因式分解题型分类解析
14.3 因式分解(讲+练)【14大题型】

14.3 因式分解因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.题型1:因式分解的概念1.下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2D.x3﹣x=x(x2﹣1)【变式1-1】下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+1【变式1-2】下列各式从左到右的变形中,属于因式分解的是( )A.a(x+y)=ax+ay B.a2−4=(a+2)(a−2)题型2:找公因式2.代数式 15a 3b 3(a−b) , 5a 2b(b−a) , −120a 3b 3(a 2−b 2) 中的公因式是( )A .5a 2b(b−a)B .5a 2b 2(b−a)C .5ab(b−a)D .120a 3b 3(b 2−a 2)提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法。
注意:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.题型3:提公因式法分解因式3.(1)分解因式:a 2-3a ; (2)分解因式:3x 2y-6xy 2.m m题型4:提公因式法与整体思想4.已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.题型5:平方差公式法分解因式5.因式分解:m2(1)a2-9;(2)25−14题型6:完全平方公式法分解因式6.因式分解:(1)x2-4x+4.(2)16m2-8mn+n2.(3)4x2+20x+25;7.因式分解:(1)x2-3x+2;(2)x2-2x-15(3)x2-7x+12.题型8:分组分解法分解因式8.因式分解:(1)x2+4x-a2+4.(2)9-x2+2xy-y2.题型9:利用因式分解简便运算9.计算:(1)2022+202×196+982(2)652-352;10.已知多项式2x-x+m有一个因式(2x+1),求m的值.题型11:利用因式分解求代数式的值11.已知a+b=5,ab=3,求代数式a3b+2a2b2+ab3的值.题型12:利用因式分解解决整除问题12.求证:对于任意自然数n,(n+7)2-(n-5)2都能被24整除.题型13:因式分解与几何问题13.如图,边长为a、b的矩形,它的周长为14,面积为10,计算a2b+2ab+ab2的值.a2+4ab+3b2因式分解.【变式13-2】如图,长为m,宽为x(m>x)的大长方形被分割成7 小块,除阴影A,B 外,其余5 块是形状、大小完全相同的小长方形,其较短一边长为y.记阴影A 与B 的面积差为S.(1)分别用含m,x,y的代数式表示阴影A,B 的面积;(2)先化简S,再求当m=6,y=1 时S的值;(3)当x取任何实数时,面积差S 的值都保持不变,问m 与y应满足什么条件?题型14:因式分解与三角形问题14.△ABC的三边长分别为a,b,c,且2a+ab=2c+bc,请判断△ABC是等边三角形、等腰三角形,还是直角三角形?并说明理由.【变式14-1】若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.【变式14-2】已知在△ABC中,三边长分别为a,b,c,且满足等式a2+bc−ac−b2=0,请判断△ABC的形状,并写出你的理由.【变式14-3】已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.一、单选题1.同学们把多项式2x2−4xy+2x提取公因式2x后,则另一个因式应为( )A.x−2y B.x−2y+1C.x−4y+1D.x−2y−12.下列多项式中不能用公式进行因式分解的是( )A.a2+a+ 1B.a2+b2-2ab C.−a2+25b2D.−4−b243.把多项式3m(x﹣y)﹣2(y﹣x)2分解因式的结果是( )A.(x﹣y)(3m﹣2x﹣2y)B.(x﹣y)(3m﹣2x+2y)C.(x﹣y)(3m+2x﹣2y)D.(y﹣x)(3m+2x﹣2y)4.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )A.2560B.490C.70D.495.计算-22021+(-2)2020所得的结果是( )A.-22020B.-2 2021C.22020D.-26.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是( )A.2B.5C.20D.97.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A.6B.3C.4D.58.观察下列分解因式的过程:x2−2xy+y2−16=(x−y)2−16=(x−y+4)(x−y−4),这种分解因式的方法叫分组分解法.利用这种分组的思想方法,已知a,b,c满足a2−b2−ac+bc=0,则以a,b,c为三条线段首尾顺次连接围成一个三角形,下列描述正确的是( )A.围成一个等腰三角形B.围成一个直角三角形C.围成一个等腰直角三角形D.不能围成三角形二、填空题9.下列因式分解正确的是 (填序号)①x2−2x=x(x−2);②x2−2x+1=x(x−2)+1;③x2−4=(x+4)(x−4);④4x2+4x+1=( 2x+1)210.分解因式:ax2﹣4axy+4ay2= .11.已知:m+n=5,mn=4,则:m2n+mn2= .12.因式分解:1-a2+2ab-b2= .13.边长为a、b的长方形,它的周长为14,面积为10,则a2b+a b2的值为 .14.若△ABC 的三条边a ,b ,c 满足关系式:a 4+b 2c 2﹣a 2c 2﹣b 4=0,则△ABC 的形状是 .15.甲、乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4);乙看错了a ,分解结果为(x +1)(x +9),则多项式x 2+ax +b 分解因式的正确结果为 .三、解答题16.因式分解:(1)a 3−36a(2)14x 2+xy +y 2(3)(a 2+4)2−16a 217.把下列各式因式分解:(1)x 2(y ﹣2)﹣x (2﹣y )(2)25(x ﹣y )2+10(y ﹣x )+1(3)(x 2+y 2)2﹣4x 2y 2(4)4m 2﹣n 2﹣4m+1.18.已知二次三项式x 2+px+q 的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.19.给出三个多项式:12x 2+2x ﹣1,12x 2+4x+1,12x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.四、综合题20.已知 a 2−3a +1=0 ,求(1)a 2+1a 2的值。
精讲精练:因式分解方法分类总结-培优(含答案)

因式分解·提公因式法【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】1. 把下列各式因式分解 (1)-+--+++a xabx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:-+--=--+++++a xabx acx ax ax ax bx c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a nn n n -=--=----222121;,是在因式分解过程中常用的因式变换。
解:a a b a b a ab b a ()()()-+---32222)243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯ 分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987+++⨯= =⨯=987136813689873. 在多项式恒等变形中的应用 例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值。
初中数学因式分解常见的6种方法和7种应用

因式分解的六种方法及其应用因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.方法一提公因式法题型1 公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是()A.3y+4x-1 B.3y-4x-1C.3y-4x+1 D.3y-4x【解析】B2.分解因式:2mx-6my=__________.【解析】2m(x-3y)3.把下列各式分解因式:(1)2x2-xy;(2)-4m4n+16m3n-28m2n.【解析】(1)原式=x(2x-y).(2)原式=-4m2n(m2-4m+7).题型2公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.【解析】(1)原式=a(b-c)-(b-c)=(b-c)(a-1).(2)原式=15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5).方法二公式法题型1直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.【解析】(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(xy+2)(xy-2).(2)原式=(x 2+y 2+2xy )(x 2+y 2-2xy )=(x +y )2(x -y )2.(3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4.题型2 先提再套法6.把下列各式分解因式:(1)(x -1)+b 2(1-x );(2)-3x 7+24x 5-48x 3.【解析】(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b )(1-b ).(2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2.题型3 先局部再整体法7.分解因式:(x +3)(x +4)+(x 2-9).【解析】原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1). 题型4 先展开再分解法8.把下列各式分解因式:(1)x (x +4)+4;(2)4x (y -x )-y 2.【解析】(1)原式=x 2+4x +4=(x +2)2.(2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y )2.方法三 分组分解法9.把下列各式分解因式:(1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2.【解析】(1)原式=(m 2-mn )+(mx -nx )=m (m -n )+x (m -n )=(m -n )(m +x ).(2)原式=4-(x 2-2xy +y 2)=22-(x -y )2=(2+x -y )(2-x +y ).方法四 拆、添项法10.分解因式:x 4+14. 【解析】原式=x 4+x 2+14-x 2=⎝⎛⎭⎫x 2+122-x 2=⎝⎛⎭⎫x 2+x +12(x 2-x +12). 方法五 整体法题型1 “提”整体11.分解因式:a (x +y -z )-b (z -x -y )-c (x -z +y ).【解析】原式=a (x +y -z )+b (x +y -z )-c (x +y -z )=(x +y -z )(a +b -c ).题型2 “当”整体12.分解因式:(x+y)2-4(x+y-1).【解析】原式=(x+y)2-4(x+y)+4=(x+y-2)2.题型3“拆”整体13.分解因式:ab(c2+d2)+cd(a2+b2).【解析】原式=abc2+abd2+cda2+cdb2=(abc2+cda2)+(abd2+cdb2)=ac(bc+ad)+bd(ad+bc)=(bc+ad)(ac+bd).题型4“凑”整体14.分解因式:x2-y2-4x+6y-5.【解析】原式=(x2-4x+4)-(y2-6y+9)=(x-2)2-(y-3)2=(x+y-5)(x-y+1).方法六换元法15.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.【解析】(1)设a2+2a=m,则原式=(m-2)(m+4)+9=m2+4m-2m-8+9=m2+2m+1=(m+1)2=(a2+2a+1)2=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1=n2+3n+n+3+1=n2+4n+4=(n+2)2=(b2-b+2)2.因式分解的7种应用因式分解是整式的恒等变换的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.应用一用于简便计算1.利用简便方法计算:23×2.718+59×2.718+18×2.718.【解析】23×2.718+59×2.718+18×2.718=(23+59+18)×2.718=100×2.718=271.8.2.计算:2 0162-4 034×2 016+2 0172.【解析】2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.应用二用于化简求值3.已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:(1)xy;(2)x2y-2xy2.【解析】(1)∵x-2y=3,∴x2-4xy+4y2=9,∴(x2-2xy+4y2)-(x2-4xy+4y2)=11-9,即2xy=2,∴xy=1.(2)x2y-2xy2=xy(x-2y)=1×3=3.应用三用于判断整除4.随便写出一个十位数字与个位数字不相等两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?【解析】所得的差一定能被9整除.理由如下:不妨设该两位数个位上的数字是b,十位上的数字是a,且a>b,b不为0,则这个两位数是10a+b,将十位数字与个位数字对调后的数是10b+a,则这两个两位数中,较大的数减较小的数的差是(10a+b)-(10b+a)=9a-9b=9(a-b),所以所得的差一定能被9整除.应用四用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,判断△ABC形状.【解析】∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0.即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0.∴(a-b)2+(b-c)2+(a-c)2=0.又∵(a-b)2≥0,(b-c)2≥0,(a-c)2≥0,∴a-b=0,b-c=0,a-c=0,即a=b=c,∴△ABC为等边三角形.应用五用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,试比较A与B的大小.【解析】B-A=a2+a-7-a-2=a2-9=(a+3)(a-3).因为a>2,所以a+3>0,从而当2<a<3时,a-3<0,所以A>B;当a=3时,a-3=0,所以A=B;当a>3时,a-3>0,所以A<B.应用六 用于解方程(组)7.已知大正方形的周长比小正方形的周长多96 cm ,大正方形的面积比小正方形的面积多960 cm 2.请你求这两个正方形的边长.【解析】设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎪⎨⎪⎧4x -4y =96,①x 2-y 2=960,② 由①得x -y =24,③;由②得(x +y )(x -y )=960,④把③代入④得x +y =40,⑤;由③⑤得方程组⎩⎪⎨⎪⎧x -y =24,x +y =40,,解得⎩⎪⎨⎪⎧x =32,y =8. 故大正方形的边长为32 cm ,小正方形的边长为8 cm.应用七 用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,…. 你发现了什么规律?请用含有字母n (n 为正整数)的等式表示出来,并说明理由.【解析】规律:n 2+[n (n +1)]2+(n +1)2=[n (n +1)+1]2.理由如下:n 2+[n (n +1)]2+(n +1)2=[n (n +1)]2+2n 2+2n +1=[n (n +1)]2+2n (n +1)+1=[n (n +1)+1]2.。
因式分解中考经典题型

因式分解中考经典题型因式分解是初中数学中的重要一环,也是中考数学中经常出现的题型之一。
在中考数学中,因式分解通常分为三类:公因式提取、完全平方公式、差平方公式。
下面我们将分别讲解一下这三类题型。
一、公因式提取公因式指的是多项式中所有单项式所能共有的“因子”,如2x+4y中的2是这两项的公因式,a^2 b + ab^2是ab的公因式。
公因式提取就是将多项式中的公因式提取出来,从而达到简化多项式的目的。
举例:1、将4a^3 + 8a^2 + 12a分解因式。
解:首先将这三项提取公因式,得4a(a^2 + 2a + 3),然后再将a^2 + 2a + 3分解成(a + 1)^2 + 2,因此4a^3 + 8a^2 + 12a = 4a(a + 1)^2 + 8a。
二、完全平方公式完全平方公式是指某一二次式(如a^2+2ab+b^2)可以化为某个线性式(如a+b)的平方。
在解题时,只需要将二次式进行因式分解,然后再利用平方根的性质就可以得到答案。
举例:2、将x^2 + 6x + 9分解因式。
解:x^2 + 6x + 9是一个完全平方的二次式,因为( x + 3 )^2 = x^2 + 6x+ 9 ,所以x^2 + 6x + 9可以化为( x + 3 )^2 。
三、差平方公式差平方公式是指某一二次式(如a^2-b^2)可以化为某个线性式(如a+b)和另一个线性式(如a-b)的乘积。
在解题时,只需要利用差平方公式将二次式进行因式分解,就可以得到答案。
举例:3、将x^2 - 4分解因式。
解:x^2 - 4可以用差平方公式变形为(x + 2)(x - 2),因此,x^2 - 4的因式分解为(x + 2)(x - 2)。
综上所述,因式分解是中考数学中的重要一环,涉及到公因式提取、完全平方公式和差平方公式三类题型,需要学生们在平时的学习中认真掌握和练习。
第4讲 因式分解章末重难点题型(解析版)

第4讲因式分解章末重难点题型【题型通关】【考点1 因式分解的概念】【方法点拨】掌握因式分解:(1)把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫把这个多项式分解因式.(2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式.(3)分解因式时,其结果要使每一个因式不能再分解为止.【例1】(鄞州区期中)下列由左到右边的变形中,是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣1=x(x−1 x)C.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣9=(x+3)(x﹣3)【分析】直接利用因式分解的意义分别判断得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,是多项式乘法,故此选项错误;B、x2﹣1=(x+1)(x﹣1),故此选项错误;C、x2﹣4+3x=(x+4)(x﹣1),故此选项错误;D、x2﹣9=(x+3)(x﹣3),故此选项正确.故选:D.【点评】此题主要考查了因式分解的意义.正确把握因式分解的定义是解题的关键.【变式1-1】(东台市期中)下列各式从左到右的变形,是因式分解的为()A.(2x﹣1)(x+3)=2x2+5x﹣3B.a4+4=(a2+2a+2)(a2﹣2a+2)C.﹣6a2b=﹣2a2•3bD.x2﹣9+6x=(x+3)(x﹣3)+6x【分析】根据因式分解的定义逐个判断即可.【解答】解:A、从左到右的变形,不属于因式分解,故本选项不符合题意;B、从左到右的变形,属于因式分解,故本选项符合题意;C、从左到右的变形,不属于因式分解,故本选项不符合题意;D、从左到右的变形,不属于因式分解,故本选项不符合题意;故选:B.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.【变式1-2】(高新区校级月考)下列变形属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x﹣1=x(1−1x)(x≠0)C.x3+2x2+1=x2(x+2)+1D.x2﹣9=(x+3)(x﹣3)【分析】根据因式分解的定义逐个判断即可.【解答】解:A.从左边到右边的变形,不属于因式分解,故本选项不符合题意;B.从左边到右边的变形,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形,不属于因式分解,故本选项不符合题意;D.从左边到右边的变形,属于因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.【变式1-3】(淮安区期中)下列各式从左到右的变形中,是因式分解的为()A.2x+4y+1=2(x+2y)+1B.(x+2)(x﹣2)=x2﹣4C.x(x﹣10)=x2﹣10x D.x2﹣4x+4=(x﹣2)2【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A不合题意;B、是整式的乘法,故B不合题意;C、是整式的乘法,故C不合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.【考点2 因式分解—提公因式法】【方法点拨】确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;【例2】(碑林区校级月考)多项式:①16x2﹣8x;②(x﹣1)2﹣4(x﹣1)+4;③(x+1)4﹣4x(x+1)2+4x2;④﹣4x2﹣1+4x分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③【分析】首先把各个多项式分解因式,即可得出答案.【解答】解:①16x2﹣8x=8x(2x﹣1);②(x﹣1)2﹣4(x﹣1)+4=(x﹣1﹣2)2=(x﹣3)2;③(x+1)4﹣4x(x+1)2+4x2=[(x+1)2﹣2x]2=(x2+1)2;④﹣4x2﹣1+4x=﹣(2x﹣1)2;∴结果中含有相同因式的是①和④;故选:C.【点评】本题考查了因式分解的方法以及公因式;熟练掌握因式分解的方法是解题的关键.【变式2-1】(唐河县期末)如果多项式−15abc+15ab2﹣a2bc的一个因式是−15ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.c﹣b+15ac D.c+b−15ac【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解,本题提取公因式−15ab.【解答】解:−15abc+15ab2﹣a2bc=−15ab(c﹣b+5ac),故另一个因式为(c﹣b+5ac),故选:A.【点评】当一个多项式有公因式,将其分解因式时应先提取公因式,提取公因式后剩下的因式是用原多项式除以公因式所得的商得到的.【变式2-2】(﹣2)2021+(﹣2)2020的值为()A.﹣2B.﹣22020C.﹣22019D.﹣24039【分析】直接找出公因式进而提取分解因式即可.【解答】解:(﹣2)2021+(﹣2)2020=(﹣2)2020×(﹣2+1)=﹣22020.故选:B .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.【变式2-3】(安居区期末)化简:a +1+a (a +1)+a (a +1)2+…+a (a +1)99= .【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=(a +1)[1+a +a (a +1)+a (a +1)2+…+a (a +1)98]=(a +1)2[1+a +a (a +1)+a (a +1)2+…+a (a +1)97]=(a +1)3[1+a +a (a +1)+a (a +1)2+…+a (a +1)96]=…=(a +1)100.故答案为:(a +1)100.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.【考点3 因式分解—公式法】【方法点拨】概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反. ②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【例3】(乳山市期中)下列各式:①﹣x 2﹣y 2;②−14a 2b 2+1; ③a 2+ab +b 2; ④﹣x 2+2xy ﹣y 2;⑤14−mn +m 2n 2,用公式法分解因式的有( )A .2个B .3个C .4个D .5个【分析】根据每个多项式的特征,结合平方差公式、完全平方公式的结构特征,综合进行判断即可.【解答】解:①﹣x 2﹣y 2=﹣(x 2+y 2),因此①不能用公式法分解因式;②−14a 2b 2+1=1﹣(12ab )2=(1+12ab )(1−12ab ),因此②能用公式法分解因式; ③a 2+ab +b 2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x 2+2xy ﹣y 2=﹣(x 2﹣2xy +y 2)=﹣(x ﹣y )2,因此④能用公式法分解因式;⑤14−mn +m 2n 2=(12−mn )2,因此⑤能用公式法分解因式; 综上所述,能用公式法分解因式的有②④⑤,故选:B.【点评】本题考查平方差公式、完全平方公式,掌握公式的结果特征是应用的前提.【变式3-1】(鱼台县期末)已知9x2﹣mxy+16y2能运用完全平方公式分解因式,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,故:m =±24.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【变式3-2】(厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a 可以是()A.2x2B.4x2C.2x D.4x【分析】直接利用完全平方公式得出答案.【解答】解:∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是:2x.故选:C.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题关键.【变式3-3】(北碚区期末)若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.20【分析】直接利用完全平方公式分解因式求出答案.【解答】解:4x2+kx+25=(2x+a)2,当a=5时,k=20,当a=﹣5时,k=﹣20,故k+a的值可以是:﹣25.故选:A.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.【考点4 因式分解(提公因式与公式法综合)】【方法点拨】先提取公因式,然后再看是不是平方差式或者完全平方式。
从中考中的因式分解题型看因式分解问题的归类

从中考中的因式分解题型看因式分解问题的归类上海市进才中学北校 陈蓓所谓因式分解是将一个整式分解成几个因式乘积的形式,由于这种变形蕴含着变换的数学思想和方法,并且对于代数式的求值、化简具有重要的意义,所以中考中除考察学生对因式分解的方法的选用外,还考察了学生恒等变形的能力。
这里搜集了历年来各地中考中出现的有关因式分解的题目,通过适当的归类来体现其本质属性。
有关因式分解的题目总体上可分为两种类型。
一. 直接分解因式,即从整式的构成形式直接观察出第一步分解因式所用的方法,经过第一步分解后再运用其他方法分解。
例1.分解因式 ()36522--x x 解: ()36522--x x = ()()656522--+-x x x x= ()()()()6132-+--x x x x例2. 分解因式 2433-x 解: 2433-x= ()833-x= ()()42232++-x x x二. 间接分解型:1. 代数式的一部分运用完全平方公式再运用平方差公式分解,分解时应注意“各项”中正、负号的变化。
例3: 分解因式 1222---b b a解: 1222---b b a = ()1222++-b b a = ()221+-b a = ()()11--++b a b a 例4: 分解因式 2412924b a a --+ 解: 2412924b a a --+ =()2412924b a a -+- =()()222132b a -- = ()()b a b a 32322121--+- 2.将整式分成具有(或变形后具有)公因式的组,经提取公因式整理并运用适当方法分解。
在运用此种方法时要注意分组要准确,符号变化要避免失误。
例5:分解因式: -222223++-a a a 解: -222223++-a a a=-2()123--+a a a=-2()()[]123+-+a a a=-2()()[]112+-+a a a=-2()()112-+a a=-2()()112-+a a例6: 分解因式: 16434--+x x x解: 16434--+x x x= ()()()x x x x x 416443224-+-+-= ()()()44442222-+-+-x x x x x = ()()()4222++-+x x x x3.将整式通过恒等变形(或采用拆项、补项)后再进行分组分解。
二次三项式的因式分解(5种题型)-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)

二次三项式的因式分解【知识梳理】二次三项式的因式分解(1)形如()2ax bx c a b c ++,,都不为零的多项式称为二次三项式;(2)如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x , 那么二次三项式的分解公式为:2ax bx c ++()()12a x x x x =−−.,【考点剖析】 题型一:两根与二次三项式因式分解关系 例1.若方程24210y y −−=的两个根是1y =,2y =,则在实数范围内分解因式2421y y −−=____________.【答案】⎪⎪⎭⎫ ⎝⎛−−⎪⎪⎭⎫ ⎝⎛+−4514514y y . 【解析】如果一元二次方程20ax c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式2ax bx c ++可分解为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查利用一元二次方程进行二次三项式的因式分解. 【变式1】若二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式为)221)(221(3−++−−x x ,则一元二次方程)0(02≠=++a c bx ax 的两个实数根为________________.【答案】2211+=x ,2122−=x .【解析】如果一元二次方程20ax bx c ++=(0)a ≠的两个根是1x 和2x,那么二次三项式的分 解公式为:2ax bx c ++()()12a x x x x =−−.【总结】本题主要考查二次三项式的因式分解与相对应的一元二次方程的根的关系.题型二:不能在实数范围内因式分解的二次三项式例2.下列二次三项式在实数范围内不能因式分解的是(,,,,,,) A.2615x x +−;,,,,,,,,,,,,,,,,,,,,,B.,2373y y ++;,,,,,,,,, C.2224x x −−;,,,,,,,,,,,,,,,,,,,,,D.2245y y −+. 【答案】D ;【解析】解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为244424360b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为2416425240b ac −=−⨯⨯=−< 故此二次三项式在实数范围内不能因式分解.故答案选D.【变式1】下列二次三项式在实数范围内不能因式分解的是(,,,,,)A.1562−+x x ,,,,,B.3732++y y ,,,,,C.422−−x x ,,,,,D.22542y xy x +−【答案】D ;【解析】,解:A 、因为24146153610b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不能因式分解. 故答案选D.【变式2】下列二次三项式在实数范围内不能因式分解的是(,,,,,,)A.2411x x +−;,,B.,2373y y ++;,,,,C.,224x x −−;,,,D.,22245x xy y −+.【答案】D ;【解析】解:A 、因为24144111770b ac −=+⨯⨯=>,故此二次三项式在实数范围内可以因式分解;B 、因为2449433130b ac −=−⨯⨯=>,故此二次三项式在实数范围内可以因式分解;C 、因为24444200b ac −=+⨯=>,故此二次三项式在实数范围内可以因式分解;D 、因为222241642524b ac y y y −=−⨯⨯=− 又因为二次三项式,故20,240y y ≠∴−<,故此二次三项式在实数范围内不以因式分解. 故答案选D.【变式3】如果关于x 的二次三项式24x x m −+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值) 【答案】5;【解析】解:当241640b ac m −=−<即4m >时,关于x 的二次三项式24x x m −+在实数范围内不能因式分解,如m 取5等等.题型三:二次项系数为1的实数范围内二次三项式因式分解 例3.在实数范围内分解因式:241x x −−=______________【答案】(22x x −+−;【解析】解:原式=2445x x −+−=()222x −−=(22x x −−−.【变式1】在实数范围内分解因式:232x x −−=,,,,,,,,,,,,,,,,,,,,.【答案】x x ⎛−− ⎝⎭⎝⎭; 【解析】解:因为方程2320x x −−=的两根为x =,故232x x −−=x x ⎛ ⎝⎭⎝⎭. 【变式2】在实数范围内分解因式:243x x −−=,____________________.【答案】(22x x −−;【解析】解:解方程x2-x-3=0,得x=2±则:x2-4x-3=(22x x −−+.【变式3】在实数范围内分解因式: (1)224x x −−;(2)223x xy y −−.【答案】(1)(11x x −−,,,,(2)3322x y x y ⎛⎫⎛⎫−−− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)前两项先配成完全平方公式,然后根据平方差公式,可得答案;(2)先解方程2230x xy y −−=,然后分解因式即可. 【详解】(1)原式=(x2﹣2x+1)﹣5=(x ﹣1)22=(x ﹣1(x ﹣1;(2)∵2230x xy y −−=的解是x y =,∴原式=x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查了因式分解,利用乘法公式和求根公式是解答本题的关键. 题型四:二次项系数不为1的实数范围内二次三项式因式分解 例4.二次三项式2x 2-8x+5在实数范围内因式分解为(,,,,)A.,B.,C.,2(x+)(x-)22D.,2(x-)(x-)22【答案】D ;【解析】解:令2x2-8x+5=0,解得:x1=,x2=,则2x2-8x+5=2(x x .故选D .【变式1】在实数范围内因式分解:222x x −−=__________________.【答案】2(x x ;【解析】解:2220x x −−=的解是1x =,214x =,所以222x x −−=2(x x【变式2】在实数范围内因式分解:2221x x −−=______.【答案】2⎛ ⎝⎭⎝⎭x x ;【解析】解:22122122x x x x ⎛⎫−−=−− ⎪⎝⎭=21111222442x x ⎛⎫−⋅+−− ⎪⎝⎭=213224x ⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=221222x ⎡⎤⎫⎛⎫⎢⎥−−⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=11222x x ⎛−− ⎝⎭⎝⎭=2x x ⎛⎝⎭⎝⎭.【变式3】在实数范围内分解因式:2225x x −−=____.【答案】112()2222x x −−−+;【解析】解:2225x x −−=21112()42x x −+−=21112()22x −−=21112()24x ⎡⎤−−⎢⎥⎣⎦11=2(22x x −−,故答案为:112()()2222x x −−−+.【变式4】分解因式:2235a ab b −−.【答案】3a a ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭; 【解析】解:因为222=2543()370b b b ∆−⨯⨯−=≥,故方程22350a ab b −−=的两根为a ==,故22353a ab b a a ⎛⎫⎛⎫−−= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 题型五:实数范围内二次三项式因式分解的应用例5.如果二次三项式px 2+2x ﹣1在实数范围内可以因式分解,求p 的取值范围. 【答案】p≥﹣1且p≠0;【解析】解:∵二次三项式px2+2x ﹣1在实数范围内可以因式分解, ∴px2+2x ﹣1=0有实数解, ∴△=4+4p≥0,且p≠0, 解得:p≥﹣1且p≠0.【变式1】二次三项式2342x x k −+,当k 取何值时,(1)在实数范围内能分解; (2)不能分解;(3)能分解成一个完全平方式,这个完全平方式是什么?【答案】(1)32≤k ;(2)32>k ;(3)32=k ,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【解析】(1)要使二次三项式2342x x k −+在实数范围内能分解,则方程23420x x k −+=要有实数根,则需要满足()021242≥⋅−−=∆k ,解得:32≤k ;(2)要使二次三项式2342x x k −+在实数范围内不能分解,则方程23420x x k −+=没有实数根,则需要满足()021242<⋅−−=∆k ,解得:32>k ;(3)要使二次三项式2342x x k −+在实数范围内能分解成一个完全平方式,则方程23420x x k −+=有两个相等实数根,则需要满足()021242=⋅−−=∆k ,解得:32=k .此时,完全平方式为2323⎪⎭⎫ ⎝⎛−x . 【总结】当一个二次三项不能在实数范围内分解因式时,则说明该二次三项式所对应的一元二次方程在实数范围内无解,反之,则说明该二次三项式所对应的一元二次方程有实数解. 【变式2】阅读题:分解因式:223x x −−. 解:原式22113x x =++−−,,,,,,,,()2214x x =++−,,,,,,,,()214x =+− ,,,,,,,,()()1212x x =+++− ,,,,,,,,()()31x x =+−.此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:2441a a +−.【答案】(2121a a ++.【分析】先配方,再根据平方差公式分解即可. 【详解】()(224412122121a a a a a +−=+−=+++【点睛】本题考查了配方法的应用,熟练掌握配方的方法是解答本题的关键.,此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.,【过关检测】一、单选题1.(2022秋·上海浦东新·八年级统考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( )【答案】C【分析】利用完全平方公式把A 分解,利用十字乘法把B 分解,再分别令229=0,y y −+21=0,y −再计算根的判别式,从而可判断C ,D ,从而可得答案. 【详解】解:()22442,x x x −+=−故A 不符合题意;()()22352=32,x xy y x y x y −−+−故B 不符合题意;令229=0,y y −+则4419320,=−⨯⨯=−<,所以229y y −+在实数范围内不能分解,故C 符合题意;令21=0,y −则()2=4241160,b ac −=−⨯⨯−=>,y ∴=,12y y ∴==,21=,y y y ⎛∴− ⎝⎭⎝⎭故D 不符合题意; 故选:C【点睛】本题考查的是因式分解,一元二次方程的解法,根的判别式,掌握利用公式法解一元二次方程,进而分解因式是解题的关键.2.(2023·上海·八年级假期作业)下列关于x 的二次三项式中,一定能在实数范围内因式分解的是( ) A .21x x −+ B .21x mx −+ C .21x mx −− D .22x xy y −+【答案】C【分析】根据一定能在实数范围内因式分解可知必须满足240b ac ∆=−≥,分别进行判断即可;【详解】21x x −+的241430b ac −=−=−<,故A 错误;21x mx −+的2244b ac m −=−,可能大于0,也可能小于0,故B 错误; 21x mx −−的22440b ac m −=+>,故C 正确;22x xy y −+的22224430b ac y y y −=−=−≤,故D 错误;故选C .【点睛】本题主要考查了能在实数范围内分解因式的条件,根据题意判断出判别式的符号,认真计算,熟练掌握任何数的平方都是非负数是解题的关键.3.(2021秋·上海宝山·八年级校考期中)下列关于x 的二次三项式在实数范围内不能够因式分解的是( ) A .x 2﹣3x +2 B .2x 2﹣2x +1C .2x 2﹣xy ﹣y 2D .x 2+3xy +y 2【答案】B【分析】利用十字乘法把选项A ,C 分解因式,可判断A ,C ,利用一元二次方程根的判别式计算的值,从而可判断B ,D ,从而可得答案. 【详解】解:()()23212,x x x x -+=--Q ,故A 不符合题意;令22210,x x -+=,()2=242140,\--´´=-<V ,所以2221x x −+在实数范围内不能够因式分解,故B 符合题意;()()2222,x xy y x y x y --=+-Q ,故C 不符合题意;令2230,x xy y ++=,()22234150,y y y \=-´´=³V ,所以223x xy y ++在实数范围内能够因式分解,故D 不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.【答案】C【分析】从题中可以看出多项式非一般方法可以解出,可以将式子变成关于x 的一元二次方程进行求解,之后再代入因式分解的形式中即可.【详解】解:令22230x xy y −−=,解得1x y =,2x y =,所以22232()()x xy y x y x y −−=,故选:C .【点睛】本题主要考查的是利用特殊方法进行因式分解,掌握一元二次方程的求解方法是解题的关键. 5.(2022秋·上海嘉定·八年级统考期中)在实数范围内不能分解因式的是( )【答案】C【分析】二次三项式可分解因式的前提是方程有实数根,根据方程根的判别式24b ac ∆=−与0的大小关系判断方程是否有实数根,即是否可分解因式. 【详解】A 、()()24421240∆=−−⨯⨯−=>,B 、(()2416360∆=−−⨯⨯−=>,C 、()2245112160∆=−−⨯⨯=−<,D 、()()22442360∆=−−⨯⨯−=>,只有C 选项∆小于0,,即C 选项不能分解因式,故选:C .【点睛】本题考查了二次三项式是否可因式分解,熟练运用根的判别式是解题的关键.【答案】B【分析】二次三项式能不能在实数范围内分解因式,关键是看判别式的范围.0∆≥,能分解因式;Δ0<,不能分解因式.【详解】解:A :24b ac ∆=−,()21413=−−⨯⨯,112=−,,110=−<.23x x −+不能在实数范围内分解因式.故A 错.B :24b ac ∆=−()21412m ⎛⎫=−−⨯⨯− ⎪⎝⎭220m =+>. 212x mx −−能在实数范围内分解因式.故B 正确.C :24b ac ∆=−,()2243−−=,,40−,223x −+不能在实数范围内分解因式.故C 错.D :24b ac ∆=−,()()21412m =−−⨯⨯−,18m =+,m 的值不定,18m +的符号不确定,故不能判断22x x m −−能否在实数范围内分解因式.故D 不一定.故答案为:B .【点睛】本题考查是在实数范围内分解因式,解题的关键是判别式的应用.二、填空题7.(2022秋·上海·八年级上海市民办立达中学校考阶段练习)在实数范围内因式分解:2331x x +−=__________.【答案】3x x ⎛ ⎭⎝⎝⎭ 【分析】求得方程23310x x +−=的两个根,即可求解.【详解】解:23310x x +−=3a =,3b =,1c =−,()249431210b ac ∆=−=−⨯⨯−=>,x =,136x −=,236x −=23333666633133x x x x x x ⎛⎛+−=−=+ −+− ⎝⎭⎝−+⎝⎭⎭⎝⎭,故答案为:3x x ⎛ ⎭⎝⎝⎭ 【点睛】此题考查了因式分解,涉及了公式法求解一元二次方程,解题的关键是正确求得一元二次方程的两个根.8.(2022秋·上海松江·八年级校考期中)在实数范围内因式分解:223105x xy y ++=________.【答案】)【分析】先把原式变形为()222522x xy y x +−+,可得到()2225x y x +−,再利用平方差公式进行因式分解,即可求解. 【详解】解:223105x xy y ++22251205x xy y x +−=+()222252x xy y x +−=+()2252x y x +−=))22x y ⎤⎦−+=)=.故答案为:)【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键.9.(2022秋·上海浦东新·八年级统考期中)在实数范围内分解因式:233x x−−=_____.【答案】322x x⎛−−⎝⎭⎝⎭【分析】令2330x x−−=,解得1x=,2x,把233x x−−写成因式分解的形式即可.【详解】解:令2330x x−−=,则1,3,3a b c==−=−,∵()()224341321b ac−=−−⨯⨯−=,∴x=,即1x=,2x=,则233xx x x⎛−−⎛⎝⎝=⎭⎭.故答案为:322x x⎛−−⎝⎭⎝⎭.【点睛】此题考考查了实数范围内的因式分解,正确求解一元二次方程是解题的关键.10.(2022秋·上海黄浦·八年级上海市黄浦大同初级中学校考期中)在实数范围内分解因式:231−−=xx_________________.【答案】3x x⎛⎝⎭⎝⎭【分析】先解方程2310x x−−=,求得方程的两个根,即可求解.【详解】解:2310x x−−=,∵3,,1,1a b c ==−=−,∴2411213b ac ∆=−=+=,∴x ,∴12x x =, ∴231−−=xx 3x x ⎛ ⎝⎭⎝⎭.故答案为:3x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了解一元二次方程,因式分解,正确的求得方程的两根是解题的关键.11.(2022秋·上海杨浦·八年级校考期中)在实数范围内分解因式237x x −−=_______.【答案】x x ⎛ ⎝⎭⎝⎭ 【分析】将237x x −−化成一个完全平方式与另一个数的差,再运用平方差公式分解因式.【详解】解:237x x −−22337324x x ⎛⎫=−+− ⎪⎝⎭ 233724x ⎛⎫=−− ⎪⎝⎭3322x x ⎛=−− ⎝⎭⎝⎭x x ⎛= ⎝⎭⎝⎭.故答案为:x x ⎛ ⎝⎭⎝⎭. 【点睛】本题主要考查实数范围内分解因式,其中涉及完全平方公式和平方差公式的运用. 12.(2022秋·上海·八年级上海市进才实验中学校考期中)若二次三项式234ax x ++在实数范围内能因式分解,则a 的最大整数解为______.【答案】1−【分析】由二次三项式234ax x ++在实数范围内可以因式分解,可得2340ax x ++=是一元二次方程且在实数范围内有解,再根据一元二次方程根的判别式列不等式即可得到答案.【详解】解:∵,二次三项式234ax x ++在实数范围内可以因式分解,∴2340ax x ++=是一元二次方程且在实数范围内有解,∴0a ≠,23440a ∆=−⨯⨯≥,解得,916a ≤且0a ≠,所以a 的最大整数解为1−.故答案为:1−.【点睛】本题主要考查了二次三项式在实数范围内分解因式,一元二次方程根的判别式,掌握“二次三项式在实数范围内可以因式分解的含义”是解本题的关键. 13.(2022秋·上海黄浦·八年级上海外国语大学附属大境初级中学校考期中)在实数范围内因式分解:223105x y xy ++=______.【答案】3xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为3105t t ++,令231050t t ++=,求解即可.【详解】解:令t xy =,则式子可化为23105t t ++,令231050t t ++=,3a =,10b =,5c =t ==即1t=,2t=∴22310533x y xy xy xy xy xy ⎛⎛++== ⎝⎭⎝⎭⎝⎭⎝⎭故答案为:3xy xy ⎛ ⎝⎭⎝⎭【点睛】此题考查了因式分解,涉及了一元二次方程的求解,解题的关键是正确求得一元二次方程的两个根. 14.(2022秋·上海宝山·八年级上海市泗塘中学校考期中)在实数范围内因式分解:22231xy xy −−=__________【答案】2xy xy ⎛ ⎝⎭⎝⎭ 【分析】令t xy =,则式子可化为2231t t −−,令22310t t −=−,求解即可.【详解】解:令t xy =,则式子可化为2231t t −−,令22310t t −=−则2a =,3b =−,1c =−t===则1t =,2t =222312x y xy xy xy ⎛−−=⎝⎭⎝⎭故答案为:xy xy ⎛ ⎝⎭⎝⎭ 【点睛】此题考查了因式分解,涉及了换元法和一元二次方程的求解,解题的关键是正确求得方程的根.15.(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)在实数范围内因式分解:2231x x +−=_____.【答案】2x x ⎛ ⎝⎭⎝⎭【分析】结合题意,当231022x x +−=时,通过求解一元二次方程,得 231022x x x x ⎛+−==⎝⎭⎝⎭,结合22312x x x x ⎛+−= ⎝⎭⎝⎭,即可得到 答案.【详解】解:2231231222x x x x ⎛⎫+−=+− ⎪⎝⎭, 当231022x x +−=时,得x ==,∴231022x x x x ⎛+−== ⎝⎭⎝⎭,∴23122x x x x ⎛+−= ⎝⎭⎝⎭,∴22312x x x x ⎛+−= ⎝⎭⎝⎭.故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了因式分解和一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.16.(2022秋·上海金山·八年级校联考期末)在实数范围内分解因式:224x x −−=__.【答案】(11x x −−【详解】解:原式,()2215x x =−+−22(1)x =−−(11x x =−−故答案为:(11x x −+−【点睛】本题考查了因式分解,利用完全平方公式得出平方差公式是解题关键.17.(2022秋·上海·八年级校考期中)在实数范围内分解因式:2243x x −−___________.【答案】2x x ⎛ ⎝⎭⎝⎭ 【分析】根据公式法解22430x x −−=,得出22x =,再根据因式分解即可得出答案.【详解】解:由22430x x −−=,得:22x =,原式232222x x x x ⎛⎛⎫=−−= ⎪ ⎝⎭⎝⎭⎝⎭,故答案为:2x x ⎛ ⎝⎭⎝⎭. 【点睛】本题考查了实数范围内分解因式,准确熟练地进行计算是解题的关键.18.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y −−=_____________.【答案】2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【分析】先提取2,再将括号里面的式子配方,最后用平方差公式因式分解即可.【详解】解:2226x xy y −−221232x xy y ⎛⎫ ⎪⎝=−⎭− 222291923424x xy y y y ⎛⎫− ⎪⎝=−−⎭+ 22311224x y y ⎡⎤⎛⎫−⎢=⎥ ⎪⎝⎭⎢−⎥⎣⎦22322x y y ⎫=−⎪⎪⎝⎭⎡⎤⎛⎫⎢⎥− ⎪⎢⎥⎝⎭⎣⎦33222x y y x y y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭2x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:2x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【点睛】本题考查了利用公式法因式分解以及实数的概念,主要涉及完全平方公式以及平方差公式,熟记完全平方公式以及平方差公式是解题关键.三、解答题19.(2022秋·上海·八年级专题练习)在实数范围内分解因式:(1)422772x x +−;(2)4241036y y −−+.【答案】(1)())2833x +−+ (2)()(2229y y y −+【分析】(1)先利用十字相乘法分解,然后利用平方差公式法分解因式求解即可;(2)先提公因式,然后利用十字相乘法分解,然后利用平方差公式法分解因式求解即可.(1)原式()()22829x x =+−())2833x =+−+(2)原式为()4222518y y =−+−()()222292y y =−+−()(2=22+9y y y −−【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.20.(2021秋·上海·八年级校考阶段练习)在实数范围内因式分解:22327x xy y −−【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】先提公因式,再进行配方,运用平方差公式进行因式分解.【详解】解:22327x xy y −−22273()33x xy y =−− 222221173()3993x xy y y y =−+−−221223[()]33x y y =−−113()()33x y y x y y =−−3()()x y x y =. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解决本题的关键.21.(2022秋·八年级统考期中)在实数范围内因式分解:22236x xy y −−+【答案】2x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】求出关于x 的一元二次方程222360x xy y −−+=的解即可得出答案.【详解】解:解关于x 的一元二次方程222360x xy y −−+=, 得:x ==, ∴1x y=,2x y=,∴222362x xy y x y x y ⎛⎫⎛⎫−−+=− ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题考查实数范围内分解因式,掌握“()200ax bx c a ++=≠的两个根分别为1x 、2x ,则()()212++=−−ax bx c a x x x x ”是正确解答的关键.22.(2022秋·上海青浦·八年级校考期中)在实数范围内因式分解:22323x xy y−−.【答案】3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【详解】解:22323x xy y −−=2223()3x xy y −−=22221103()399x xy y y −+−221103()39x y y ⎡⎤=−−⎢⎥⎣⎦11333x y y x y ⎛⎫⎛⎫=−− ⎪⎪ ⎪⎪⎝⎭⎝⎭3x y x y ⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】本题主要考查因式分解,熟练掌握用配方法进行因式分解是解决本题的关键.23.(2022秋·上海普陀·八年级校考期中)在实数范围内因式分解:223105x y xy ++.【答案】xy xy ⎡⎡⎣⎣.【分析】把223x y 化为222252x y x y −,则利用完全平方公式得到原式()222512xy x y =+−,然后利用平方差公式分解因式.【详解】解:原式222251052x y xy x y =++− ()22225212x y xy x y =++−()222512xy x y =+−))11xy xy ⎤⎤=++⎦⎦xy xy ⎡⎡=⎣⎣故答案为:xy xy ⎡⎡⎣⎣ 【点睛】本题考查了实数范围内分解因式:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.通过补项配成完全平方公式是解决问题的关键. 24.(2022秋·上海·八年级上海市黄浦大同初级中学校考阶段练习)在实数范围内因式分解:2222x xy y −++【答案】24x y x y ⎛⎫⎛⎫− ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】列出关于x 的一元二次方程,求得方程的根,再根据方程的根写出因式分解的结果即可【详解】解:∵关于x 的一元二次方程为:22022x xy y ++=−,∵()22224422170b ac y y y ∆=−=−⨯−⨯=≥,∴x y ==, ∴1x y =,2x y=,∴22222x xy y x y x y ⎛⎫⎛⎫=− ⎪⎪ ⎪⎪⎝⎭⎝+⎭−+【点睛】本题考查了实数范围内因式分解,掌握“若一元二次方程()200ax bx c a ++=≠的两个实数根为1x ,2x ,则()()212++=−−ax bx c a x x x x ”是解决问题的关键. 25.(2022秋·上海·八年级专题练习)在实数范围内因式分解(1)2442y y +−;(2)2235x xy y −−.【答案】(1)(2121y y ++;(2)3x x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭【分析】(1)先拆项,再根据完全平方公式变形,最后根据平方差公式分解即可;(2)首先解方程得出方程的根进而分解因式.【详解】解:(1)2442y y +−=24413y y ++−=()2213y +−=(2121y y ++;(2)令2235x xy y −−=0, ()()22254337y y y =−−⨯⨯−=△,∴x =,∴x 或x =,∴2235x xy y −−=3x y x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.。
因式分解题型提公因式法、公式法、分组分解法、十字相乘法

1.因式分解概念:把一个多项式化成几个整式的 的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算。
2.常用的因式分解方法:(1)提公因式法:对于ma mb mc ++, 叫做公因式, 叫做提公因式法。
①多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
②公因式的构成:系数:各项系数的 ;字母:各项都含有的相同字母; 指数:相同字母的最低次幂。
(2)公式法:①常用公式平方差: 完全平方:立方和:3322a b (a+b)(a -ab+b )+= 立方差:②常见的两个二项式幂的变号规律: 22()()n n a b b a -=-;2121()()n n a b b a ---=--.(n 为正整数)(3)十字相乘法①二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成②二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。
(4)分组分解法①定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式或利用公式法,即可达到分解因式的目的。
例如22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。
②原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解
一、因式分解的概念:
因式分解(分解因式):把一个多项式化为几个整式()的形式。
二、因式分解的方法:
1、提公因式法:
(1)公因式的构成一般情况下有三部分:
①系数一各项系数的最大公约数;
②字母——各项含有的相同字母;
③指数——相同字母的最低次数;
(2)提公因式法的步骤:
第一步是找出公因式;
第二步是提取公因式并确定另一因式。
(3)注意:①提取完公因式后,看另一个因式的项数与原多项式的项数是否一致,可用来检验是否漏项;
②提取公因式后各因式应该是最简形式,即分解到“底”;
③如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。
2、公式法:
运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式: a2-b2=
②完全平方公式: a2+2ab+b2=
a2-2ab+b2=
3、十字相乘法:x2+(a+b)x+ab=
特点:(1)二次项系数是1;
(2)常数项是两个数的乘积;
(3)一次项系数是常数项的两因数的和。
一、按知识点:
题型一: 概念的理解:
例1、下列由左到右的变形,哪些是因式分解?哪些不是?请说出理由。
(1)、()ay ax y x a +=+ (2)、()()()112122
2
-+++=-++y y y x x y xy x
(3)、)3)(3(92
-+=-x x a a ax (4)、2
22)1(12x
x x x +=+
+ (5)、a a a a ••=223
例3、下列各式中能用平方差公式分解因式的是( ) ①2
2
b
a -- ②2
242b
a - ③42
2--y x ④192
2+-b a ⑤
22)()(x y y x -+- ⑥14-x
题型五:十字相乘法:
例5、(1) 652
++x x (2) 672
+-x x (3)24142
++x x
(4)36152+-a a (5)542-+x x (6)22
-+x x
技巧四: 展开变换
例:a(a+2)+b(b+2)+2ab 分解因式x(x-1)-y(y-1)
技巧五:添项变换
例:分解因式x2+4x-12 分解因式x2-6x+8 分解因式a4+4
2
c
应用扩展:
因式分解在解方程与等式变换中的应用:
解方程0)2753)(3555()2653)(3555(=++-++x x x x
1.2.3.4.5.6.7.8.
3、若关于x 的多项式2
6x px --含有因式3x -,则实数p 的值为?
4、已知多项式2
ax bx c ++因式分解的结果是()()3143x x +-,求a+b+c 的值
方法总结:
题型三:数学中看错问题
例:两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成
()()219x x --,而另一位同学因看错了常数项而分解成()()224x x --,求原多项式。
变式:分解因式2
x ax b ++时,一位同学因看错了a 的值,分解的结果是()()16x x -+,
乙看错了b 而分解成()()21x x -+,求a+b 的值。
题型四:利用因式分解简便计算
(1)2 0042-4×2 004; (2)39×37-13×34
(3)2015+20152-2015×2016 (4)121×0.13+12.1×0.9-12×1.21
(5)20152014
20142013
3333
-- (6)100019999⨯
(7)4322222n n n ++-⨯⨯ (8) 332201622016-20142016+2016-2017
-⨯
(9)2222111111112342005⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
-
--- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
211-2004
题型五:利用因式分解化简求值
1
2
3
4、 已知2
(1)(2)1a a a b +-+=,求22
4424a ab b a b -+-+的值。
5、已知:x 3+x 2+x+1=0,求1+x+x 2+x 3+x 4+x 5+…+x 2007的值
6、 已知:,求(1)2
21
x x
+
(2)的值。
题型六:与整除有关的问题 1、求证: 2016
201520143
43103-⨯+⨯能被7整除。
(同底数)
2、 求证:791381279--能被45整除。
(不同底数)
变式:求证:712255-能被250整除
1、 设n 为整数,求证:(2n+1)2-25能被4整除。
2、 求证:对于任意正整数n, 2
23232n n n n ++-+-一定是10的倍数。
思考1、两个连续奇数的平方差能被8整除吗?为什么
思考2、3322-能被11至20直接的两个数整除,求这两个数
题型七:与三角形有关的问题 形状类问题:完全平方公式 1、已知
是
的三条边,且满足
,试判断
的形状。
变式:已知
是
的三条边,且满足2222
()3()a b c a b c ++=++,试判断
的形状。
若上述满足条件改为:2
2
22b ab c ac +=+
3、若一个三角形的两边长b a ,满足052422=+--+b a b a ,求第三边c 的取值范围.
符号类:平方差 2、 若
是三角形的三条边,求证:①
②2
2
2
2a b c ac -+-的符号
变式:已知a ,b ,c 是三角形的三条边,那么代数式2
2
2
2a ab b c -+-的值是( )
A. 小于零
B. 等于零
C. 大于零
D. 不能确定
题型八:利用完全平方公式证明非负性
1
1 2
4 你发现了什么规律?请用含有n (n 为正整数)的等式表示出来并说明期中的道。