苏科版七年级数学下册教案 7.1 探索直线平行的条件
苏教版七下7.2 探索平行线的性质(2)

数学教学设计教材:义务教育教科书·数学(七年级下册)作者:王灿龙(泰州市靖江外国语学校)7.1 探索平行线的性质(2)几何画板”制作的课件的动画演示两直线平行,同位角相等”“两同旁内角互补”.教师用《几何画板》课件验证,让学生直观感受猜想.在学生操作感知的基础上,画板”演示,从而让学生在观察悟“两直线平行,同位角相等”行,同旁内角互补”这一性质.据“两直线平行,同位角相等”说平行,内错角相等”.学生尝试着用演绎推理的方法说明两直线平行,内错角相等.参考答案:因为a∥b,所以∠1=∠2.又因为∠1与∠3是对顶角,所以∠1=∠3.所以∠2=∠3.让学生经历观察、实验、猜数学活动过程,发展合情推理能演绎推理能力.通过师生互动,口头表达能力,树立学生勇于发的信心.流:据“两直线平行,同位角相等”说平行,同旁内角互补”.学生动手解题,然后由学生发表意见,表达观点,相互补充.参考答案:因为a∥b,所以∠1=∠2.又因为∠1+∠3=180º,所以∠2+∠3=180º.引导学生从“说点儿理”向过渡,由模仿到独立操作逐步培理能力. 教师关注学生推理过程知识的合理迁移、书写是否正确生生互动,既是学生与学生交换思想的过程,又是拓展他们培养思维能力的过程,同时也是作精神、交往能力得到培养和提°,∠D=又因为∠C=40°,所以∠CED=180º-40º=140º.,AB、CD被所截,AB∥CD.=°(已知AB∥CD,AD∥BC.AB∥CD=∠(用三种语言表示平行线的性质与角相等的方法有哪些?性质的方法,提升学生的认识.条件:角的关系→平行关系特征:平行关系→角的关系。
苏科版数学七年级下册《7.1 探索直线平行的条件》教学设计

苏科版数学七年级下册《7.1 探索直线平行的条件》教学设计一. 教材分析《7.1 探索直线平行的条件》这一节内容,主要让学生掌握探索直线平行的条件,通过观察、实验、探究等活动,引导学生发现并证明两直线平行的条件。
教材中设置了丰富的活动,让学生在实践中掌握知识,提高学生的动手操作能力和思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,并对平行线有一定的认识。
但学生对直线平行的条件还没有深入的了解,需要通过本节课的学习,让学生在已有知识的基础上,进一步探索直线平行的条件,提高学生的数学思维能力。
三. 教学目标1.让学生掌握探索直线平行的条件。
2.培养学生观察、实验、探究的能力。
3.提高学生的动手操作能力和数学思维能力。
四. 教学重难点1.探索直线平行的条件。
2.如何引导学生发现并证明两直线平行的条件。
五. 教学方法1.观察法:让学生观察直线平行的特点,发现直线平行的条件。
2.实验法:让学生动手操作,验证直线平行的条件。
3.探究法:引导学生通过小组合作,共同探讨直线平行的条件。
4.讲解法:教师对直线平行的条件进行讲解,让学生加深理解。
六. 教学准备1.准备直线平行的相关图片,用于导入和呈现。
2.准备直线平行的实验材料,如直尺、三角板等。
3.准备直线平行的证明教案,用于讲解和引导学生探究。
七. 教学过程1.导入(5分钟)利用多媒体展示直线平行的图片,让学生观察直线平行的特点,引发学生的思考。
同时,提出问题:“你们认为直线平行有哪些条件?”让学生发表自己的看法。
2.呈现(10分钟)展示直线平行的实验材料,让学生动手操作,观察直线平行的条件。
在实验过程中,引导学生发现并总结直线平行的条件。
3.操练(10分钟)让学生进行直线平行的实践活动,运用所学知识,验证直线平行的条件。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)利用例题和练习题,让学生进一步巩固直线平行的条件。
教师讲解例题,引导学生运用所学知识解决问题。
初中数学教学案例及反思

初中数学教学案例及反思——《探索平行线的性质》一、案例主题分析与设计本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、案例教学目标1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
四、案例教学重、难点1、重点:对平行线性质的掌握与应用2、难点:对平行线性质1的探究五、案例教学用具1、教具:多媒体平台及多媒体课件2、学具:三角尺、量角器、剪刀六、案例教学过程(一)创设情境,设疑激思1、播放一组幻灯片。
内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)(二)数形结合,探究性质1、画图探究,归纳猜想教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c与这两条平行线相交,标出8个角。
苏科版七年级数学下册7.1直线平行的条件和探索例题和同步练习(含练习答案)

苏科版七年级数学下册直线平行的条件和探索【直线平行的条件和性质】【学习目标】1.同位角、内错角、同旁内角的识别;2.会判定两条直线平行;3.平行线的性质.【基础知识梳理】1.如图,同位角的是;内错角的是;同旁内角的是.2.直线平行的条件:(1)基本事实:,两直线平行;(2)定理:,两直线平行;(3)定理:,两直线平行.3.平行线的性质:(1)基本事实:两直线平行,;(2)定理:两直线平行,;(3)定理:两直线平行,.【典型例题】一、三线八角模型例1:如图所示,同位角一共有对,分别是;内错角一共有对,分别是;同旁内角一共有对,分别是.【变式】已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上.例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1一同旁内角→∠9一内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6一同位角→∠10一同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?二、平行线的判定例2:如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有.(填写所有满足条件的序号)三、平行线的性质例3:如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,求图2中∠AEF的度数.【变式】如图,AB⊥BC,DC⊥BC,E是BC上一点,EM⊥EN,∠EMA和∠END的平分线交于点F,求∠F的度数.四、综合运用例4:填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.例5:(1)如图(1),若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图(2),要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.【变式】问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【拓展应用】例6:如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【能力提升】1.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角2.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线3.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CD B.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CD D.由∠MAB=∠ACD,得AB∥CD4.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在所作的图形中,∠A与是内错角;∠B与是同位角;∠ACB与是同旁内角.5.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1= (度).6.如图,BE ∥CF ,则∠A +∠B +∠C +∠D = 度.7.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,求∠2的度数.8.(1)如图①,若∠B +∠D =∠BED ,试猜想AB 与CD 的位置关系,并说明理由;(2)如图②,要想得到AB ∥CD ,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.9.如图,AD ∥BC ,∠DAC =120°,∠ACF =20°,∠EFC =140°.求证:EF ∥AD .10.【探究】如图①,∠AFH 和∠CHF 的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、C .(1)若∠AFH =60°,∠CHF =50°,则∠EOF = 度,∠FOH = 度.(2)若∠AFH +∠CHF =100°,求∠FOH 的度数.【拓展】如图②,∠AFH 和∠CHI 的平分线交于点O ,EG 经过点O 且平行于FH ,分别与AB 、CD 交于点E 、G .若∠AFH +∠CHF =α,直接写出∠FOH 的度数.(用含α的代数式表示)【能力提升】答案第1题 第3题 第4题 第5题 第6题1.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角解:A、∠1和∠2是同旁内角,故本选项错误,符合题意;B、∠2和∠3是同旁内角,故本选项正确,不符合题意;C、∠1和∠4是同位角,故本选项正确,不符合题意;D、∠3和∠4是内错角,故本选项正确,不符合题意;故选:A.2.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.3.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CDB.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CDD.由∠MAB=∠ACD,得AB∥CD解:A、正确,同位角∠CAB=∠NCD,故AB∥CD;B、错误,∠DCN=∠BAC不是同位角,所以B不对;C、正确,∠MAE=∠ACG,∠DCG=∠BAE,可得同位角∠BAN=∠DCN,故AB∥CD;D、正确,同位角∠MAB=∠ACD,故AB∥CD.故选:B.4.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在作的图形中,∠A与是内错角;∠B与是同位角;∠ACB与是同旁内角.解:如图所示,∠A与∠ACD、∠ACE是内错角;∠B与∠DCE、∠ACE是同位角;∠ACB与∠A、∠B是同旁内角.5.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=75(度).解:如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180°,解得:x=17,则∠1=(3x+24)°=75°.6.如图,BE∥CF,则∠A+∠B+∠C+∠D=180度.解:如图所示,由图知∠A+∠B=∠BPD,∵BE∥CF,∴∠CQD=∠BPD=∠A+∠B,又∵∠CQD+∠C+∠D=180°,∴∠A+∠B+∠C+∠D=180°.7.如图,直尺的一条边经过一个含45角的直角顶点直尺的一组对边分别与直角三角尺的两边相交,若∠1=30°,求∠2的度数.解:如图,∵∠ACB=90°∴∠1+∠3=90°,∵∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°.8.(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.解:(1)AB∥CD,理由:如图(1),延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD;(2)∠1=∠2+∠3.理由如下:如图(2),延长BA交CE于F,∵AB∥CD(已知),∴∠3=∠EF A(两直线平行,同位角相等),∵∠1=∠2+∠EF A,∴∠1=∠2+∠3.9.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB-∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.10. 【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF =α,直接写出∠FOH的度数.(用含α的代数式表示)解:【探究】(1)∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°;∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°-∠OFH-∠OHF=125°;故答案为:30,125;(2)∵FO 平分∠AFH ,HO 平分∠CHF ,∴∠OFH =12 ∠AFH ,∠OHF =12∠CHF . ∵∠AFH +∠CHF =100°,∴∠OFH +∠OHF =12 (∠AFH +∠CHF )=12×100°=50°. ∵EG ∥FH ,∴∠EOF =∠OFH ,∠GOH =∠OHF .∴∠EOF +∠GOH =∠OFH +∠OHF =50°.∵∠EOF +∠GOH +∠FOH =180°,∴∠FOH =180°-(∠EOF +∠GOH )=180°-50°=130°.【拓展】∵∠AFH 和∠CHI 的平分线交于点O ,∴∠OFH =12 ∠AFH ,∠OHI =12∠CHI , ∴∠FOH =∠OHI -∠OFH=12(∠CHI -∠AFH ) =12(180°-∠CHF -∠AFH ) =12(180°-α) =90°-12α.。
苏科版七年级数学下册-7.1 探索直线平行的条件 -教案设计

探索直线平行的条件
【教学目标】
一、知识与技能目标:
1.使学生能够熟练识别同位角。
2.使学生会用同位角相等判定两条直线平行。
二、过程与方法:
通过三角板的平移法作平行线,经历探索直线平行的条件以及同位角特征的过程,并自然引入“三线八角”,培养学生观察探索的能力。
三、情感态度价值观:
领悟转化的数学思想方法,体会说理的必要性,让学生培养严谨的思维能力。
【教学重难点】
重点:实例操作探索直线平行的条件以及同位角特征。
难点:经历探索直线平行的条件以及同位角特征的过程。
【教学过程】
四、拓展延伸、练习巩固
1.补充练习:如图,图中∠AEF的同位角有哪几个?根据“同位角相等,两直线平行”,图中哪两个同位角相等,可得DE∥BC?哪两个同位角相等,可得EF∥BD?
五、自我评价、回顾总结
1.两条直线平行的条件:同位角相等,两直线平行及认识同位角。
2.合理、有条理的说明思维过程。
既培养了学生的概括能力又培养了学生的发散思维
a b。
苏科版数学七年级下册7.1.2《探索直线平行的条件》说课稿

苏科版数学七年级下册7.1.2《探索直线平行的条件》说课稿一. 教材分析《探索直线平行的条件》这一节内容是苏科版数学七年级下册第七章第一节的一部分。
在之前的学习中,学生已经掌握了直线、射线、线段的基本概念,以及如何画直线和射线。
本节课的主要内容是引导学生探索直线平行的条件,让学生通过观察、思考、操作、交流等活动,发现并证明两条直线平行的条件。
这一节课的内容对于学生来说是比较抽象的,需要学生具备一定的空间想象能力和逻辑推理能力。
二. 学情分析在七年级的学生中,他们的思维方式正在从具体形象思维向抽象逻辑思维转变,他们已经具备了一定的空间想象能力和逻辑推理能力。
但是,对于直线平行的条件的理解和证明,他们可能还存在着一定的困难。
因此,在教学过程中,我需要关注学生的个体差异,对于理解能力较强的学生,可以适当提高教学难度,对于理解能力较弱的学生,可以通过举例、讲解等方式,帮助他们理解和掌握直线平行的条件。
三. 说教学目标1.知识与技能:让学生掌握直线平行的条件,并能够运用直线平行的条件解决一些实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生空间想象能力和逻辑推理能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。
四. 说教学重难点1.教学重点:直线平行的条件。
2.教学难点:直线平行的条件的证明。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导探究法、讲解法、合作交流法等教学方法。
同时,利用多媒体课件、几何画板等教学手段,帮助学生直观地理解直线平行的条件。
六. 说教学过程1.导入:通过回顾直线、射线、线段的基本概念,以及如何画直线和射线,引出本节课的主要内容——探索直线平行的条件。
2.探究:让学生通过观察、操作、交流等活动,发现并证明两条直线平行的条件。
在这个过程中,教师引导学生思考,引导学生发现直线平行的规律。
3.讲解:教师对直线平行的条件进行讲解,帮助学生理解和掌握。
七年级数学苏科版下册 第七单元 《7.1探索直线平行的条件》教学设计 教案

7.1探索直线平行的条件(1)教学目标1.引导学生探索、理解、掌握直线平行的条件——同位角相等,并能在数学图形及实际生活中正确识别平行线;2.经历探索两直线平行的条件的活动过程,提高对图形的认识、分析能力;体会说理的必要性,会进行简单的说理——根据图形中的已知条件,通过简单说理或推理,得出欲求结果.教学重点理解平行线的识别方法——同位角相等,两直线平行.教学难点会进行简单的说理.教学过程(教师)学生活动设计思路新课引入——情景导入:欣赏图片,发现生活中的平行线,回顾平行线的定义和表示方法。
回答相关问题。
通过图片,让学生发现生活中的平行线,激发学生的求知欲。
探索活动:介绍“三线八角”中被截直线,截线的定义,从而得出同位角的定义,并让学生找出其他的同位角,并把它们从图形中分离出来,画出草图,发现同位角的结构特征。
熟悉同位角的定义,找出图中所有的同位角,探索发现所有的同位角都是F型的。
在判别“同位角”时,要注意“两同”:1、在被截直线的同侧(左右);2、在截线的同旁(上下)练习:1.如图,∠1和∠2是同位角的是()2.指出下图中用数字标出的角,哪些是同位角?观察、思考、感悟.巩固同位角的概念,尤其明确同位角是哪两条直线被哪条直线所截形成的,为后面探索直线平行的条件做知识储备。
3.∠1与∠是同位角.它们是直线、被直线截成的同位角。
∠2与∠是同位角,它们是由直线、被直线截成的同位角.∠3与∠是同位角,它们是直线、被直线截成的同位角. 观察、思考、感悟.巩固同位角的概念,尤其明确同位角是哪两条直线被哪条直线所截形成的,为后面探索直线平行的条件做知识储备。
探索活动:1.如图,三根木条相交成∠1, ∠2,固定木条b 、c ,转动木条a 。
观察随着∠2度数的变化,直线a 和直线b 的位置关系。
2.回忆如何画平行线。
通过以上两个活动,让学生总结归纳如何判断两条直线互相平行。
得出基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
数学:7.1探索直线平行的条件(2)课件(苏科版七年级下)

1
2 3
证明思路
♐
内错角相等 对顶角相等
a
b
同位角相等 两直线平行
证明: ∵ ∠2 = ∠1, ( 对顶角相等 ) ∠2 = ∠3, ( 已知 ) ∴ ∠3 = ∠1; ( 等量代换 ) ∴ 直线 a∥b. ( 同位角相等,两直线平行. ).
两直线平行的条件:
E
A
1
B 2 D
C F
两条直线被第三条直线所截, 如果内错角相等,那么这两直线平行.
同 旁 内 角
同 旁 内 角像什么呢 C ? 它太像字母 U了!
猜想 怎样称呼
“∠2 与 ∠5 ” ? “∠7 与 ∠4 ” ? 7 5 A
找一找: 如图
3
7 E 1 5 D B
4
8 F
2
6
2
∠
与∠ 7
与 4 ∠
2 是内错角;
∠ 两条被截线之间; “内”的涵义?
是内错角; 5 同旁内 ∠2 与 ∠5 是 角; 截线的同旁 “同旁”的涵义: 同旁内 ∠7 与 ∠4 是 角;
北师大七年级(下)
7.1
回顾 & 思考
☞
你能找出哪些具 如图:在“三线八角”中, 有特殊位置关系 E C 3 1 的角?
7 5 4 A 8 6 D B 其中∠3与∠4
2
同位 角.
F
“三线八角”中 有同位角 4 对.
复习:判断两直线平行的条件的方法
E A 2 C F 1
1。平行定义 2。平行公理推论 D 3。两条直线被第 三条直线所截,如 果同位角相等,那 么这两直线平行
两直线平行的条件:
E
A
C F 7
4
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1探索直线平行的条件(1)
教学目标1.引导学生探索、理解、掌握直线平行的条件——同位角相等,并能在数学图形及实际生活中正确识别平行线;
2.经历探索两直线平行的条件的活动过程,提高对图形的认识、分析能力;体会说理的必要性,会进行简单的说理——根据图形中的已知条件,通过简单说理或推理,得出欲求结果.
教学重点理解平行线的识别方法——同位角相等,两直线平行.
教学难点会进行简单的说理.
教学过程(教师)学生活动设计思路新课引入——情景导入:
欣赏图片,发现生活中的平行线,回顾平行线的定义和表示方法。
回答相关问题。
通过图片,让学生发
现生活中的平行线,激发
学生的求知欲。
探索活动:
介绍“三线八角”中被截直线,截线的定义,从而得出同位角的定义,并让学生找出其他的同位
角,并把它们从图形中分离出来,画出草图,发现同位角的结构特征。
熟悉同位角的定
义,找出图中所有的同
位角,探索发现所有的
同位角都是F型的。
在判别“同位角”时,要
注意“两同”:
1、在被截直线的同侧(左
右);
2、在截线的同旁(上下)
练习:
1.如图,∠1和∠2是同位角的是()
2.指出下图中用数字标出的角,哪些是同位角?
观察、思考、感悟.
巩固同位角的概念,
尤其明确同位角是哪两条
直线被哪条直线所截形成
的,为后面探索直线平行
的条件做知识储备。
3.∠1与∠是同位角.它们是直线、被直
线截成的同位角。
∠2与∠是同位角,它们是由直线、被直
线截成的同位角.
∠3与∠是同位角,它们是直线、被直线
截成的同位角. 观察、思考、感悟.
巩固同位角的概念,
尤其明确同位角是哪两条
直线被哪条直线所截形成
的,为后面探索直线平行
的条件做知识储备。
探索活动:
1.如图,三根木条相交成∠1, ∠2,固定木条b 、c ,转动木条a 。
观察随着∠2度数的变化,直线a 和直线b 的位置关系。
2.回忆如何画平行线。
通过以上两个活动,让学生总结归纳如何判断两条直线互相平行。
得出基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简称为:同位角相等,两直线平行。
观察、思考,并归纳、小结得出“同位角相等,两直线平行”.并在图形变式中,体会
“同位角不相等,两直线不平行”.
两个操作在这里发挥了很好的作用,给学生最直观的感受。
知识不再是
教师灌输,而是由学生体验感悟而得.课堂上,教师对课件做一简单操作后,∠2的度数发生了变化,∠1与∠2不相等了,随之,AB 与CD 不再平行了!学生很自然地得出了“同位角相等”、“两直线平行”之间的因果关系.
例题:
如图,∠1=∠C ,∠1=∠2,请找出图中互相平行的直线,并说明理由.
发表意见,表达观点,相互补充.
参考答案: 因为∠1与∠C 是
AB 、CD 被AC 所截构成的同位角,且∠1=∠C ,所以AB ∥CD .
由“∠1=∠C ,∠1=∠2”可得∠2=∠C ,而∠2与∠C 是AC 、BD 被CD 所截构成的同位角,所以AC ∥BD .
师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力,会进行简单的说理.
B
D
C
A
1
如图,竖在地面上的两根旗杆,它们平行吗?请说明道理。
例2、如图,直线a、b被直线c所截,∠1=35°,∠2=145°问:直线a与b平行吗?
开放题:
如图,直线a、b被直线c所截,∠1= 40°,能添加一个条件使得直线a与直线b平行吗?因为b⊥c,
所以∠1=90°
同理∠2=90°
所以∠1=∠2,
且∠1与∠2是a、b被
c截成的同位角.
所以a∥b.
因为∠2=145°,
∠2+∠3=180°,
所以有∠3=35°,
而∠1=35°,
则∠1=∠3,
所以a//b。
让学生尽可能多的发
觉条件。
在图形中准确地找到必需
同位角是解题的前提。
开放性的问题设计,多样
性的答案,既综合整理、
当堂复习了新课知识要
点,又留给了学生自由发
挥的空间,也为下节课的
探索做了铺垫。
小结:
通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.共同小结.
师生互动,总结学习
成果,体验成功.
c
课后作业:
1.课本P 11习题7.1第2、3、4题;
2.思考题(选做):
已知:如图9,∠1=∠2,∠3=∠4. 问:(1)AB 与CD 平行吗?(2)EG 与FH 平行吗?为什么?
课后完成必做题,并根据自己的能力水平确定是否选做思考题.
选做题解法较多,但又不规定必须用几种方法,学生可根据自己的能力去自主选做.这样就能
实现《课程标准》中所要
求的“让不同层次的学生得到不同的发展”.
选做题中给出了“∠1=∠2”,即是为了考查学生简单的推理能力(推理得出一对同位角相等),也为下节课的引入埋下了伏笔.
1
4
2
3
H
G
N
M
F E
D
C B
A
(图9)。