立方根

合集下载

立方根的概念

立方根的概念

立方根的概念立方根是数学中一个重要的概念,在代数学和数值计算中都有广泛的应用。

它是指一个数的立方等于给定数的运算。

本文将介绍立方根的概念、性质以及一些常见的计算方法。

一、立方根的定义对于一个实数a,如果存在一个实数x,满足x³ = a,那么x被称为a的立方根。

可以表示为x = ∛a。

其中,立方根符号∛可以理解为"立方根"或者"开三次方"。

二、立方根的性质1. 立方根的唯一性:每个正实数都有唯一的正立方根。

负实数的立方根在复数范围内存在多个。

2. 立方根的运算性质:a) 任意实数的立方根是实数或者复数。

b) 立方根运算具有可交换性,即∛(a * b) = ∛a * ∛b。

c) 立方根运算具有可分配性,即∛(a + b) ≠ ∛a + ∛b。

d) 立方根运算具有结合性,即∛(∛a) = ∛(a^(1/3)) = a^(1/9)。

即连续开两次立方根等于开九次方。

3. 立方根的特殊情况:a) 如果一个实数的立方根等于自身,即x³ = x,那么这个实数被称为立方根的不动点。

b) 如果一个实数的立方根等于负数,即x³ = -a,那么这个实数被称为立方根的负不动点。

三、立方根的计算方法计算立方根的方法主要有以下几种:1. 近似计算法:根据牛顿迭代方法,可以通过逐步逼近来计算立方根。

迭代公式为:xₙ₊₁ = (2 * xₙ + a / xₙ²) / 3其中,xₙ代表第n次逼近的结果,a为待开立方根的数值。

通过迭代计算,当xₙ₊₁与xₙ的差值小于某个精度要求时,可以得到一个近似的立方根值。

2. 公式法:对于较小的整数或一些特殊数值,可以利用一些特定的公式来求解。

例如,对于一个正整数n,其立方根可以表示为√(n² *√(n))。

对于一些特殊值如2、3等,也可以通过公式直接求解。

3. 数值计算软件:现代科学计算软件如Matlab、Python的NumPy 库等提供了方便快捷的立方根计算函数。

立方根的概念

立方根的概念

立方根的概念立方根是数学中的一个重要概念,它是指一个数的立方等于某个给定数的运算。

简单来说,立方根就是找到一个数,使得该数的立方等于给定的数。

定义在数学中,给定一个实数a,如果存在另一个实数x,使得x³=a,那么x被称为a的立方根。

记作x=∛a或x=a^(1/3)。

立方根的性质1. 正数的立方根是唯一的。

也就是说,对于任何正实数a,它的立方根是唯一确定的。

2. 负数的立方根是复数。

对于负实数a,它的立方根是虚数,无法用实数表示。

3. 零的立方根是零。

∛0 = 0,即0³=0。

4. 如果数a是整数,那么它的立方根可能是有理数或者无理数。

例如,8的立方根等于2,而27的立方根等于3。

计算立方根的方法计算立方根有多种方法,以下是两种常用的方法:1. 迭代法:这是一种通过迭代逼近的方法来求解立方根的方法。

假设我们要求a的立方根,首先猜测一个近似值x₀,然后通过迭代公式x₁=(2x₀+a/(x₀²))/3来不断逼近。

重复这一过程直到精度满足要求。

2. 牛顿法:牛顿法是一种使用切线逼近的方法来求解方程的数值方法。

对于方程x³-a=0,我们可以使用牛顿法来求解。

假设我们要求a的立方根,初始猜测一个近似值x₀,然后通过迭代公式x₁=x₀-(x₀³-a)/(3x₀²)来不断逼近。

重复这一过程直到精度满足要求。

应用领域立方根在数学和科学领域被广泛应用。

以下是一些常见的应用:1. 方程求解:立方根在求解某些方程(如立方方程)时起到重要作用。

2. 几何学:立方根与立方体的边长之间有着密切的联系。

立方根的概念可以应用于计算立方体的体积和表面积。

3. 物理学:立方根在物理学中常常用于求解某些物理量的值,如速度、加速度等。

4. 工程学:立方根可以应用于工程设计中的计算与模型建立。

总结立方根是数学中的重要概念,它可以用于方程求解、几何学、物理学和工程学等领域。

求解立方根有多种方法,其中迭代法和牛顿法是比较常见的方法。

立方根口诀表初中

立方根口诀表初中

立方根口诀表初中立方根,初中数学中的一个重要概念,是数学中的一个基础知识点。

立方根口诀表可以帮助初中生更好地记忆立方根的计算规则。

下面就来总结一下立方根口诀表。

1. 1-10的立方根口诀为了方便记忆,我们可以使用1至10的立方根口诀表,如下所示:•\(1^3\)等于1•\(2^3\)等于8•\(3^3\)等于27•\(4^3\)等于64•\(5^3\)等于125•\(6^3\)等于216•\(7^3\)等于343•\(8^3\)等于512•\(9^3\)等于729•\(10^3\)等于10002. 特殊的立方根口诀除了1至10的立方根口诀外,还有一些特殊的立方根口诀需要记忆,如下所示:•\(11^3\)等于1331•\(12^3\)等于1728•\(13^3\)等于21973. 简单计算立方根的小窍门在计算立方根时,有一个小窍门可以帮助我们快速计算,即将给定的数进行分解,如下所示:•对于一个二位数,我们可以将它分解为十位数和个位数,再进行计算。

•对于一个三位数,我们可以将它分解为百位数、十位数和个位数,再进行计算。

4. 立方根的性质在进一步学习立方根的过程中,我们还需要了解一些立方根的性质,如下所示:•对于正数a和b,\( \sqrt[3]{a} \times \sqrt[3]{b} = \sqrt[3]{a \times b} \)•对于任意的正整数n,都存在一个整数m,使得\(m^3 \leq n < (m+1)^3\)。

通过以上的立方根口诀表和小窍门,相信初中生们可以更好地掌握立方根的计算方法,提高数学能力。

希望这些内容对你有所帮助!。

立方根号的运算法则公式

立方根号的运算法则公式

立方根号的运算法则公式
立方根计算公式:立方根计算公式是将被开方数的整数部分从个位起向左每两位分为一组,求得最高位数,用第一组数减去最高位数的平方,在其差右边写上第二组数;用求得的最高位数的20倍试除上述余数,得出试商.
设x=a^(1/2),即x^2-a=0 设曲线f(x)=x^2-a f'(x)=2x 从x=a 开始迭代,记为点(x1,x1^2-a),过此点作切线的斜率为2x1,
立方根的计算方法:
1、计算器
2、分解质因数,例如8=2*2*2,那么立方根就是2
计算立方根的公式
如何快速计算立方根. :如果一个数的立方等于a,那么这个数叫a 的立方根,也称为三次方根.也就是说,如果x³=a,那么x叫做a的立方根. 注意:在平方根中的根指数2可省略不写,但立方根中的根指数3不能省略不写.
如何计算一个数的立方根 - :将被开方数的整数部分从个位起向左每两位分为一组; 根据最左边一组,求得平方根的最高位数; 用第一组数减去平方根最高位数的平方,在其差右边写上第二组数; 用求得的最高位数的20倍试除上述余数,得出试商.再用最高位数的20倍与...
通常用迭代公式算,收敛很快,只需几步即可.公式
为:X1=2xo/3+A/(3xo^2), A为要求立方根的数.比如求10的立方
根,A=10, 取初值xo=2 x1=2.166666667 x2=2.154503616
x3=2.154434692 而准确值为:2.154434690031880 ..因此迭代3步已经达到小数点后8位的精度了.。

立方根和开立方知识讲解

立方根和开立方知识讲解

立方根和开立方【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根【要点梳理】 要点一、立方根的定义如果一个数的立方等于a ,那么这个数叫做 a 的立方根或三次方根 .这就是说,如果3x a ,那么x 叫做a 的立方根.求一个数的立方根的运算,叫做开立方要点诠释:一个数a 的立方根,用3a 表示,其中a 是被开方数,3是根指数.开立方 和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数, o 的立方根是0. 要点诠释:任意一个实数都有立方根,而且只有一个立方根,并且它的符号与这个非 零数的符号相同.两个互为相反数的数的立方根也互为相反数 .要点三、立方根的性质要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题 .要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动 3位,它的立方根的小数点就相应地向右或者向左移动 1 位.例如,30.000 216 = 0.06 , 3 0. 216=0.6 , 3 216=6 , 3 216000 =60.要点五、n 次方根如果一个数的n 次方(n 是大于1的整数)等于a ,那么这个数叫做a 的n 次方根.当n 为奇数时,这个数为 a 的奇次方根;当n 为偶数时,这个数为 a 的偶次方根.求一个数a 的n 次方根的运算叫做开 n 次方,a 叫做被开方数,n 叫做根指数. 要点诠释:实数a 的奇次方根有且只有一个,正数a 的偶次方根有两个, 它们互为相反数;负数的偶次方根不存在.;零的n 次方根等于零,表示为 n0 0.【典型例题】 类型一、立方根的概念【总结升华】一个非零数与它的立方根符号相同;ca3a.A. 64的立方根是土 4 C.立方根等于本身的数只有0和111B . 是的立方根26D. 3_27327【答案】D;【解析】64的立方根是丄是 1的立方根;立方根等于本身的数只有2 80 和土 1.举一反三:【变式】(2015春?滑县期末)我们知道 a+b=0时,a 3+b 3=0也成立,若将a 看成a 3的立方 根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这 两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立; (2) 若肝苍■与互为相反数,求1 -.・:的值.【答案】解:(1) ••• 2+ (- 2) =0, 而且 23=8, (- 2) 3= - 8,有 8 - 8=0 , •••结论成立; •••即 若两个数的立方根互为相反数,则这两个数也互为相反数. (2)由(1)验证的结果知,1 - 2x+3x - 5=0 , • x=4 ,• 1 - . .=1 - 2= - 1. 类型二、立方根的计算2、求下列各式的值:(2)311 43 52(4)3_27 . ( 3)2 厂-.(_1)100【答案与解析】(4) 3_27 ,( 3)2 3~【总结升华】 立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方 举一反三: 【变式】计算:(1)30.008 ; (2) J 161;V 64(3)誇1—.(4)F1F —524【答案】(1)一 0.2 ; (2);( 3); (4)-43类型三、利用立方根解方程”是成立的.21027(2) 3 11 43 52(3)38解:(1)3、(2015春?罗平县期末)求下列各式中x的值:(1)3(X—1) 3=24.(2)(x+1 ) 3= —64.【思路点拨】先整理成x3=a的形式,再直接开立方解方程即可.【答案与解析】解:(1) 3 ( x—1) 3=24 ,(x- 1) 3=8,x —1=2,x=3 .(2)开立方得:x+1= —4,解得:x= - 5.【总结升华】本题是用开立方的方法解一元三次方程,要灵活运用使计算简便.举一反三:【变式】求出下列各式中的a :(1)若a' = 0.343,则a = _____ ; (2)若a‘ 一3= 213,则a = _____;3 3(3)右a + 125= 0,贝V a = ______ ; (4)若a 1 = 8,贝V a = _____.【答案】(1) a = 0.7 ; (2) a = 6; (3) a =一5; (4) a = 3.类型四、立方根实际应用CP4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱3体烧杯中,并用一量筒量得铁块排出的水的体积为64cm,小明又将铁块从水中提16起,量得烧杯中的水位下降了cm.请问烧杯内部的底面半径和铁块的棱长各是9多少16【思路点拨】铁块排出的64 cm3水的体积,是铁块的体积,也是高为cm烧杯的体积9【答案与解析】解:铁块排出的64 cm3的水的体积,是铁块的体积.设铁块的棱长为y cm,可列方程y364,解得y 4n 16设烧杯内部的底面半径为x cm,可列方程x264,解得x 6.9答:烧杯内部的底面半径为6 cm,铁块的棱长4 cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程) ,解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.举一反三:【变式】将棱长分别为和:厂的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为_____________ 琢。

立方根知识点讲解(含例题)

立方根知识点讲解(含例题)

1.立方根的概念和性质(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的__________或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.例如:53=125,那么5是125的立方根.(2)表示方法:一个数a”表示,读作:“三次根号a”,其中a是被开方数,3是根指数.(3)拓展:互为相反数的两数的立方根也互为相反数.2.开立方(1)定义:求一个数的立方根的运算,叫做__________.(2)性质:①正数的立方根是正数,负数的立方根是__________,0的立方根是0;=③3==a.(3)开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为__________.开立方所得的结果就是立方根.3.平方根和立方根的区别和联系1.被开方数的取值范围不同在a是非负数,即a≥0a是任意数.2.运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.K知识参考答案:1.(1)立方根2.(1)开立方(2)负数(3)逆运算一、求立方根和开立方根据开立方与立方互为逆运算的关系,我们可以求一个数的立方根,或者检验一个数是不是某个数的立方根.【例1】-64的立方根是A .-4B .4C .±4D .不存在【答案】A【解析】∵(−4)3=−64,∴−64的立方根是−4,故选A .【例2A .-1B .0C .1D .±1 【答案】C-1-1,故选A .【名师点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【例3】下列计算中,错误的是A B 34=-C 112=D .25=- 【答案】D【解析】A .正确;B .正确;C .正确;D 故错误,故选D . 【例4】求下列各数的立方根:(1)-343;(2)8125. 【解析】(1)因为3(7)343-=-,所以-343的立方根是-7.(2)因为328()5125=, 所以8125的立方根是25. 【例5】求下列各式的值:(1;(23)【解析】(1(2(3 二、利用立方根的知识解方程只含有未知数或某个关于未知数的整体的三次方的方程,可以先通过“移项、合并同类项、系数化为1”等变形为x 3=m 或(ax +b )3=m 的形式,再利用开立方的方法求解.【例6】若a 3=–8,则a =__________.【答案】–2【解析】∵a 3=–8,∴a =–2.故答案为:–2.【例7】求下列各式中的x :(1)8x 3+125=0;(2)(x +3)3+27=0. 【解析】因为381250x +=, 所以38125x =-,(2)因为3(3)270x ++=,所以3(3)27x +=-,x+=-,所以33x=-.所以6三、平方根和立方根的综合应用在解决立方运算与开立方运算时,遵循的原则为正数的立方和立方根为正数,负数的立方和立方根为负数.【例8】64的平方根和立方根分别是A.8,4 B.8,±4 C.±8,±4 D.±8,4【答案】D【解析】因为(±8)2=64,43=64,所以64的平方根和立方根分别是±8,4,故选D.【例9】已知2a-1的平方根是±3,3a+b-1的立方根是4,求a+b的平方根.【名师点睛】此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a-1=9,根据立方根求出3a+b-1=64,转化为解方程得问题解决.【例10】已知x+122x+y-6的立方根是2.(1)求x,y的值;(2)求3xy的平方根.【解析】(1)∵x+12的算术平方根是,2x+y-6的立方根是2.∴x+12=2=13,2x+y-6=23=8,∴x=1,y=12.(2)当x=1,y=12时,3xy=3×1×12=36,∵36的平方根是±6,∴3xy的平方根±6.【名师点睛】本题考查了算术平方根、立方根的性质,解决本题的关键是熟记平方根、立方根的定义,能熟练运用它们的逆运算是解本题的关键.。

1到10的立方根口诀表

1到10的立方根口诀表

1到10的立方根口诀表
1到10的立方根口诀表
立方根口诀表是一个口头算术的数学知识表格,用来帮助记忆1到10的立方根。

下面就给大家介绍1到10的立方根口诀表是什么样子的以及它的重要性。

1到10的立方根口诀表如下:
1的立方根是1;
2的立方根是1.26;
3的立方根是1.44;
4的立方根是1.58;
5的立方根是1.70;
6的立方根是1.81;
7的立方根是1.91;
8的立方根是2.00;
9的立方根是2.08;
10的立方根是2.16。

由此可见,立方根口诀表是用来记忆1到10的立方根的一种非常有效的方法。

这样,读者可以轻松记忆下1到10的立方根,而不必费心去计算它们。

此外,立方根口诀表也能帮助人们更容易地理解更高级的立方根的概念。

比如,在计算更复杂的数学运算时,只要有1到10的立方根口诀表,必要的计算就可以
得出最终的结果。

总之,立方根口诀表就是一个非常重要的数学语言,它可以帮助我们在计算立
方根时节省许多时间。

当然,这个口诀表也可以作为一种数学应用解决更复杂的立方根问题。

无论如何,1到10的立方根口诀表对很多人来说都非常有用,它可以
为我们提供解决立方根问题的解决方案。

立方根

立方根

27 3
3
1 1 即 27 3
(4) -0.064
解∵
(0.4) 0.064
3
3
∴-0.064的立方根是-0.4 即 0.064 0.4
(5) 0
解 ∵0 =0 ∴0的立方根是0
3
从上面你发 现了什么?
即 0 0
3
探究练习:
8 =______,- 3 -2 1、
3
x a
3
其中a是被开方数,3是 3 根指数,符号“ ” 读做“三次根号”.
到现在我们 学了几种运 算?
+,-,x,÷,乘方, 开平方,开立方
其中a是被开方数,3是 3 根指数,符号“ ” 读做“三次根号”.
根指数
3ቤተ መጻሕፍቲ ባይዱ
ax
被开方数 立方根
注:1. 这里的3表示根指数. 2. 平方根是省写根指数的, 但两次以上的 根指数不能省写.
125 5
⑵一个数的立方根为4,
8 这个数的算术平方根____.
⑶一个数的立方根是它本身, 0 、1 、-1 这个数是_________.
1、平方根与立方根: 如果x2=a, 就称x是a的平方根. 记作: x= ± √a (a≥0) 如果x3=a , 就称x是a的立方根. 3 记作: x=√a 2、区别:
3
求下列各数的立方根 1 (1) 27 (2)-27 (3) (4)-0.064 (5) 0 27 (1)∵ 33 27 解: 即 3 27 3 ∴27的立方根是3
(2)∵ (3) 27
3
例1
∴-27的立方根是-3 即 3
1 3 1 (3)∵ ( ) 3 27

1 1 的立方根是 27 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
5 ( ) 64 ( ) 0.001 4
3
3
有(1)和(4),(2)和(5)你发现什么:
3
a
= a
3
作业
必做题:课本80页T1 T2
选做题:课本80页T5
T3Biblioteka 判断1.64的立方根是±4.
2.-8没有立方根。
()
()
3.0.27的立方根是0.3。
4.-1的立方根是-1。
()
()
5.7是343的立方根。
6.64的平方根是4。
()
()
7.立方根等于它本身的数是1,-1和0。( )
课堂检测三:计算下列各式的值
3 () 64 (2) 0.001 1
3
64 (3) 125
热身赛
比谁能口答的又快又准确﹗
( )³ =8
( ) ³=125 ( ) ³=64/27
( ) ³=-1 ( ) ³ =-0.216
学习目标
1.理解立方根的概念,会用符号表 示一个数的立方根。 2.会求一个数 的立方根。
自学指导
认真自学课本77页至78页的内容,思考: 1.认真解答77页“探究”并完成78页“归
纳”。
2.完成78页“探究”。 3.注意例题的解题过程。 5分钟后比一比谁的自学最成功﹗
课堂检测一
求下列各数的立方根 1 (1) 27 (2)-27 (3) (4)-0.064 (5) 0 27
有各式的结果,你得到什么: 一个正数有一个正的立方根; 一个负数有一个负的立方根,
零的立方根是零。
课堂检测二(小组抢答)
相关文档
最新文档