梁的剪力和弯矩剪力图和弯矩图
梁的剪力和弯矩剪力图和弯矩图课件

静力平衡条件是物体受力分析的基本依据,通过它我们可以 分析物体在受到外力作用时的运动状态,并计算出物体所受 到的合力。
梁的剪力和弯矩的静力平衡条件的推导和应用
梁的剪力和弯矩的静力平衡条件的推导
在梁的受力分析中,我们可以通过对梁进行截面切开、移除切块并代之以作用相 反的力等步骤,得到梁的内力——剪力和弯矩。当梁处于静力平衡状态时,其剪 力和弯矩也必须满足一定的平衡条件。
梁的剪力和弯矩剪力图和弯矩 图课件
目
CONTENCT
录
• 引言 • 梁的剪力分析 • 梁的弯矩分析 • 梁的剪力和弯矩组合分析 • 梁的剪力和弯矩的静力平衡条件 • 梁的剪力和弯矩的相互作用和影响
01
引言
课程背景
建筑力学是建筑设计和施工的重要基础,而梁的剪力和弯矩是建 筑力学中的重要概念。
通过学习梁的剪力和弯矩,可以更好地理解建筑结构的设计和施 工方法。
梁的剪力和弯矩的静力平衡条件的应用
通过应用静力平衡条件,我们可以分析梁在受到外力作用时的剪力和弯矩,进而 计算出梁的应力、应变等物理量,为结构设计提供依据。
梁的剪力和弯矩的静力平衡条件的应用实例
简支梁受垂直均布荷载作用
对于简支梁受垂直均布荷载作用的情况,通过应用静力平衡条件,我们可以得到梁的剪力图和弯矩图,并计算出 梁的最大剪力和最大弯矩。
简单梁分析
以简单梁为例,说明如何进行剪力和弯矩的组合分析。
复杂梁分析
通过有限元模型,对复杂梁进行剪力和弯矩的组合分析,讨论各种因素对梁内 力的影响。
05
梁的剪力和弯矩的静力平衡条件
静力平衡条件的概念和意义
静力平衡条件的概念
静力平衡条件是指物体在受到外力作用时,如果处于静止状 态,则物体内部的力也处于平衡状态,即所有作用在物体上 的外力矢量和为零。
梁弯矩图梁内力图(剪力图和弯矩图)

注:表中的K为轴向力变形影响的修正系数。
(1)无拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中 Ic——拱顶截面惯性矩;
Ac——拱顶截面面积;
A——拱上任意点截面面积。
当为矩形等宽度实腹式变截面拱时,公式I=Ic/cosθ所代表的截面惯性矩变化规律相当于下列的截面面积变化公式:
简单载荷梁力图(剪力图与弯矩图)
梁的简图
剪力Fs图
弯矩M图
1
2
3
4
5
6
7
8
9
10
ቤተ መጻሕፍቲ ባይዱ注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁
表2 各种载荷下剪力图与弯矩图的特征
某一段梁上的外力情况
剪力图的特征
弯矩图的特征
无载荷
水平直线
斜直线
集中力
突变
转折
集中力偶
无变化
突变
均布载荷
斜直线
抛物线
零点
极值
表3 各种约束类型对应的边界条件
2)三跨等跨梁的力和挠度系数 表2-12
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
3)四跨等跨连续梁力和挠度系数 表2-13
注:同三跨等跨连续梁。
4)五跨等跨连续梁力和挠度系数 表2-14
注:同三跨等跨连续梁。
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
[例1] 已知二跨等跨梁l=5m,均布荷载q=11.76kN/m,每跨各有一集中荷载F=29.4kN,求中间支座的最大弯矩和剪力。
梁的剪力图与弯矩

目录 CONTENT
• 梁的剪力与弯矩的基本概念 • 梁的剪力图 • 梁的弯矩图 • 剪力与弯矩的关系 • 梁的剪力与弯矩的实例分析
01
梁的剪力与弯矩的基本概 念
剪力与弯矩的定义
剪力
剪力是作用在梁上的垂直力,它 使梁产生剪切变形。剪力通常用 Q表示,单位为牛顿或千牛顿。
弯矩
弯矩是作用在梁上的力矩,它使 梁产生弯曲变形。弯矩通常用M 表示,单位为牛顿米或千牛顿米 。
在梁的跨中位置,剪力图的峰值最大,而在梁的 支座位置,剪力图的谷值最小。
随着梁上载荷的增加,剪力图的峰值逐渐增大, 谷值逐渐减小。
03
梁的弯矩图
弯矩图的绘制方法
1 2
截面法
通过分析梁在不同截面上的弯矩值,绘制出弯矩 图。
叠加法
将多个弯矩值叠加起来,绘制出弯矩图。
3
微分法
利用弯矩函数的微分性质,绘制出弯矩图。
剪力与弯矩的符号规定
剪力的正负号规定
在截面左侧上作用的剪力为正,反之 为负。
弯矩的正负号规定
在截面左侧上作用的弯矩为正,反之 为负。
剪力与弯矩的计算公式
剪力计算公式
Q = F * sinθ(F为作用在梁上的外力,θ为外力与梁轴线的夹角)。
弯矩计算公式
M = F * d / 2(F为作用在梁上的外力,d为梁的跨度)。
考察,从而为实际工程设计提供依据。
梁的剪力与弯矩的模拟计算
01
模拟计算是利用计算机软件对梁的剪力和弯矩进行数值模拟分 析的方法。通过模拟计算,可以快速得到梁在不同载荷条件下
的剪力和弯矩分布情况。
02
模拟计算可以采用不同的计算方法,如有限元法、有限差分法 和边界元法等。其中,有限元法是最常用的一种方法,能够考
剪力、弯矩方程与剪力、弯矩图

截面位置对剪力和弯矩的影响
总结词
截面位置对剪力和弯矩具有显著影响。不同的截面位置会导致剪力和弯矩的大小和方向发生变化。
详细描述
在结构分析中,截面位置是影响剪力和弯矩的重要因素之一。不同的截面位置会导致剪力和弯矩的大小和方向发 生变化,从而影响结构的整体受力性能。例如,在梁中选取不同的截面位置进行支撑或固定,会对梁的剪力和弯 矩产生显著影响。
05 剪力、弯矩与材料力学性 能的关系
材料弹性对剪力和弯矩的影响
弹性材料在剪力和弯矩作用下会发生弹性变形,变形量与外力成正比,当外力去 除后,材料能够恢复原状。
弹性材料的剪切模量和弯曲刚度决定了剪力和弯矩的大小,剪切模量越大,材料 抵抗剪切变形的能力越强;弯曲刚度越大,材料抵抗弯曲变形的能力越强。
根据绕顺时针方向观察确定,使上侧 纤维受拉时为正。
02 剪力方程与弯矩方程
剪力图与弯矩图的绘制
1
剪力图和弯矩图是表示梁上剪力和弯矩随截面位 置变化的图形。
2
这些图的绘制基于剪力方程和弯矩方程的计算结 果,通过将计算得到的剪力和弯矩值标在图中相 应的位置上,并连接成线。
3
剪力图和弯矩图的绘制有助于直观地了解梁在不 同截面位置的受力状态和应力分布情况。
弯矩
在梁或结构中,由于弯曲而产生 的力矩,表示弯曲变形的大小。
剪力与弯矩在力学中的作用
剪力
主要影响结构的剪切变形,对梁的剪切承载能力有重要影响 。
弯矩
主要影响结构的弯曲变形,对梁的弯曲承载能力有重要影响 。
剪力与弯矩的符号规定
剪力正方向
根据右手定则确定,从杆件的受压一 侧指向受拉一侧。
弯矩正方向
02
材料强度越高,抵抗剪力和弯矩等外力的能力越强, 所能承受的剪力和弯矩越大。
梁 弯矩图 梁 内力图 (剪力图与弯矩图)

简单载荷 梁内力图(剪力图与弯矩图)梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lq asF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线 或零点极值表3 各种约束类型对应的边界条件约束类型 位移边界条件力边界条件(约束端无集中载荷)固定端0=w ,0=θ —简支端0=w0=M 自由端—0=M ,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰∙=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
梁的剪力弯矩方程和剪力弯矩图

5.4.1 梁的剪力、弯矩方程和剪力、弯矩图梁在外力作用下,各个截面上的剪力和弯矩一般是不相等的。
若以横坐标表示横截面沿梁轴线的位置,则剪力Q 和弯矩M 可以表示为坐标的函数,即它们分别称为梁的剪力方程和弯矩方程。
与绘制轴力图或扭矩图一样,可用图线表明梁的各截面上剪力和弯矩沿梁轴线的变化情况。
作图时,取平行于梁轴线的直线为横坐标轴,值表示各截面的位置;以纵坐标表示相应截面上的剪力、弯矩的大小及其正负,这种表示梁在各截面上剪力和弯矩的图形,称为剪力图和弯矩图。
例5-1 简支梁AB 承受承受均布荷载作用,如图 5 - 10a 所示。
试列出剪力方程和弯矩方程,并绘制剪力图和弯矩图。
图5-10解:(1) 计算支反力以整梁为研究对象,利用平衡条件计算支反力。
由于简支梁上的载荷对于跨度中央截面是对称的,所以 A 、 B 两端的支反力应相等,即(1)方向如图。
(2) 建立剪力、弯矩方程以梁左端A 为的坐标原点,取坐标为的任意横截面的左侧梁段为研究对象。
设截面上的剪力Q () 、弯矩M () 皆为正,如图5-10b 所示。
由平衡方程将(1) 式代入上面两式,解得( 2 )( 3 )(2) 、(3) 两式分别为剪力方程和弯矩方程。
(3) 绘制剪力图、弯矩图由式(2) 可知,剪力图为一直线。
只需算出任意两个截面的剪力值,如A 、B 两截面的剪力,即可作出剪力图,如图5 - 10c 所示。
由式(3) 可知,弯矩图为一抛物线,需要算出多个截面的弯矩值,才能作出曲线。
例如计算下列五个截面的弯矩值:当时, M =0 ;当时,;当时,。
由此作出的弯矩图,如图5-10d 所示。
由剪力图和弯矩图可知,在靠近A 、B 支座的横截面上剪力的绝对值最大,其值为在梁的中央截面上,剪力Q =0 ,弯矩为最大,其值为例5-2 简支梁AB 承受集中力偶M0作用,如图 5 - 11a 所示。
试作梁的剪力图、弯矩图。
图5-11解:(1) 计算支反力由平衡方程分别算得支反力为反力R A的方向如图,R B为负值,表示其方向与图 5 - 11a 中假设的方向相反。
梁 弯矩图 梁 内力图 (剪力图与弯矩图)

简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
材料力学第五章梁的剪力图与弯矩图

29
§5-3
剪力和弯矩及其方程
为了建立剪力方程和弯矩方程,必须首先 建立Oxy坐标系。其中O为坐标原点,x坐 标轴与梁的轴线一致,坐标原点O一般取 在梁的左端,x坐标轴的正方向自左向右, y坐标轴铅垂向上。
30
§5-3
剪力和弯矩及其方程
建立剪力方程和弯矩方程,需要根据梁上的外 力(包括载荷和约束力)作用状况,确定控制 面,从而确定要不要分段,以及分几段建立剪 力方程和弯矩方程。
FBy
F 0 M 0
y A
FAy FBy 2F
FSE O FAy ME
FBy
F 5F FAy 3 3
分析右段得到:
FBy
O
ME FSE
F
FBy
y
0
FSE FBy 0
M
o
0
3a M E FBy Fa 2
27
§5-3 剪力和弯矩及其方程
F FBy 3
3、平面弯曲(对称弯曲):若梁上所有外力都作用在纵向对称面内,
梁变形后轴线形成的曲线也在该平面内的弯曲。
4、非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但外力
并不作用在纵向对称面内的弯曲。
13
工程实际中的弯曲问题简图
P
P P P
P P P
P
14
平面弯曲
•具有纵向对称面 •外力都作用在此面内 •弯曲变形后轴线变成对称面内的平面曲线
M M M
M
弯矩为正
弯矩为负
22
梁的控制面
集中力作用点两侧的截面
集中力偶作用点两侧的截面 集度相同的均布载荷起点和终点截面处
23
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dF s q dx
dM F S dx
剪力图是水平直线. 弯矩图是斜直线. 弯矩图是水平直线.
2 d M q 2 dx
dF s 0 dx
dM 0 dx
FS C
dM C dx
C 0
C 0
MC
dF s q dx
F S2 x 2
剪力图是斜直线.
弯矩图是二次抛物线.
若x1,x2两截面间无集中力作用,则x2截面上的FS1等于 x1截面上的FS1加上两截面之间分布荷载图的面积.
4.3
例 题
3kN
C
求图示外伸梁中的A、B、C、D、E、 F、G各截面上的内力。
2 kN m 6 kN m
1kN m
A
D
FA
E
F
B
G
FB
1m
1m
1m
1m
1m
1m
1m
1m
4.4
例 题
求图示外伸梁中的1-1、2-2、3 -3、4-4和5-5各截面上的内力
6 kN m
6kN
1
2
q2 kN m
3
外力情况 q<0(向下) 无荷载段
剪力图上 的特征 弯矩图上 的特征
↘(向下斜 水平线 直线) (下凸抛物 斜直线 线)
集中力F 集中力偶 作用处: M作用处: 突变,突 不变 变值为F 有尖点 有突变, 突变值为
M
最大弯矩 剪力为零 可 能的 的截面 截面位置 剪力突变 弯矩突变 的截面 的某一侧
q
A
FA
FA
C
D
B
a
c
b
l
FB
FB
FA a
FB b
突 变 规 律(从左向右画)
1、集中力作用处,FS图突变,方
向、大小与力同;M图斜率突 变,突变成的尖角与集中力F的 箭头是同向。
2、集中力偶作用处,M图发生
突变,顺下逆上,大小与M 同,FS图不发生变化。
各种荷载下剪力图与弯矩图的形态:
ql 2 ql 2
ql 8
2
例题
4.6
F
图示悬臂梁AB,自由端受力F的作用,试作剪力 图和弯矩图.
F x F S
X
0xL
A
l
B
kN
M x Fx
FL
0 x L
F
kNm
例题 4.7
20kN
X1
图示外伸梁,,试作剪力图和弯矩图.
10kN m
X2
40 kN m
F x 20 kN S 1
4
5
B
1 2 3 4 5
2m
A
3m
C
3m
F 13 kN A
F kN B 5
例题
4.5
为使在锯开处两端面的开裂最小,应使锯口处的 弯矩为零,木料放在两只锯木架上,一只锯木架 放置在木料的一端,试问另一只锯木架放置何处 才能使木料锯口处的弯矩为零。
q
B
A
C
D
x
a 0 . 6 m
M 0 D
2 q 1 x F A 2x
梁的剪力和弯矩 剪力图和弯矩图
符 号 规 定 :
Fs>0
Fs<0
M >0
M<0
使微段梁有顺时针转动趋势的剪力为正,反之为 负;使微段梁产生向下凸变形的弯矩为正,反之为 负。
4.1
例 题
FA
A
试确定截面C及截面D上的剪力和弯矩
2Fl
C D
F
B
F Cs F F Cs F
MC Fl MC Fl
截面的内力 F A
3、计算2-2
FS1
q=12kN/m
M F 2 F ( 2 1 . 5 ) 26 kN m 1 A
F q 1 . 5 F 11 kN S 2 B
FB
截面的内力
M
2
F S2
1 . 5 M F 1 . 5 q 1 . 5 30 kN m 2 B 2
2
0
l 2 m
2 l a M F l a q C A
2 2 q 1 x 1 . 4 1 . 4 q 0 2 x 2
x 0 . 462 m
剪力方程和弯矩方程 剪力图和弯矩图 q
A FA B
x
l
FB
ql FS qx 2
2 ql qx M x 2 2
l
l
F Cs
MA FA
A
M 2 Fl Fl 0 C
l
F Cs
C
MC
MAΒιβλιοθήκη 2FlC DFDs F
F
B
MC
MD 0
F Ds
l
F
D B
MD
4.2
求下图所示简支梁1-1与2-2截面的剪力和弯矩。
F=8kN A 2m 1 1 q=12kN/m 2 2 3m B
例 题
1.5m FB
FA
1.5m
B
25kN
A
35kN
1m
15
4m
2.5
M x 20 x 1 1
0x 1 1
0x 2 4
0x 1 1
F x 25 10 x S 2 2
25
2 x 2 x M 25 x 10 2 2 2
20
20
kN
0x 4 2
20
31 .25
kNm
分布荷载集度、剪力和弯矩间的 微分关系及其应用
y
m
n
m
x
m n
M ( x)
Fs x
n
M ( x ) dM ( x )
F ( x ) dF ( x ) S S
m
n
q( x)
x
dx
dx
dM F S dx
2 d M q 2 dx
dF s q F q x dx F dF 0 dx s s s
q x dx M F dx M dM 0 S 2
1.5m
解: 1、求支反力
3 M 0 F 6 F 4 . 5 q 3 0 F 15 kN B A A 2 F 0 F F Fq 30 F kN y A B B 29
F=8kN
2、计算1-1
M1
F F F 7 kN S 1 A
截开后取左边为示力对象:
向上的外力引起正剪力,向下的外力引起负剪力;
向上的外力引起正弯矩,向下的外力引起负弯矩;
顺时针引起正弯矩,逆时针引起负弯矩。
截开后取右边为示力对象:
向上的外力引起负剪力,向下的外力引起正剪力;
向上的外力引起正弯矩,向下的外力引起负弯矩;
顺时针引起负弯矩,逆时针引起正弯矩。
例题 4.8
解: 1、求支反力
F 7 . 2 kN F 3 . 8 kN A B
外伸梁AB承受荷载如图所示,作该梁的内力图。
x F F dx S 2 S 1 q
x 2 x 1
2 1
等于x1截面上的M1加上两截面之间剪力图的面积.
x dF q x dx M F x dx 若 x ,xS 两截面间无集中力偶作用 ,则x2截面上的M2 M 2 1 S F x S 1 1 2 1 x