教你如何判断无损连接和函数依赖
[总结]关系数据库设计基础(函数依赖、无损连接性、保持函数依赖、范式、……)
![[总结]关系数据库设计基础(函数依赖、无损连接性、保持函数依赖、范式、……)](https://img.taocdn.com/s3/m/af34390811a6f524ccbff121dd36a32d7375c7be.png)
[总结]关系数据库设计基础(函数依赖、⽆损连接性、保持函数依赖、范式、……)≏≎≟≗≖≍≭∼∽≁≃≂≅≊≈≉≇≳⪞⪆⋧⪊≵≲⪝⪅⋦⪉≴⊂ subset ⋐⊄⊊ ⊈⊃⊇ ⋑⊅⊋ ⊉≺⪯≼⋞≾⪷⋨⪵⪹⊀≻⪰≽⋟≿⪸⋩⪶⪺⊁ in ∋∉∌∝≬⊸函数依赖(Function Dependency)定义设关系模式R(U),属性集合U= {A1,A2,…,An},X,Y为属性集合U的⼦集,如果对于关系模式R(U)的任⼀可能的关系r,r中的任意两个元组u、v,若有 u[X]=v[X],就有u[Y]=v[Y],则称X函数决定Y,或称Y函数依赖于X。
⽤符号X→Y表⽰。
其中X为决定因素,Y为被决定因素。
若对于R(U)的任意⼀个可能的关系r,r中不可能存在两个元组在X上的属性值性等,⽽在Y上的属性值不等。
(1) 函数依赖是语义范畴的概念,只能根据语义来确定⼀个函数依赖关系。
(2) 函数依赖X→Y的定义要求关系模式R的任何可能的关系r中的元组都满⾜函数依赖条件。
术语 (1)若X→Y,则X称作决定因素(Determinant) (2)若X→Y,Y→X,称作X<->Y。
(3)若Y不函数依赖于X,称作X -/-> Y。
(4)X→Y,若Y不包含X,即X ⊄ Y,则称X→Y为⾮平凡的函数依赖。
正常讨论的都是⾮平凡的函数依赖。
(5)X→Y,若Y包含X,即X ⊂ Y,则称X→Y为平凡的函数依赖。
(6)完全函数依赖(full functional dependency):在R(U)中,设X、Y是关系模式R(U)中不同的属性⼦集(即X ⊂ U,Y ⊂ U), 若存在 X→Y,且不存在 X的任何真⼦集X'(即 X' ⊊ X),使得 X'→Y,则称Y完全函数依赖 ( full functional dependency ) 于X。
记作 X-F->Y。
(7)部分函数依赖:在关系模式R(U)中,X、Y是关系模式R(U)中不同的属性⼦集(即X ⊂ U,Y ⊂ U), 若X→Y成⽴,如果X中存在任何真⼦集X'(即 X' ⊊ X),⽽且有X'→Y也成⽴,则称Y对X是部分函数依赖,记作:X-P->Y。
函数依赖闭包

函数依赖闭包函数依赖闭包⼀、函数依赖的逻辑蕴涵定义:设有关系模式R(U)及其函数依赖集F,如果对于R的任⼀个满⾜F的关系r函数依赖X→Y都成⽴,则称F逻辑蕴涵X→Y,或称X→Y可以由F推出。
例:关系模式 R=(A,B,C),函数依赖集F={A→B,B→C}, F逻辑蕴涵A→C。
证:设u,v为r中任意两个元组:若A→C不成⽴,则有u[A]=v[A],⽽u[C]≠v[C]⽽且A→B, B→C,知u[A]=v[A], u[B]=v[B], u[C]=v[C],即若u[A]=v[A]则u[C]=v[C],和假设⽭盾。
故F逻辑蕴涵A→C。
满⾜F依赖集的所有元组都函数依赖X→Y(X→Y不属于F集),则称F逻辑蕴涵X→Y(X→Y由F依赖集中所有依赖关系推断⽽出)⼆、Armstrong公理1、定理:若U为关系模式R的属性全集,F为U上的⼀组函数依赖,设X、Y、Z、W均为R的⼦集,对R(U,F)有:F1(⾃反性):若X≥Y(表X包含Y),则X→Y为F所蕴涵;(F1':X→X)F2(增⼴性): 若X→Y为F所蕴涵,则XZ→YZ为F所蕴涵;(F2':XZ→Y)F3(传递性): 若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵;F4(伪增性):若X→Y,W≥Z(表W包含Z)为F所蕴涵,则XW→YZ为F所蕴涵;F5(伪传性): 若X→Y,YW→Z为F所蕴涵, 则XW→Z为F所蕴涵;F6(合成性): 若X→Y,X→Z为F所蕴涵,则X→YZ为F所蕴涵;F7(分解性): 若X→Y,Z≤Y (表Z包含于Y)为F所蕴涵,则X→Z为F所蕴涵。
函数依赖推理规则F1∽F7都是正确的。
2、Armstrong公理:推理规则F1、F2、F3合称Armstrong公理;F4 ∽ F7可由F1、F2、F3推得,是Armstrong公理的推论部分。
三、函数依赖的闭包定义:若F为关系模式R(U)的函数依赖集,我们把F以及所有被F逻辑蕴涵的函数依赖的集合称为F的闭包,记为F+。
郑州大学电子商务专业_数据库原理与应用_网上考试题库参考

第1章数据库系统概述一、章节学习目标与要求1、理解数据、数据库、数据库系统、数据库管理系统、数据模型定义、数据模型的三个要素等概念;2、掌握E-R方法、数据库三级模式和两级映象结构以及数据库的独立性概念。
二、章节练习1、选择题1)在数据模型中,对数据库系统动态特性的描述是用_____________。
A、数据结构B、数据操纵C、数据完整性约束D、数据对象2)用户所使用的数据视图的描述称为_____________。
A、外模式B、模式C、内模式D、概念模式3)目前主流的数据模型是_____________A.层次模型B.网状模型C.关系模型D.面向对象模型4)数据库管理系统是_____________A.OS B.DBSC.DBMS D.DB5)涉及数据物理结构描述的模式是_____________A.外模式B.概念模式C.内模式D.模式2、填空题1)数据独立性可分为________________和____________________。
2)数据库的三级模式结构是指数据库系统是由___________、___________和___________构成,两级映像是指______________________和______________________。
3)数据模型的三个组成要素是__________________、____________________和________________________。
4)数据更新包括________________、_________________和____________________。
1:答案:逻辑独立性、物理独立性2:答案:外模式、模式、内模式、外模式/模式映象、模式/内模式映象3:答案:数据结构、数据操作、完整性约束4:答案:插入、删除、修改3、简答题1)什么是数据库?数据库是长期存储在计算机内、有组织的、可共享的数据集合。
数据库是按照某种数据模型进行组织的、存放在外存储器上,且可被多个用户同时使用。
软考高级-系统架构设计师真题知识点总结

1.常见缩写基于架构的软件设计(Architecture-Based Software Design, ABSD)特定领域软件架构(Domain Specific Software Architecture,DSSA)软件架构评估方法:1)架构权衡分析法(Architecture Tradeoff Analysis Method,ATAM)2)软件架构分析方法(Software Architecture Analysis Method, SAAM)快速应用开发(Rapid Application Development,RAD)软件开发环境(Software Development Environment,SDE)架构描述语言(Architecture Description Language, ADL)“4+1”视图模型(逻辑开发(姬发)进屋里的场景)-类实现进程部署的例子设计模式:1)创建型:单元相公造;2)结构型:理赔乔装观元组软件架构风格:流返购机舱用例关系包括:包含include、扩展extend、泛化UML图、类图关系:范组局联谊(泛化、组合、聚合、关联、依赖)系统可靠性:冗余技术、软件容错技术(恢复块设计、N版本程序设计)、双机容错技术、集群技术软件可靠性:软件容错设计(恢复块设计、N版本程序设计)、检错设计和降低复杂度设计2.*基于架构的软件设计(ABSD)强调由商业、质量和功能需求的组合驱动软件架构设计。
它强调采用视角和视图来描述软件架构,采用用例和质量属性场景来描述需求。
用例描述的是功能需求,质量属性场景描述的是质量需求。
使用ABSD方法,设计活动可以从项目总体功能框架明确就开始。
ABSD方法有三个基础:第一个是功能分解,在功能分解中使用已有的基于模块的内聚和耦合技术。
第二个是通过选择架构风格来实现质量和商业需求。
第三个是软件模板的使用。
ABSD方法是一个自顶向下,递归细化的过程,软件系统的架构通过该方法得到细化,直到能产生软件构件的类。
完全函数依赖和部分函数依赖的定义

完全函数依赖和部分函数依赖的定义好嘞,今天我们来聊聊数据库里的“完全函数依赖”和“部分函数依赖”!这两个概念听起来很高大上,好像是啥数学家才能搞得懂的东西,但其实说白了,它们就是帮我们整理数据,让它变得更加规范、清晰。
你知道吗?就像是你在厨房里做饭,没把所有的调料都摆好,弄得乱七八糟,吃起来一点也不好。
数据库也差不多,只有搞清楚这些“依赖”,才能让我们的数据好用又不容易出问题。
首先呢,我们来说说“完全函数依赖”这个东西。
别害怕,完全函数依赖其实就是我们生活中常常会遇到的情形——如果你想要知道某个信息,必须得依赖一组数据里的所有部分,缺一不可。
想象一下,你有个朋友,他跟你说他去参加聚会,结果问了你一句:“你知道我今天穿的那件T恤多少钱吗?”你一脸懵逼,心想:“你问我T恤多少钱?”结果他接着说:“不行,你得先告诉我我昨晚吃的那顿大餐花了多少钱,因为这两个东西有关联啊!”这就是完全依赖!你不能只知道一部分,你必须知道整体,才能得出正确的答案。
这就是数据库中的“完全函数依赖”:只有通过全部的“数据部分”才能确定某个字段的值,缺了哪一部分都不行。
举个例子吧,假设你有个学生成绩表,里面有“学号”和“课程”两个字段。
如果你只知道“学号”,就不能知道学生在某门课上的成绩,必须同时知道“学号”和“课程”,这俩数据合起来才能得出成绩。
这就是“完全依赖”,必须两者兼得,单独一个是没有用的。
再来说说“部分函数依赖”,这听起来是不是更复杂了?其实也没那么难理解,想想你去菜市场买水果,老板告诉你:“这些水果的价格已经固定了,如果你需要不同水果的价格,我就给你打个折。
”你一听,好像价格是跟某个特定的水果品种挂钩的,啥意思呢?你买个苹果,老板会告诉你价钱,买个橙子,又会给你不同的价格。
你看,单个水果的价格是可以通过部分的信息(比如水果种类)来决定的,而不是两者全都需要。
你可能会说,啥?这又是什么鬼?没错,就是这种情况,部分函数依赖就是指某个字段的值,只依赖于数据的部分信息,剩下的部分就可以忽略了。
精品课件-函数依赖理论第二讲

范式概述
• 基于函数依赖理论,关系模式可分成
– 第一范式(1NF) – 第二范式(2NF) – 第三范式(3NF) – Boyce-Codd范式(BCNF)
• 这几种范式的要求一个比一个严格,它们之间的联系为 BCNF3NF2NF1NF。即满足BCNF范式的关系一定满足 3NF范式,满足3NF范式的关系一定满足2NF范式,满足 2NF范式的关系一定满足1NF范式。
函数依赖理论第二讲
主要内容
• 无关属性、正则覆盖、无损连接分解、有 损连接分解
• 第一范式(1NF)、第二范式(2NF)、BoyceCodd范式(BCNF)、第三范式(3NF)、
无关属性
给定函数依赖集F及→F,如果去除 或的一个属性不会改变F+,则称该属性是
无关的。
给定函数依赖集F及→F,若A,且 F逻辑蕴涵(F-{→}){(-A) },则属 性A在中是无关的(左无关)。
于另一个非主属性,即所有的非主属性应该直接依赖于
全部的主属性(即必须完全依赖,这是2NF的要求),并 且彼此之间无相互依赖关系(即不能存在部分依赖,这是 3NF的要求)。 • 换一句话说,非主属性不能包括它们自己的属性,如果属 性不包括属性,则它们就是真正的实体。
3NF范式判断举例
• 例1 r(R)=r(A, B, C),F={A→B, B→C}。
Boyce-Codd范式判断举例
• 例1 r(R)=r(A, B, C),F={A→B, B→C}。 – r(R)的候选码为A,r(R)BCNF,因为函数依赖B→C中的决 定属性B不是超码。
• 例2 r(R)=r(A, B, C),F={AB→C, C→A}。 – r(R)的候选码为AB或BC,r(R)BCNF,因为C→A的决定属 性C不是超码。
函数依赖的公理系统资料

定义4.15 最小覆盖. 满足下列条件的函数依赖集F称为最小覆盖(最 小依赖集, 极小依赖集),记作Fmin:
(1) 单属性:F中任一函数依赖 XA,A必是单属 性。 (2) 无冗余性:F中不存在这样的函数依赖X A, 使得 F与 F {X A}等价。 (3) 既约性:F中不存在这样的函数依赖 X A, X是多属性,在X中有真子集 Z,使得 F 与 F {X A} {Z A}等价。
2
函数依赖集的闭包F+
定义 4.12 在关系模式 R<U,F> 中,被 F 所 逻辑蕴涵的函数依赖的全体所构成的集合称 作F的闭包,记作 F+ = {XY | F├ XY} + 显然,F F 。 F+的计算很麻烦,F不大,其F+也可能很大。 例如: 设 R<U, F>, U={X, Y, Z}, F = {XY, YZ} F+ = { XX, XY,X Z, YY, YZ, Z Z, XYX,XYY,XYXY, XZ→X, ……}
函数依赖的公理系统
建立函数依赖推理系统的目的:
(1) 求关系模式的候选码 (2) 判断关系模式的范式级别 (3) 给定一组函数依赖,需要导出另外一些函数依赖, 或判断另外的函数依赖是否成立。例如: FD={A B,B C},判断 A C是否成立?
本节内容:
1. 逻辑蕴涵; 2. Armstrong函数依赖公理系统; 3. 函数依赖集的闭包; 4. 属性集闭包; 5. 函数依赖集的等价和覆盖; 6. 最小函数依赖集。
XY
t[XZ] = s[XZ]
t[Y] = s[Y] t[Z] = s[Z]
t[YZ] = s[YZ]
函数依赖及范式

函数依赖及范式函数依赖基本概念:•函数依赖:FD(function dependency),设有关系模式R(U),X,Y是U的子集,r 是R的任一具体关系,如果对r的任意两个元组t1,t2,由t1[X]=t2[X]导致t1[Y]=t2[Y], 则称X 函数决定Y,或Y函数依赖于X,记为X→Y。
X→Y为模式R的一个函数依赖。
•部分函数依赖:即局部依赖,对于一个函数依赖W→A,如果存在X W(X包含于W)有X→A成立,那么称W→A是局部依赖,否则称W→A为完全函数依赖。
•传递依赖:在关系模式中,如果Y→X,X→A,且X Y(X不决定Y),A X(A不属于X),那么称Y→A是传递依赖。
•函数依赖集F的闭包F+: 被逻辑蕴涵的函数依赖的全体构成的集合,称为F的闭包(clo sure),记为F+。
•最小依赖集:如果函数集合F满足以下三个条件(1)F中每个函数依赖的右部都是单属性;(2) F中的任一函数依赖X→A,其F-{X→A}与F是不等价的;(3)F中的任一函数依赖X→A,Z为X的子集,(F-{X→A})∪{Z→A}与F不等价。
则称F为最小函数依赖集合,记为Fmin。
函数依赖的公理系统:设有关系模式R(U),X,Y,Z,W均是U的子集,F是R上只涉及到U中属性的函数依赖集,推理规则如下:•自反律:如果Y X U,则X→Y在R上成立。
•增广律:如果X→Y为F所蕴涵,Z U,则XZ→YZ在R上成立。
(XZ表示X∪Z,下同) •传递律:如果X→Y和Y→Z在R上成立,则X→Z在R上成立。
以上三条为Armstrong公理系统•合并律:如果X→Y和X→Z成立,那么X→YZ成立。
•伪传递律:如果X→Y和WY→Z成立,那么WX→Z成立。
•分解律:如果X→Y和Z Y成立,那么X→Z成立。
这三条为引理注意:•函数依赖推理规则系统(自反律、增广律和传递律)是完备的。
•由自反律所得到的函数依赖均是平凡的函数依赖。
四种范式的含义:•如果某个数据库模式都是第一范式的,则称该数据库模式是属于第一范式的数据库模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教你如何判断无损连接和函数依赖
无损分解和保持依赖的判断
大部分是对一个关系模式分解成两个模式的考察,分解为三个以上模式时无损分解和保持依赖的判断比较复杂,考的可能性不大,因此我们只对“一个关系模式分解成两个模式”这种类型的题的相关判断做一个总结。
以下的论述都基于这样一个前提:
R是具有函数依赖集F的关系模式,(R1 ,R2)是R的一个分解。
首先我们给出一个看似无关却非常重要的概念:属性集的闭包。
令α为一属性集。
我们称在函数依赖集F下由α函数确定的所有属性的集合为F下α的闭包,记为α+ 。
下面给出一个计算α+的算法,该算法的输入是函数依赖集F和属性集α,输出存储在变量result 中。
算法一:
result:=α;
while(result发生变化)do
for each 函数依赖β→γ in F do
begin
if β∈result then result:=result∪γ;
end
属性集闭包的计算有以下两个常用用途:
·判断α是否为超码,通过计算α+(α在F下的闭包),看α+ 是否包含了R中的所有属性。
若是,则α为R的超码。
·通过检验是否β∈α+,来验证函数依赖是否成立。
也就是说,用属性闭包计算α+,看它是否包含β。
(请原谅我用∈符号来表示两个集合之间的包含关系,那个表示包含的符号我找不到,大家知道是什么意思就行了。
)
看一个例子吧,2005年11月系分上午37题:
● 给定关系R(A1,A2,A3,A4)上的函数依赖集F={A1→A2,A3→A2,A2→A3,A2→A4},R的候选关键字为________。
(37)A. A1 B. A1A3 C. A1A3A4 D. A1A2A3
首先我们按照上面的算法计算A1+ 。
result=A1,
由于A1→A2,A1∈result,所以result=result∪A2=A1A2
由于A2→A3,A2∈result,所以result=result∪A3=A1A2A3
由于A2→A4,A2∈result,所以result=result∪A3=A1A2A3A4
由于A3→A2,A3∈result,所以result=result∪A2=A1A2A3A4
通过计算我们看到,A1+ =result={A1A2A3A4},所以A1是R的超码,理所当然是R的候选关键字。
此题选A 。
好了,有了前面的铺垫,我们进入正题。
无损分解的判断。
如果R1∩R2是R1或R2的超码,则R上的分解(R1,R2)是无损分解。
这是一个充分条件,当所有的约束都是函数依赖时它才是必要条件(例如多值依赖就是一种非函数依赖的约束),不过这已经足够了。
保持依赖的判断。
如果F上的每一个函数依赖都在其分解后的某一个关系上成立,则这个分解是保持依赖的(这是一个充分条件)。
如果上述判断失败,并不能断言分解不是保持依赖的,还要使用下面的通用方法来做进一步判断。
该方法的表述如下:
算法二:
对F上的每一个α→β使用下面的过程:
result:=α;
while(result发生变化)do
for each 分解后的Ri
t=(result∩Ri)+ ∩Ri
result=result∪t
这里的属性闭包是在函数依赖集F下计算出来的。
如果result中包含了β的所有属性,则函数依赖α→β。
分解是保持依赖的当且仅当上述过程中F的所有依赖都被保持。
下面给出一个例题,2006年5月系分上午43题:
●设关系模式R<U, F>,其中U={A, B, C, D, E},F={A→BC,C→D,BC→E,E→A},则分解ρ={R1(ABCE),R2(CD)}满足(43)。
(43)A.具有无损连接性、保持函数依赖
B.不具有无损连接性、保持函数依赖
C.具有无损连接性、不保持函数依赖
D.不具有无损连接性、不保持函数依赖
先做无损链接的判断。
R1∩R2={C},计算C+。
Result=C
由于C→D,C∈result,所以result=result∪D=CD
可见C是R2的超码,该分解是一个无损分解。
再做保持依赖的判断。
A→BC,BC→E,E→A都在R1上成立(也就是说每一个函数依赖左右两边的属性都在R1中),C→D在R2上成立,因此给分解是保持依赖的。
选A。
再看一个复杂点的例题。
2007年5月数工40-41题。
●给定关系模式R<U, F>,U={A, B, C, D, E},F={B→A,D→A,A→E,AC→B},其候选关键字为
(40),则分解ρ={R1(ABCE),R2(CD)}满足(41)。
(40)A.ABD
B.ABE
C.ACD
D.CD
(41)A.具有无损连接性、保持函数依赖
B.不具有无损连接性、保持函数依赖
C.具有无损连接性、不保持函数依赖
D.不具有无损连接性、不保持函数依赖
看见了吧,和前面一题多么的相像!
对于第一问,分别计算ABCD四个选项的闭包,
(ABD)+ = { ABDE }
(ABE)+ = { ABE }
(ACD)+ = { ABCDE }
(CD)+ = { ABCDE }
选D。
再看第二问。
先做无损链接的判断。
R1∩R2={C},计算C+。
result=C
因此C既不是R1也不是R2的超码,该分解不具有无损分解性。
再做保持依赖的判断。
B→A,A→E,AC→B在R1上成立,D→A在R1和R2上都不成立,因此需做进一步判断。
由于B→A,A→E,AC→B都是被保持的(因为它们的元素都在R1中),因此我们要判断的是D→A是不是也被保持。
对于D→A应用算法二:
result=D
对R1,result∩R1=ф(空集,找不到空集的符号,就用这个表示吧),t=ф,result=D
再对R2,result∩R2=D,D+ =ADE ,t=D+ ∩R2=D,result=D
一个循环后result未发生变化,因此最后result=D,并未包含A,所以D→A未被保持,该分解不是保持依赖的。
选D。