇中的溶解度,在正丙醇㊁异丙醇等中则不溶解㊂乙二醇比丙三醇氢键供体位点多,故乙二醇比丙三醇对木质素的溶解能力更强㊂羧酸与醇类类似,甲酸比乙酸和长链羧酸的溶解能力更强,故木质素在甲酸中的溶解度较高㊂极性非质子溶剂N,N⁃二甲基甲酰胺(DMF)㊁N,N⁃二甲基乙酰胺(DMAc)对各种工业木质素具有较好的溶解能力,但毒性大[9-10]㊂一些杂环化合物,如吡啶,对木质素有极好的溶解能力,但木质素在酯中溶解度低㊂通过组成二元或者多元的溶剂系统,可改变体系的溶解能力㊂有机溶剂中添加水(如丙酮/水㊁二氧六环/水体系)对木质素有极好的溶解能力㊂目前,用于分级分离的常用有机溶剂有乙酸乙酯㊁乙醇㊁甲醇㊁丙酮㊁二氧六环等㊂溶解的条件,如温度㊁搅拌㊁超声处理等会影响溶解度㊂如在氮气气氛搅拌下溶解硫酸盐木质素,γ⁃戊内酯/水的温度从40ħ升高到70ħ,溶解度从235g/kg升高到356g/kg[11]㊂在二甲基亚砜溶解木质素的实验中,23ħ下超声处理10min溶解度为9.6g/kg[12],氮气气氛下搅拌2h溶解度提高到170g/kg[11]㊂依据木质素在几种不同有机溶剂中的溶解度差异,可采用多级溶解法和多级沉淀法两类分级方法[13-19]㊂1)多级溶解法,即将木质素依次溶解在溶解能力逐渐增加的系列溶液中,每次溶解后蒸发回收溶解部分的溶剂得到木质素组分,而未溶解部分则进一步采用溶解能力更强的溶剂溶解,这样可以依次得到分子质量逐渐增加㊁分子质量分布窄的木质41㊀第1期李明飞,等:工业木质素分级分离研究进展素组分[8,20]㊂利用乙酸乙酯㊁丙酮和丙酮/水将桉木硫酸盐木质素采用该法依次溶解分离得到木质素组分F1㊁F2和F3㊂其中,F1组分平均分子质量最低,酚羟基含量和甲氧基含量最高,抗氧化活性最高[16]㊂采用异丙醇㊁乙酸乙酯㊁乙醇㊁丙酮对硫酸盐木质素和有机溶剂木质素依次进行溶解,分离所得组分的分子质量和多分散系数依次增加,紫丁香基单元和羟基含量逐渐降低,甲氧基含量逐渐增加㊂分离所得的低分子质量木质素组分富含羟基,具有良好的反应活性;而高分子质量木质素具有高的热稳定性,可用于制备耐热材料[13]㊂2)多级沉淀法,即将木质素溶解到溶解能力最强的溶剂中,依次向溶剂添加低溶解能力的反溶剂,木质素发生沉淀,实现木质素的分级分离㊂与溶出法相比,分级后木质素组分所含溶剂少,易回收木质素㊂利用丙酮水溶液对桉木热解木质素进行分级,木质素依次用60%丙酮和40%丙酮分级沉淀,最易溶解的部分(40%丙酮溶解物)分子质量分布均一㊁酚羟基㊁羧基含量高,具有高的抗氧化活性,对金黄色葡萄球菌和大肠杆菌具有抗菌作用[15]㊂采用无水丙酮㊁50%丙酮和37.5%己烷对有机溶剂木质素分级,37.5%己烷溶解的木质素组分分子质量低,酚羟基含量高,能够修复大肠杆菌引起的小鼠腹泻损伤并改善肠内容物[19]㊂将有机溶剂木质素溶解于60%丙酮溶液中,逐渐加水沉淀,当丙酮质量分数降至30%时,沉淀所得木质素组分分子质量降至1490,总酚羟基含量为3.3mmol/g,具有良好的抗氧化性能[17]㊂将有机溶剂木质素溶解于60%γ⁃戊内酯/水溶液,然后依次加水将γ⁃戊内酯质量分数降至50%,40%,30%和1%,分别沉淀得到4个组分L1㊁L2㊁L3和L4[18]㊂L1重均分子质量为7900,而L4的重均分子质量为1890;L2的总酚羟基含量(2.18mmol/g)低于L4的总酚羟基含量(2.80mmol/g)㊂在该分离过程中,随着溶剂体系中水含量增加,溶剂与木质素的氢键结合能力降低,溶剂极化率增加,极性基团(羟基和羧基)含量逐渐降低而溶解能力降低,溶解的木质素中分子质量高者发生沉淀,从而得到不同组分㊂低分子质量木质素酚羟基含量高,具有良好的抗菌和抗氧化活性㊂生物基低毒性溶剂二氢左旋葡糖烯酮(Cyrene)可作为木质素的一种极性非质子溶剂㊂由于Cyrene与水形成偕二醇,提高了形成氢键的能力,硫酸盐木质素㊁碱木质素和有机溶剂木质素可在60% 80%Cyrene水溶液中实现完全溶解㊂向60%的Cyrene水溶液中加水将Cyrene质量分数分别降低至50%,40%,30%和5%,可沉淀得到木质素组分,组分的分子质量和多分散系数总体呈降低趋势[14]㊂采用溶剂分级分离木质素,方法操作简单,对设备要求并不复杂,所用的易挥发性溶剂易于回收,处理时间短㊂溶剂选择是该技术的关键,分级用的溶剂溶解能力变化范围不大,或者溶剂溶解能力调节不够精细,分级后的组分数目少,所得组分的分子质量分布依然很宽㊂需要注意的是,用于木质素溶解的有机溶剂一般烷基链短㊁质子化程度高,同时易挥发㊁易燃㊁有的溶剂毒性大,故选择环保型有机溶剂至关重要㊂2㊀低共熔溶剂法分离木质素低共熔溶剂是由氢供体和氢受体形成的液体共晶混合物,一般由2 3种溶剂简单混合而成㊂由于氢供体和氢受体之间的氢键作用导致电荷转移,低共熔溶剂的熔点低于任何一个组分的熔点㊂低共熔溶剂的极性(π∗)与氢供体酸度(α)和氢受体碱度(β)的关系可以采用Kamlet⁃Taft方程表示[21-22]:vNR=1/(λ(NR)maxˑ10-4)(1)π∗=(19.839-vNR)/2.9912(2)㊀α=(19.9657-1.0241π∗-vNR)/1.6078(3)㊀β=11.134-3580/λ(NH2)max-1.125ˑπ∗(4)式中,λ(NR)max和λ(NH2)max代表尼罗红和4⁃硝基苯胺的最大吸收波长,nm㊂上述参数与溶剂对木质素的溶解能力有关,具有高的α㊁β值的低共熔溶剂具有高的净氢键供体能力,可与木质素形成强的氢键作用㊂低共熔溶剂的一些基本理化性质对木质素的溶解和后处理有影响㊂低共熔溶剂处理中传热传质率低,高黏度的低共熔溶剂不利于木质素的分离操作㊂由于木质素在低共熔溶剂的溶解研究尚处于起步阶段,其机理尚不清晰㊂木质素在低共熔溶剂中的溶解涉及木质素苯环之间的π⁃π堆积和溶剂与木质素之间的氢键作用[23]㊂木质素在低共熔溶剂中溶解机理主要有水助溶和共溶假说㊂水助溶假说认为水有助于木质素溶解,木质素在纯水㊁纯低共熔溶剂以及低共熔溶剂水溶液的溶解研究中发现,木质素在某一浓度的低共熔溶剂中溶解度最大㊂例如,40ħ条件下对硫酸盐木质素的溶解研究发现,丙酸/尿素(质量比2ʒ1)对木质素的溶解度为226.8g/kg,而含有50%质量分数水的丙酸/尿素(质量比为2ʒ1)对木质素的溶解度高达51林业工程学报第8卷745.8g/kg[24]㊂然而,草酸/氯化胆碱(质量比10ʒ1)㊁甲酸/氯化胆碱(质量比2ʒ1)㊁对甲苯磺酸一水合物/氯化胆碱(质量比1ʒ1)㊁乙二醇/氯化胆碱(质量比2ʒ1)等低共熔溶剂加入水,对木质素的溶解度相比纯的低共熔溶剂有所降低[25]㊂其主要原因是羟基㊁磺酸基团增加了低共熔溶剂的极性,并且氯化胆碱与木质素的酚羟基发生作用,加入水减弱了以上作用㊂这支持共溶假说㊂在低共熔溶剂对工业木质素溶解度的研究中发现,氢受体和氢供体官能团种类影响溶解度㊂相同的氢供体基团均为乳酸,不同氢受体溶解能力从高到低依次为烯丙基三甲基氯化铵>氯化胆碱>苄基三甲基氯化铵/氯化苄基三乙胺;相同的氢受体基团均为1,8⁃二氮杂双环[5.4.0]十一碳⁃7⁃烯(DBU),不同氢供体溶解能力聚乙二醇(PEG)>ε⁃己内酰胺㊂氢受体与氢供体物质量的比也会影响木质素的溶解度㊂PEG与DBU比值从2增加到3时,对酶解木质素的溶解度降低㊂如当乳酸与氯化胆碱的物质量比从1.3增加到10时,木质素的溶解度从4.50%增加到11.82%[26]㊂采用在间苯二酚/氯化胆碱(质量比1ʒ1)低共熔溶剂在90ħ加热,并超声处理20min,木质素溶解度达50%,而对纤维素㊁木聚糖的溶解度低于7%[27]㊂相比纤维素和木糖,碱木质素在一些低共熔溶剂,如甲酸/氯化胆碱(质量比2ʒ1)㊁乙酸/氯化胆碱(质量比2ʒ1)和乳酸/氯化胆碱(质量比10ʒ1)中的溶解度更大,上述溶剂对木质素的溶解度为12% 14%,而对纤维素和木聚糖的溶解度低于5%[28]㊂对硫酸盐木质素在低共熔溶剂中的溶解研究发现,氢供体起到重要作用,溶解能力取决于官能团(羟基㊁羧基)㊁链长㊁与氢受体的物质的量的比值,加水会降低溶解度㊂40ħ条件下,1,6⁃己二醇/氯化胆碱和马来酸/氯化胆碱对木质素的溶解度分别达32.99%和34.97%;若温度较高,含有羧基的低共熔溶剂对木质素结构产生影响,如120ħ处理破坏了醚键(β⁃O⁃4㊁α⁃O⁃4和α⁃O⁃α连接),而含有醇的低共熔溶剂对木质素结构的变化影响小[29]㊂通过低共熔溶剂从木质纤维素中分离木质素的研究发现,所得木质素分子质量一般较低,纯度较高,酚羟基含量高,保留部分β⁃O⁃4结构㊂可通过设计氢供体和氢受体的种类和比例,从而分离得到不同分子质量的高反应活性木质素㊂回收低共熔溶剂可以减少化学药品消耗,减少废物排放,降低生产成本㊂对溶解木质素后的低共熔溶剂可采用蒸发反溶剂(水㊁乙醇㊁丙酮)㊁去除杂质㊁过滤或者超滤回收㊂对分级分离而言,可设计先用溶解能力弱的低共熔溶剂分离得到一部分低分子质量木质素,之后用溶解能力强的低共熔溶剂溶解获得高分子质量木质素㊂薛白亮等[30]采用γ⁃戊内酯和氯化胆碱与聚乙二醇组成的低共熔溶剂处理木质素,结果显示分级木质素的相对分子质量和多分散系数明显降低,较好改善了木质素结构的不均匀性㊂3㊀改变pH的梯度沉淀法分离木质素木质素在碱性溶液中具有较好的溶解性,在碱法制浆过程中,降解的木质素分子以木质素钠盐的形式存在,以亲水性胶体的形式溶解于溶液中㊂加入酸性溶液降低pH,H+取代Na+破坏木质素胶体,产生的木质素难溶于水,絮集成颗粒从溶液中析出,可分离得到木质素㊂常用于调节溶液pH的溶剂有硫酸㊁盐酸和CO2㊁SO2等酸性气体㊂采用含有SO2,NOx㊁CO2的烟道气调节可以减少酸性气体的排放,具有较好的环保性㊂采用乙酸㊁柠檬酸和乳酸沉淀木质素,比采用硫酸沉淀得到的木质素纯度更高,但木质素的硫含量比用硫酸沉淀的木质素硫含量高[31]㊂这是因为硫酸中的SO2-4离子可与溶液中的物质反应生成Na2SO4㊁Na2S㊁H2S等,而有机酸在黑液中解离能力弱,H+浓度低,不足以将木质素中的所有电离的羟基质子化,未质子化的羟基可能与介质的硫衍生物反应,产生⁃SO3H基团并与木质素结合[32]㊂在溶液pH降低过程中大分子质量的木质素首先沉淀,进一步降低pH,小分子质量的木质素也开始沉淀㊂在沉淀过程中,由于与Cl-和SO2-4结合一些杂质并容易和木质素一起沉淀,木质素的纯度不高㊂酸性沉淀过程中,若沉淀温度高,木质素会进一步发生缩合,得到大分子质量的木质素㊂采用不断降低pH的方法,可以沉淀得到不同分子质量的木质素组分[33-37]㊂硫酸盐木质素采用盐酸和硫酸调节黑液获得不同木质素组分,发现高pH沉淀所得木质素的分子质量相对较高,低pH沉淀所得木质素分子质量相对较低,但所得木质素的多分散系数较高,介于5 7之间[38]㊂需要说明的是,由于木质素样品中含有大量盐(主要是氯化钠㊁硫酸钠)和半纤维素糖等,分子质量大小可能受到半纤维素等杂质的影响㊂采用硫酸对杨木硫酸盐法制浆的黑液通过pH降低的梯度酸沉淀法分离木质素,pH从6降至4和2,所得木质素分子质量从高到低变化,其中pH为6沉淀得到的木质素得率最多,达52.5%[34]㊂大分子木质素在高pH条件下沉淀是因为大分子61㊀第1期李明飞,等:工业木质素分级分离研究进展木质素形成大颗粒,并且其Zeta电位高㊂将盐酸加入桉木硫酸盐制浆的黑液中,调节到指定pH沉淀木质素,得到上清液和沉淀物,上清液之后进一步加入盐酸降低pH,得到上清液和沉淀物[35]㊂沉淀的pH依次为9,7,5和3,沉淀物用pH为2的水洗涤并烘干,发现pH为5和3沉淀得到的木质素纯度较高,分别为94.1%和94.9%㊂低pH所得组分分子质量较低,酚羟基含量高,对DPPH自由的清除能力强,高pH(9和7)沉淀得到组分具有抗菌作用㊂硫酸盐制浆黑液调节pH至9和3,分别得到碱法沉淀木质素KLA和酸法沉淀木质素KLB,其中KLA分子质量高于KLB,KLA的总羟基含量低于KLB的总羟基含量[36]㊂在PVA中添加木质素得到的PVA薄膜,其具有较高的热稳定性,抗紫外㊁抗氧化,机械性能好㊂薄膜中添加1%质量分数的木质素,由于木质素有酚羟基和甲氧基,薄膜具有良好的抗氧化能力㊂采用硫酸梯度沉淀碱溶的甘蔗渣生物乙醇发酵残渣木质素,pH分别为9,7,5,3和0.3,随着pH从9降低到0.3,沉淀得到的木质素分子质量总体呈降低趋势,Mw从1770降低到418,多分散系数从4.90降低到1.11;pH为9.0沉淀的木质素β⁃O⁃4醚键含量最高,pH为5和7沉淀的木质素沉淀木质素得率较高,富含脂肪族羟基和酚羟基,pH为3沉淀的木质素主要是单体和二聚体[33]㊂采用该方法可将具有非缩合结构,以及富含酚羟基和脂肪族羟基的木质素从生物炼制残渣中分离出来,木质素适合进一步接枝或聚合制备功能材料㊂采用梯度沉淀法从秸秆硫酸盐蒸煮的黑液中沉淀木质素,pH分别为6,5和4,得到木质素APKL⁃6㊁APKL⁃5和APKL⁃4,其中APKL⁃5和APKL⁃6分子中的亲水基团少,具有较多的吸附活性位点负载亚甲基蓝,APKL⁃5分子内部具有丰富的孔结构,有助于吸附亚甲基蓝[39]㊂使用盐酸将碱法提取的木质素溶液调节pH到5.5,5,4和2进行酸沉淀,所得木质素组分制备生物基硬质聚氨酯泡沫,木质素中羟基含量高,可提高产品的抗压强度并降低表观密度[37]㊂在pH为5.5 2.0沉淀所得木质素制备的样品抗压强度高(0.39MPa)㊁表观密度低(41.35kg/m3)㊁热导率低[0.043W/(m㊃K)]㊁热稳定性好㊂4㊀膜分离法纯化木质素膜法分离采用不同截留分子质量的分离膜将木质素溶液分离,具有良好的分离能力,可连续运行,无需额外试剂㊁化学药品,能量消耗低㊂根据所用膜的差异,可分为微滤㊁超滤㊁纳滤和反渗透,在木质素的分离方面主要采用超滤,常用的膜可分为聚合物膜和陶瓷膜㊂陶瓷膜的优点是温度和pH范围广泛,而聚合物膜的优点是选择性好㊂对木质素碱液的分离中无需调节溶液pH,通过截留膜的孔径直接控制所得木质素的分子质量[40-44](表1)㊂碱法制浆和有机溶剂制浆所得的半纤维素降解生成的低聚糖分子质量较高,而亚硫酸盐法所得半纤维降解得到主要是单糖,这与木质素的分子质量差异更大,一般采用超滤可以将半纤维素与木质素分离㊂膜分离也存在缺点,随着时间延长,膜被污染后分离的通量降低㊂与酸法沉淀相比,膜分离可以去除木质素中碳水化合物㊁灰分等,木质素纯度高,表现出良好的热性能㊂采用截留分子质量为10000,5000和1000的陶瓷膜对硫酸盐法黑液进行错流分离,所用膜由TiO2和ZrO2制成,表面积为816cm2,适用于在高压和高温下过滤pH0 14的溶液[40]㊂研究发现,分离得到的木质素组分分子质量越低,分子质量分布越窄,酚羟基含量高而脂肪羟基含量低,羧基的含量不受分离的影响,组分中的碳水化合物杂质含量也低㊂分子质量和热力学性质相关,上述分离方法可得到玻璃化转变温度Tg为70 170ħ的组分㊂对采用膜分离得到的木质素进行热解发现:在较低的热解温度下,高分子质量木质素更有利于生成愈创木基型化合物,而低分子质量木质素则生成更多的紫丁香基型化合物;随着温度升高,高分子质量木质素会产生更多的对羟苯基型化合物和芳烃[45]㊂采用截留分子质量为100000,30000,10000,5000,3000和1000的聚合物膜可以将木质素分离得到分子质量分布更窄的组分,其中100000和30000分子质量截留区间收集的木质素部分总得率约为70%;所得组分的分子质量与膜的分子质量截留值呈线性相关,低分子质量的木质素羧基含量高,甲氧基含量低[46]㊂采用截留分子质量为15000,5000和1000的滤膜对亚硫酸盐法制浆的红液分离,所用陶瓷膜由TiO2制成,呈多通道状,外径和水力直径分别为10和2mm,长度为250mm,膜的表面积为110cm2;分离后所得木质素组分的多分散性降低,同时获得富含单糖的渗透液[41]㊂相比酸沉淀,采用截留分子质量为15000,10000和5000的陶瓷膜分离碱木素,膜分离易于控制分子质量,所得木质素的木质素⁃碳水化合物杂质含量低,5000 10000部分的木质素可用作黏合剂[42]㊂采用截留分子质量为5000,4000,71林业工程学报第8卷3000,2000和750的聚醚砜平板膜,可除去碳酸钠⁃氧气蒸煮所得黑液的碳酸钠㊁有机酸等杂质,但成本较高[47]㊂采用陶瓷膜超滤分离橄榄树枝乙醇蒸煮溶液,截留分子质量分别为300000,150000,50000,15000和5000,所得木质素的多分散性系数低(2.89 4.18),其中低分子质量组分的多分散性系数最低[48]㊂将所得木质素催化降解用于生产小分子的酚类化合物,采用低分子质量的木质素组分生产单酚类化合物(如苯酚㊁儿茶酚)得率高㊂油棕叶硫酸盐木质素㊁苏打木质素和有机溶剂木质素用截留分子质量为5000的聚醚砜膜经切向流超滤处理后,所得木质素的羟基含量和溶解度均提高[49]㊂使用截留分子质量分别为5000,15000和50000的管状陶瓷膜分离桉木硫酸盐黑液,所得高分子质量部分杂质含量多,低分子质量部分杂质少,非缩合结构含量高[50]㊂用截留分子质量为5000的膜超滤黑液酸法沉淀的上清液,可以回收液体中木质素,木质素的保留率高达85%,所得木质素分散性低,分子质量分布窄,为酸法沉淀分离木质素降低了污染负荷[51]㊂有研究者开发了包含3个膜分离步骤的工艺:截留分子质量150000的超滤用于去除悬浮物,截留分子质量1000和300的纳滤分别用于保留木质素和木脂素,其中截留分子质量1000所得组分含有23%的木质素[52]㊂表1㊀膜法分离木质素Table1㊀Fractionationmethodsofligninbymembraneseparation原木质素级分1级分2级分3级分4种类MWPDI截留分子质量MWPDI截留分子质量MWPDI截留分子质量MWPDI截留分子质量MWPDI参考文献硫酸盐法黑液202004.10>10000335003.505000 1000049002.201000 500047002.300 100027002.10[40]亚硫酸盐法黑液39637.02<1500018504.23>1500073948.20亚硫酸盐法黑液42977.48<50008992.67>500054107.27[41]亚硫酸盐法黑液44668.27<10004113.99>100045313.05碱木质素56543.01>1500063003.101500035441.871000020222.14500018061.92[42]碱木质素25002.40>500019501.705000 200011901.50<20007001.20[43]蓝桉硫酸盐法黑液>50000120291.2615000 5000095761.155000 1500096411.13<500088791.11[44]㊀注:MW为重均分子质量,PDI为多分散性㊂5㊀结㊀语木质纤维素化学加工主要目标是获得纤维素基产品,在造纸和生物炼制工业中木质素主要以副产物形式分离得到㊂由于木质素分子结构的不均一性,其性质存在较大差异,影响了其进一步增值利用㊂对木质素进行分级分离,有助于深入认识木质素结构,有利于后续产品开发㊂有机溶剂溶解/沉淀㊁低共熔溶剂分离㊁改变pH的梯度沉淀法㊁膜分离法主要特点总结如表2㊂可大规模分级分离的方法主要有有机溶剂溶解/沉淀法㊁改变pH的梯度沉淀法和膜分离,低共熔溶剂分离的研究主要是实验规模报道㊂制备分子质量窄,性质均一的木质素组分,在实验室小规模生产中容易实现,而扩大到工业规模获得大量木质素仍然面临挑战㊂硫酸盐制浆得到的黑液产量大,故硫酸盐木质素的分表2㊀4种木质素分级分离方法的比较Table2㊀Comparisonoffourligninfractionationmethods分级分离方法分级原理分级特点有机溶剂溶解/沉淀法根据木质素在不同有机溶剂中的溶解度进行分级有机溶剂溶解/沉淀法在实验室易于进行,处理时间短,可获得纯度较高的高活性木质素,但工业化过程的放大问题和溶剂高效回收是今后需重点克服的难题低共熔溶剂分离法根据木质素在不同低共熔溶剂中的溶解度进行分级低共熔溶剂热稳定性和溶剂化性能良好,相比其他溶剂分级更为绿色环保,但溶剂不易回收;获得的木质素纯度较高,具有高反应活性改变pH的梯度沉淀法通过改变pH对木质素进行分级改变pH的梯度沉淀法操作简单,能耗低,但是相比其他方法木质素纯度较低膜分离法通过不同截留分子质量的膜对木质素进行分级膜法分离易于工业化生产,可回收得到分子质量窄的木质素组分,还可得到分子质量更低的木质素小分子和单糖等,但膜渗透通量衰减和膜寿命是需要重点克服的技术难题81。

膜技术在提取造纸黑液中木质素的应用

膜技术在提取造纸黑液中木质素的应用

膜技术在提取造纸黑液中木质素的应用发布时间:2021-08-16T10:26:25.786Z 来源:《科技新时代》2021年5期作者:梁山景[导读] 所以造纸黑液如果直接排放不仅会造成极大的环境危害,还会造成其中的木质素等有用资源的浪费。

安徽普朗膜技术有限公司[摘要]:造纸黑液产生量大,污染重,而其中含的木质素是一种极具工农业价值的有机原料。

造纸黑液直接排放会造成很大的环境污染和资源浪费;酸析法、有机溶剂法、混凝法等常规的回收木质素的方法有着明显的缺陷。

膜分离法因其处理过程是物理过滤,不产生新的污染,且对造纸黑液中木质素的回收效率高,能耗低,因此具有很好应用前景。

本文通过对膜技术在提取造纸黑液中木质素的应用进行探究,对实际的应用中的优缺点进行分析,促进膜技术在提取造纸黑液中木质素方面的更广泛应用。

[关键词]:膜技术;造纸黑液;回收木质素;实际使用效果1.造纸黑液的来源及特点造纸黑液主要是造纸过程中蒸煮制浆产生的废水,我国是造纸行业生产大国,造纸行业作为六大工业污染源之一,其每年产生的废水量占全国工业总废水量的10%,每生产1t 纸浆排出黑液约10 m3,总的特点是强碱或强酸性、颜色深、有臭味、含有相当数量的固形物、产生量大、污染负荷高。

造纸黑液的BOD 浓度高达34500 ~ 42500 mg /L,COD 浓度高达106000 ~ 157000 mg /L[1],其成分主要是木质素、纤维素、半纤维素等难降解有机物。

此外造纸黑液还含有大量悬浮固体和残碱,SS 浓度为23500~27800 mg /L,pH 值为11~13。

制浆黑液具有非常严重的污染性,如果不加治理直接排放,会对水体和生态环境造成严重破坏。

分析表明,制浆黑液所含的污染杂质中,约1 /3为无机物,主要是NaOH和SiO2等,约2 /3 为有机物,主要是木质素和半纤维素等[2]。

其中木质素是一种极具工农业价值的有机原料,广泛使用在橡胶、塑料、粘合剂、皮革鞣剂的制备、分散剂和表面活性剂以及肥料、农药缓释剂、植物生长调节剂、沙土稳定剂、土壤改良剂等方面[3]。

木质素的提取方法及综合利用研究进展

木质素的提取方法及综合利用研究进展

近年来,许多科研人员致力于优化木质素的提取方法。其中,超声波辅助提取 和微波辅助提取因其高效、环保的特性而受到广泛。超声波的空化作用可以加 速木质素与溶剂的混合,从而提高提取效率。而微波则可以通过其热效应使木 质素更容易从木材中释放出来。
除了提取方法,木质素的纯化也是研究的重点。由于木质素在提取过程中常常 与其它物质如纤维素、半纤维素等混合在一பைடு நூலகம்,因此需要进一步纯化以获得高 纯度的木质素。目前,常用的纯化方法包括沉淀法、柱层析、膜分离等。
物理法是通过物理手段如高温、高压或超声波等将木质素从植物细胞壁中分离 出来。物理法的优点是条件温和、对环境友好且提取效率较高,但设备成本较 高。
3、综合利用
木质素的综合利用途径主要包括以下几个方面:
(1)医药领域:木质素具有抗炎、抗氧化、抗肿瘤等药理作用,可被用于制备 药物。例如,从松树皮中提取的木质素可以用于治疗慢性肾功能衰竭。
谢谢观看
在黑木耳多糖提取完成后,需要进行综合利用。黑木耳多糖具有广泛的生物活 性,可以应用于医药、保健品、化妆品等多个领域。例如,将黑木耳多糖添加 到药品中,可以用来治疗癌症、肝炎等疾病;将黑木耳多糖添加到保健品中, 可以增强人体免疫力、抗氧化能力;将黑木耳多糖添加到化妆品中,可以起到 保湿、抗衰老的作用。
在未来,随着科技的不断进步和研究深入,木质素的提取方法和综合利用将会 取得更大的突破。例如,可以利用人工智能和大数据技术对木质素的性质和功 能进行预测和分析,开发更加高效和环保的提取方法和综合利用技术。同时, 也可以探索木质素在其他领域的应用,如能源领域等。
5、结论
木质素的提取方法和综合利用研究在医药、农药、兽药、化妆品等领域具有广 泛的应用前景。然而仍存在一些挑战,例如不同来源木质素的结构差异和质量 不稳定等问题。为了推动木质素的应用研究和发展,需要进一步深入研究木质 素的性质和功能,开发高效的提取方法和综合利用技术。

用膜分离技术对造纸废液提取木质素的研究

用膜分离技术对造纸废液提取木质素的研究

用膜分离技术对造纸废液提取木质素的研究摘要:本文重点介绍利用膜分离技术,对造纸废液中的木质素按分子量大小范围,进行分级分离、浓缩的一种新的工艺技术,通过对木质素进行分级利用,可控制木质素性能均一化和去除有害杂质的一种创新方法。

该膜分离技术具有工艺简便可控、节能环保和木质素分子量均一的特点,并使产品的品质有了质的提高。

利用本研究成果生产的木质素,主要用于开发高品质染料分散剂,同时也可用于生产其他木质素改性产品。

主题词:制纸废液膜分离木质素实验合成测试对比提取方法1前言造纸业是我国的重污染行业,其中最重要的原因是造纸废液(黑液)的处理。

通常企业对造纸黑液治理一般常用两种方法:一种是对黑液进行浓缩焚烧;另一种是利用黑液开发木素产品。

前一种方法采用黑液经浓缩燃烧,虽然能回收黑液中的碱和部分热值,但对碱木素来说,却是一种低值利用方式,且设备投资大、耗能高。

经分析比较,膜分离技术作为目前最先进有效的液体分离技术,在处理碱法制浆废液时,与传统的常用酸沉淀法处理相比具有:不受废液浓度变化的影响、分子量大小均一、纯度高,而且提取的碱木质素收率高,物理变化稳定又节能环保;木素提取可直接用于改性,可返回制浆或洗涤系统,分离、纯化、浓缩为一体;提取过程工艺简化、可控性强、占地面积小、结构紧凑、配套设备少等优点。

2设计研究过程2.1膜材料及膜组件选用原料为造纸黑液呈较强的碱性,对膜材料和组件有较高的耐碱要求,而且原料通过膜过滤时,膜分离系统控制进料温度不大于40℃,有较小压力推动液体流动,要求膜材料及膜组件在该工作环境下,材料不变性、不变形。

膜材料及膜组件在因膜表面或膜孔内吸附、堵塞时,易于反冲及清洗,有较高的恢复率。

经研究试验,对美国GE公司和德国某公司产品进行比较选型,最终选定CR NP010 8040C型过滤膜芯,该膜芯为卷式膜,卷式膜主要优点是填装密度大,膜组件总表面积大。

卷式膜元件是通过平板膜卷制而成,包括了平板膜片、进料格网、透析液格网、胶水和透析液收集管等组件。

木质素的分离提取应用研究进展

木质素的分离提取应用研究进展

木质素的分离提取应用研究进展一、概述作为植物细胞壁的主要组成成分之一,是一种复杂的芳香族高分子聚合物。

其在植物细胞壁中起到强化细胞壁结构、提供机械支撑以及参与植物防御反应的作用。

随着科技的进步和研究的深入,木质素的应用领域正逐渐拓宽,其在工业、农业、医药等多个领域展现出巨大的潜力。

木质素的分离提取技术取得了显著进展。

传统的木质素提取方法主要依赖于化学溶剂,如硫酸、氢氧化钠等,这些方法不仅操作复杂,而且对环境影响较大。

随着环保意识的增强和绿色化学的发展,研究者们开始探索更为环保、高效的木质素提取方法,如酶法、超声波辅助提取、微波辅助提取等。

这些方法不仅提高了木质素的提取效率,还降低了对环境的污染。

在应用领域方面,木质素的应用范围正在不断扩展。

在造纸工业中,木质素被用作纸张的增强剂,提高纸张的强度和耐久性。

在生物燃料领域,木质素可作为生物柴油的原料,通过酯化反应转化为生物柴油,为可持续能源的发展提供了新的途径。

木质素在医药、化妆品、食品等领域也有广泛的应用前景,如作为药物的载体、化妆品的增稠剂、食品的抗氧化剂等。

木质素的分离提取及应用研究正处于快速发展阶段,其在多个领域的应用潜力正在被不断挖掘。

随着科技的进步和研究的深入,木质素的应用前景将更加广阔。

1. 简述木质素的基本性质及其在自然界中的分布。

《木质素的分离提取应用研究进展》之“木质素的基本性质及其在自然界中的分布简述”段落内容木质素是一种天然高分子有机化合物,广泛存在于植物细胞壁中,特别是在木材和植物纤维部分。

其基本性质包括其复杂的化学结构、良好的生物可降解性和作为天然高分子聚合物的独特物理特性。

它是一种芳香族高分子化合物,主要由苯丙烷单元组成,并且呈现出显著的立体化学异质性。

在自然界中,木质素的分布非常广泛。

主要存在于植物的细胞壁中,尤其是硬木和软木的木质部分。

草本植物、草本植物纤维以及某些农业废弃物中也含有丰富木质素。

随着植物的生长和发育,木质素在细胞壁中形成并累积,为植物提供结构支持和保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品整理
膜分离技术提取木质素
木质素是存在于植物纤维中的一种芳香族高分子化合物,其含量约占40%~50%,在植物组织中具有增强细胞壁和黏合纤维的作用。

制浆造纸工业每年要从植物中分离大约1.4亿吨纤维素,同时得到近亿吨左右的木质素副产物。

但迄今为止,超过95%的木质素以“黑液”的形式直接排入江河或浓缩后烧掉,既污染环境,又浪费资源。

本项目是国内首次采用先进的膜分离技术提取、精制活性木质素产品,通过该技术使木质素资源得到充分利用,解决了造纸黑液和农林废弃物对环境污染的问题,有利于造纸工业和农业循环经济的建设和发展。

农林废弃物原料(如秸秆)经过碱液蒸煮,产生的不溶物用于纸浆生产,溶解液则通过膜分离系统提取出高纯度的木质素产品,剩下的废碱液回到前端工艺,实现循环使用。

相关文档
最新文档