Primf及Krusf最小成树及matlab源代码

合集下载

matlab数学建模程序代码

matlab数学建模程序代码

matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。

通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。

在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。

二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。

2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。

3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。

4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。

5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。

6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。

三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。

2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。

3.优化问题:使用`optimize`函数求解优化问题。

4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。

5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。

matlab随机森林代码解释

matlab随机森林代码解释

Title: Explaining MATLAB Random Forest Code随机森林算法(Random Forest)是一种强大的机器学习方法,它在数据挖掘和预测分析中被广泛应用。

MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数,可以轻松实现随机森林算法。

本文将对MATLAB中随机森林算法的代码进行解释,帮助读者全面理解该算法的实现过程和原理。

1. 基本概念在开始解释MATLAB中的随机森林代码之前,我们先来回顾一下随机森林算法的基本概念。

随机森林是通过构建多个决策树并将它们组合来实现分类或回归分析的一种集成学习方法。

每棵决策树在随机选择的特征子集上进行训练,最终通过投票或取平均值的方式来进行预测。

这样的集成学习方法能够降低过拟合的风险,提高预测精度。

2. MATLAB中的随机森林代码在MATLAB中,随机森林算法的代码可以通过集成学习工具箱(Statistics and Machine Learning Toolbox)来实现。

我们需要准备好训练数据和测试数据,然后通过调用TreeBagger类来构建随机森林模型。

接下来,我们可以使用predict方法对新的数据进行预测。

在具体的代码实现过程中,我们需要传入一些参数,比如决策树的数量、要选择的特征子集的大小等。

这些参数可以根据实际情况进行调整,以获得最佳的模型性能。

另外,通过使用交叉验证等方法,可以对模型进行评估和优化。

3. 代码解释让我们来看一段MATLAB中的随机森林代码,以更好地理解其实现过程:```matlab% 准备训练数据和测试数据load fisheririsX = meas;Y = species;rng(1); % 设置随机种子% 构建随机森林模型numTrees = 100;Mdl = TreeBagger(numTrees, X, Y, 'Method', 'classification','OOBPrediction', 'on');% 预测新数据Xtest = [5, 3, 1, 0.5];[label, score] = predict(Mdl, Xtest);disp(['Predicted species: ' label{1}]);```在上面的代码中,我们首先加载了鸢尾花数据集,并准备好了训练数据X和标签Y。

matlab图论程序算法大全

matlab图论程序算法大全

图论算法matlab实现求最小费用最大流算法的 MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s( i)=j;pd=0;end;end;endif(pd)break;end;end %求最短路的Ford 算法结束if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif(pd)break;end%如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用f %显示最小费用最大流图 6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束__Kruskal 避圈法:Kruskal 避圈法的MATLAB 程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x 记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end %排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x 中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T 中所有的元素赋值为0q=0; %记录加入到树T 中的边数for(s=1:k)if(q==n)break;end %获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if(A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T 中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT 中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end %寻找TT 中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end %砍掉TT 中的树枝if(pd)break;end;end %已砍掉了TT 中所有的树枝pd=0; %判断TT 中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;end if(pd)T(i,j)=0;T(j,i)=0; %假如TT 中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束用Warshall-Floyd 算法求任意两点间的最短路.n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end %赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j )=D(i,k)+D(k,j); %更新dijR(i,j)=k;end;end;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end %存在一条含有顶点vi 的负回路if(pd)break;end %存在一条负回路, 终止程序end %程序结束利用 Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流for(i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图 6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs 标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj 为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi 为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt 得到标号或者无法标号, 终止标号过程if(pd)break;end %vt 未得到标号, f 已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt 表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end %后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end %当t 的标号为vs 时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end %计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束图论程序大全程序一:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f)if f==0m=sum(sum(F))/2;n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);W(a(1),a(2))=1;W(a(2),a(1))=1;endelsefprint('Please imput the right value of f');endW;程序二:可达矩阵算法function P=dgraf(A) n=size(A,1);P=A;for i=2:nP=P+A^i;endP(P~=0)=1;P;程序三:有向图关联矩阵和邻接矩阵互换算法function W=mattransf(F,f)if f==0m=sum(sum(F));n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=-1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);if F(a(1),i)==1W(a(1),a(2))=1;elseW(a(2),a(1))=1;endendelsefprint('Please imput the right value of f');endW;第二讲:最短路问题程序一:Dijkstra算法(计算两点间的最短路)function [l,z]=Dijkstra(W)n = size (W,1); for i = 1 :nl(i)=W(1,i);z(i)=0;endi=1;while i<=nfor j =1 :nif l(i)>l(j)+W(j,i)l(i)=l(j)+W(j,i);z(i)=j-1;if j<ii=j-1;endendendi=i+1;end程序二:floyd算法(计算任意两点间的最短距离)function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendr;for k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j)d(i,j)=d(i,k)+d(k,j);r(i,j)=r(i,k);endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short(W,k1,k2)n=length(W);U=W;m=1;while m<=nfor i=1:nfor j=1:nif U(i,j)>U(i,m)+U(m,j)U(i,j)=U(i,m)+U(m,j);endendendm=m+1;endu=U(k1,k2);P1=zeros(1,n);k=1;P1(k)=k2;V=ones(1,n)*inf;kk=k2;while kk~=k1for i=1:nV(1,i)=U(k1,kk)-W(i,kk);if V(1,i)==U(k1,i)P1(k+1)=i;kk=i;k=k+1;endendendk=1;wrow=find(P1~=0);for j=length(wrow):-1:1P(k)=P1(wrow(j));k=k+1;endP;程序四、n1short.m(计算某点到其它所有点的最短距离)function[Pm D]=n1short(W,k)n=size(W,1);D=zeros(1,n);for i=1:n[P d]=n2short(W,k,i);Pm{i}=P;D(i)=d;end程序五:pass2short.m(计算经过某两点的最短距离)function [P d]=pass2short(W,k1,k2,t1,t2)[p1 d1]=n2short(W,k1,t1);[p2 d2]=n2short(W,t1,t2);[p3 d3]=n2short(W,t2,k2);dt1=d1+d2+d3;[p4 d4]=n2short(W,k1,t2);[p5 d5]=n2short(W,t2,t1);[p6 d6]=n2short(W,t1,k2);dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2(2:length(p2)) p3(2:length(p3))];elsed=dt1;p=[p4 p5(2:length(p5)) p6(2:length(p6))];endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf(d,flag)if nargin==1n=size(d,2);m=sum(sum(d~=0))/2;b=zeros(3,m);k=1;for i=1:nfor j=(i+1):nif d(i,j)~=0b(1,k)=i;b(2,k)=j;b(3,k)=d(i,j);k=k+1;endendendelseb=d;endn=max(max(b(1:2,:)));m=size(b,2);[B,i]=sortrows(b',3);B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t(B(1,i))~=t(B(2,i))T(1:2,k)=B(1:2,i);c=c+B(3,i);k=k+1;tmin=min(t(B(1,i)),t(B(2,i)));tmax=max(t(B(1,i)),t(B(2,i)));for j=1:nif t(j)==tmaxt(j)=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf(a)l=length(a);a(a==0)=inf;k=1:l;listV(k)=0;listV(1)=1;e=1;while (e<l)min=inf;for i=1:lif listV(i)==1for j=1:lif listV(j)==0 & min>a(i,j)min=a(i,j);b=a(i,j);s=i;d=j;endendendendlistV(d)=1;distance(e)=b;source(e)=s;destination(e)=d;e=e+1;endT=[source;destination]; for g=1:e-1c(g)=a(T(1,g),T(2,g));endc;另外两种程序最小生成树程序1(prim 算法构造最小生成树)a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;...inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;...inf inf 45 42 inf inf inf];result=[];p=1;tb=2:length(a);while length(result)~=length(a)-1temp=a(p,tb);temp=temp(:);d=min(temp);[jb,kb]=find(a(p,tb)==d);j=p(jb(1));k=tb(kb(1));result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];endresult最小生成树程序2(Kruskal 算法构造最小生成树)clc;clear;a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40;a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70;[i,j,b]=find(a);data=[i';j';b'];index=data(1:2,:);loop=max(size(a))-1;result=[];while length(result)<looptemp=min(data(3,:));flag=find(data(3,:)==temp);flag=flag(1);v1=data(1,flag);v2=data(2,flag);if index(1,flag)~=index(2,flag)result=[result,data(:,flag)];endindex(find(index==v2))=v1;data(:,flag)=[];index(:,flag)=[];endresult第四讲:Euler图和Hamilton图程序一:Fleury算法(在一个Euler图中找出Euler环游)注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1(d)%注:必须保证是Euler环游,否则输出T=0,c=0 n=length(d);b=d;b(b==inf)=0;b(b~=0)=1;m=0;a=sum(b);eds=sum(a)/2;ed=zeros(2,eds);vexs=zeros(1,eds+1);matr=b;for i=1:nif mod(a(i),2)==1m=m+1;endendif m~=0fprintf('there is not exit Euler path.\n')T=0;c=0;endif m==0vet=1;flag=0;t1=find(matr(vet,:)==1);for ii=1:length(t1)ed(:,1)=[vet,t1(ii)];vexs(1,1)=vet;vexs(1,2)=t1(ii);matr(vexs(1,2),vexs(1,1))=0;flagg=1;tem=1;while flagg[flagg ed]=edf(matr,eds,vexs,ed,tem); tem=tem+1;if ed(1,eds)~=0 & ed(2,eds)~=0T=ed;T(2,eds)=1;c=0;for g=1:edsc=c+d(T(1,g),T(2,g));endflagg=0;break;endendendendfunction[flag ed]=edf(matr,eds,vexs,ed,tem)flag=1;for i=2:eds[dvex f]=flecvexf(matr,i,vexs,eds,ed,tem);if f==1flag=0;break;endif dvex~=0ed(:,i)=[vexs(1,i) dvex];vexs(1,i+1)=dvex;matr(vexs(1,i+1),vexs(1,i))=0;elsebreak;endendfunction [dvex f]=flecvexf(matr,i,vexs,eds,ed,temp) f=0;edd=find(matr(vexs(1,i),:)==1);dvex=0;dvex1=[];ded=[];if length(edd)==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length(edd)m1=find(vexs==edd(kk));if sum(m1)==0dvex1(dd)=edd(kk);dd=dd+1;dd1=1;elsekkk=kkk+1;endendif kkk==length(edd)tem=vexs(1,i)*ones(1,kkk);edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1(1:2,l1)==ed(1:2,l2)lt=lt+1;endendif lt==0ded(ddd)=edd(l1); ddd=ddd+1;endendendif temp<=length(dvex1)dvex=dvex1(temp);elseif temp>length(dvex1) & temp<=length(ded)dvex=ded(temp);elsef=1;endend程序二:Hamilton改良圈算法(找出比较好的Hamilton路)function [C d1]= hamiltonglf(v)%d表示权值矩阵%C表示算法最终找到的Hamilton圈。

最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

最⼩⽣成树---普⾥姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)最⼩⽣成树的性质:MST性质(假设N=(V,{E})是⼀个连通⽹,U是顶点集V的⼀个⾮空⼦集,如果(u,v)是⼀条具有最⼩权值的边,其中u属于U,v属于V-U,则必定存在⼀颗包含边(u,v)的最⼩⽣成树)普⾥姆算法(Prim算法)思路:以点为⽬标构建最⼩⽣成树1.将初始点顶点u加⼊U中,初始化集合V-U中各顶点到初始顶点u的权值;2.根据最⼩⽣成树的定义:从n个顶点中,找出 n - 1条连线,使得各边权值最⼩。

循环n-1次如下操作:(1)从数组lowcost[k]中找到vk到集合U的最⼩权值边,并从数组arjvex[k] = j中找到该边在集合U中的顶点下标(2)打印此边,并将vk加⼊U中。

(3)通过查找邻接矩阵Vk⾏的各个权值,即vk点到V-U中各顶点的权值,与lowcost的对应值进⾏⽐较,若更⼩则更新lowcost,并将k存⼊arjvex数组中以下图为例#include<bits/stdc++.h>using namespace std;#define MAXVEX 100#define INF 65535typedef char VertexType;typedef int EdgeType;typedef struct {VertexType vexs[MAXVEX];EdgeType arc[MAXVEX][MAXVEX];int numVertexes, numEdges;}MGraph;void CreateMGraph(MGraph *G) {int m, n, w; //vm-vn的权重wscanf("%d %d", &G->numVertexes, &G->numEdges);for(int i = 0; i < G->numVertexes; i++) {getchar();scanf("%c", &G->vexs[i]);}for(int i = 0; i < G->numVertexes; i++) {for(int j = 0; j < G->numVertexes; j++) {if(i == j) G->arc[i][j] = 0;else G->arc[i][j] = INF;}}for(int k = 0; k < G->numEdges; k++) {scanf("%d %d %d", &m, &n, &w);G->arc[m][n] = w;G->arc[n][m] = G->arc[m][n];}}void MiniSpanTree_Prim(MGraph G) {int min, j, k;int arjvex[MAXVEX]; //最⼩边在 U集合中的那个顶点的下标int lowcost[MAXVEX]; // 最⼩边上的权值//初始化,从点 V0开始找最⼩⽣成树Tarjvex[0] = 0; //arjvex[i] = j表⽰ V-U中集合中的 Vi点的最⼩边在U集合中的点为 Vjlowcost[0] = 0; //lowcost[i] = 0表⽰将点Vi纳⼊集合 U ,lowcost[i] = w表⽰ V-U中 Vi点到 U的最⼩权值for(int i = 1; i < G.numVertexes; i++) {lowcost[i] = G.arc[0][i];arjvex[i] = 0;}//根据最⼩⽣成树的定义:从n个顶点中,找出 n - 1条连线,使得各边权值最⼩for(int i = 1; i < G.numVertexes; i++) {min = INF, j = 1, k = 0;//寻找 V-U到 U的最⼩权值minfor(j; j < G.numVertexes; j++) {// lowcost[j] != 0保证顶点在 V-U中,⽤k记录此时的最⼩权值边在 V-U中顶点的下标if(lowcost[j] != 0 && lowcost[j] < min) {min = lowcost[j];k = j;}}}printf("V[%d]-V[%d] weight = %d\n", arjvex[k], k, min);lowcost[k] = 0; //表⽰将Vk纳⼊ U//查找邻接矩阵Vk⾏的各个权值,与lowcost的对应值进⾏⽐较,若更⼩则更新lowcost,并将k存⼊arjvex数组中for(int i = 1; i < G.numVertexes; i++) {if(lowcost[i] != 0 && G.arc[k][i] < lowcost[i]) {lowcost[i] = G.arc[k][i];arjvex[i] = k;}}}int main() {MGraph *G = (MGraph *)malloc(sizeof(MGraph));CreateMGraph(G);MiniSpanTree_Prim(*G);}/*input:4 5abcd0 1 20 2 20 3 71 2 42 3 8output:V[0]-V[1] weight = 2V[0]-V[2] weight = 2V[0]-V[3] weight = 7最⼩总权值: 11*/时间复杂度O(n^2)克鲁斯卡尔算法(Kruskal算法)思路:以边为⽬标进⾏构建最⼩⽣成树在边集中依次寻找最⼩权值边,若构建是不形成环路(利⽤parent数组记录各点的连通分量),则将其添加到最⼩⽣成树中。

matlab解决小问题例子和代码

matlab解决小问题例子和代码

MATLAB是一种用于数学计算、数据可视化和编程的高级技术计算语言和交互式环境。

它是许多工程和科学领域中的首选工具之一,能够帮助用户快速解决各种小问题。

本文将通过例子和代码,介绍MATLAB是如何解决小问题的。

1. 读取和绘制数据假设我们有一组实验数据,保存在一个名为"data.csv"的文件中。

我们可以使用MATLAB的csvread函数读取数据,然后使用plot函数绘制图形,如下所示:```matlabdata = csvread('data.csv'); % 读取数据plot(data(:,1), data(:,2)); % 绘制数据xlabel('x轴'); % 添加x轴标签ylabel('y轴'); % 添加y轴标签title('数据可视化'); % 添加标题```2. 拟合曲线现在我们想对这组数据进行曲线拟合,以便更好地理解数据的特征。

我们可以使用MATLAB的polyfit函数来进行多项式拟合,然后使用polyval函数绘制拟合曲线,如下所示:```matlabp = polyfit(data(:,1), data(:,2), 2); % 二次多项式拟合y_fit = polyval(p, data(:,1)); % 计算拟合曲线的值plot(data(:,1), data(:,2)); % 绘制原始数据hold on;plot(data(:,1), y_fit, 'r--'); % 绘制拟合曲线xlabel('x轴'); % 添加x轴标签ylabel('y轴'); % 添加y轴标签title('数据拟合'); % 添加标题legend('原始数据', '拟合曲线'); % 添加图例```3. 解方程假设我们需要解一个简单的方程,例如x^2-5x+6=0。

matlab 开源代码

matlab 开源代码

MATLAB 是一款由 MathWorks 公司出品的商业软件,它并不直接提供开源代码。

然而,MATLAB 的部分组件,如MATLAB 工具箱(Toolboxes),是开源的,可以供用户进行二次开发和使用。

如果你想要查找 MATLAB 的开源替代品,以下是一些可能的选项:
1.GNU Octave:GNU Octave 是MATLAB 的一个开源替代品,它几乎完
全兼容 MATLAB 的语法。

虽然它的开发速度可能没有 MATLAB 快,但它是一个完全免费的选择。

2.Python:Python 是一种广泛使用的编程语言,具有强大的科学计算和数
据处理能力。

通过使用 NumPy、SciPy 和 Matplotlib 等库,Python 可以实现与 MATLAB 类似的功能。

3.Julia:Julia 是一种为科学计算设计的编程语言,它的性能可以与C++ 和
Python 相媲美。

Julia 的一个主要优点是它的语法非常简洁,可以快速编写高效的代码。

4.R:R 是一种用于统计计算和图形制作的编程语言。

虽然 R 不像 Python 和
Julia 那样广泛用于机器学习,但它在数据分析领域仍然非常流行。

以上只是一些可能的选项。

选择哪种工具取决于你的具体需求和偏好。

Matlab源程序代码

Matlab源程序代码

Matlab源程序代码正弦波的源程序:(一),用到的函数1,f2t函数function x=f2t(X)global dt df t f T N%x=f2t(X)%x为时域的取样值矢量%X为x的傅氏变换%X与x长度相同并为2的整幂%本函数需要一个全局变量dt(时域取样间隔) X=[X(N/2+1:N),X(1:N/2)];x=ifft(X)/dt;end2,t2f函数。

function X=t2f(x)global dt df N t f T%X=t2f(x)%x为时域的取样值矢量%X为x的傅氏变换%X与x长度相同,并为2的整幂。

%本函数需要一个全局变量dt(时域取样间隔) H=fft(x);X=[H(N/2+1:N),H(1:N/2)]*dt;end(二),主程序。

1,%(1)绘出正弦信号波形及频谱global dt df t f Nclose allk=input('取样点数=2^k, k取10左右');if isempty(k), k=10; endf0=input('f0=取1(kz)左右');if isempty(f0), f0=1; endN=2^k;dt=0.01; %msdf=1/(N*dt); %KHzT=N*dt; %截短时间Bs=N*df/2; %系统带宽f=[-Bs+df/2:df:Bs]; %频域横坐标t=[-T/2+dt/2:dt:T/2]; %时域横坐标s=sin(2*pi*f0*t); %输入的正弦信号S=t2f(s); %S是s的傅氏变换a=f2t(S); %a是S的傅氏反变换a=real(a);as=abs(S);subplot(2,1,1) %输出的频谱plot(f,as,'b');gridaxis([-2*f0,+2*f0,min(as),max(as)]) xlabel('f (KHz)') ylabel('|S(f)| (V/KHz)') %figure(2) subplot(2,1,2) plot(t,a,'black') %输出信号波形画图gridaxis([-2/f0,+2/f0,-1.5,1.5])xlabel('t(ms)')ylabel('a(t)(V)')gtext('频谱图')最佳基带系统的源程序:(一),用到的函数f2t函数和t2f函数。

matlab决策树案例与代码

matlab决策树案例与代码

matlab决策树案例与代码决策树是一种常用的机器学习算法,它通过对数据集进行分析和划分,构建一个树形结构的模型,用于预测和分类。

在matlab中,我们可以使用自带的Classification Learner App来构建和训练决策树模型,也可以使用代码来实现。

下面我们以一个简单的案例来介绍如何使用matlab构建决策树模型。

假设我们有一个数据集,包含了一些水果的特征和它们的分类(苹果、橙子、香蕉)。

我们希望通过这些特征来预测水果的分类。

首先,我们需要加载数据集。

假设我们的数据集保存在一个名为"fruits.csv"的文件中,包含了三列数据:水果的颜色、形状和分类。

我们可以使用matlab的readtable函数来读取数据集。

```matlabdata = readtable('fruits.csv');```接下来,我们需要将数据集划分为训练集和测试集。

训练集用于构建决策树模型,测试集用于评估模型的性能。

我们可以使用matlab的cvpartition函数来实现。

```matlabcv = cvpartition(data.Class,'Holdout',0.3);trainData = data(training(cv),:);testData = data(test(cv),:);```然后,我们可以使用matlab的fitctree函数来构建决策树模型。

fitctree函数的输入参数包括训练集和特征列名。

```matlabtree = fitctree(trainData,'Class');```接下来,我们可以使用matlab的view函数来可视化决策树模型。

```matlabview(tree,'Mode','graph');```最后,我们可以使用matlab的predict函数来对测试集进行预测,并计算模型的准确率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11
2013年8月21日11 Nhomakorabea
例 、一个乡有7个自然村,其间道路如图 所示,要以村为中心建有线广播网络,如 要求沿道路架设广播线,应如何架设?
a
18
19 14 16 12
b
7
8
5
c
3
e
f
g
27
21
d
12
数学建模-图论
四、最小生成树问题及其算法
Prim 算法 Matlab 程序如下:
function T =Primf(a) l=length(a); a(a==0)=inf; k=1:l; listV(k)=0; listV(1)=1; e=1; while(e<l) min=inf; for i=1:l if listV(i)==1 for j=1:l if listV(j)==0 & min>a(i,j) min=a(i,j); b=a(i,j); s=i; d=j; end end end end
10
数学建模-图论
四、最小生成树问题及其算法
求最小生成树的 Prim 算法的思想如下:
从连通图 G=<V,E>的某一顶点 v 出发,选择与其关联的具有最小权的边 (u0,v),将其顶点加入到生成树的顶点集合 U 中。以后每一步从一个顶点 在 U 中而另一顶点不在 U 中的各条边中选择权值最小的边(u,v) ,把它的 顶点加入到集合 U 中,如此下去,直到图中的所有顶点都加入到生成树顶点 集合 U 中为止,这时得到一颗最小生成树。
0 2 2 0 4 4 0 8 A 8 0 4 5 3 7 8 5 3 7 8 0 3 7 3 0 6 7 6 0 4
运行结果如下:
T= 1 2 c= 2 1 6 4 6 3 3 6 5 3 6 7 6 3 4 8
6
数学建模-图论
四、最小生成树问题及其算法 例:利用Kruskal算法求出如图G的最小生成树:
v2
64
v1
68 68 61 65 54 60 45
v4
7
v3
50
50
v5
数学建模-图论
四、最小生成树问题及其算法
Kruskal 算法 Matlab 程序如下:
function T=Krusf(d,flag) if nargin==1 n=size(d,2); m=sum(sum(d~=0))/2; b=zeros(3,m); k=1; for i=1:n for j=(i+1):n if d(i.j)~=0 b(1,k)=i; b(2,k)=j; b(3,k)=d(i.j); k=k+1; end end end else b=d; end n=max(max(b(1:2,:))); m=size(b,2); [B,i]=sortrows(b',3); B=B';
8
2013年8月21日
8
数学建模-图论
四、最小生成树问题及其算法
c=0; T=[]; k=1; t=1:n; for i=1:m if t(B(1,i))~=t(B(2,i)) T(1:2,k)=B(1:2,i); c=c+B(3,i); k=k+1; tmin=min(t(B(1,i)),t(B(2,i))); tmax=max(t(B(1,i)),t(B(2,i))); for j=1:n if t(j)==tmax t(j)=tmin; end end end if k==n break; end end T c
五 树与生成树
树是一种特殊的图, 它是图论中重要的概念之一, 它有 着广泛的应用.在计算机科学中有如判定树、语法树、分 类树、搜索树、目录树等等. 一.树 (Tree) 1.树的定义:一个连通无回路的 (a) 无向图T,称之为树. 如(a) 2.叶结点:度数为1的结点, 称为叶结点. (b) 3.分支结点(内结点):度数大于1的结点. 4.森林:一个无向图的每个连通分支都是树.如(b)
(1) 将 图G 的 边 按 权 非 减 次 序 排 成 e i1 , e i2 ,, e i | E |, 列 取 E1 ,l (v j ) j ( j 1,2,, | V |) ,k 1。
( 2) 边 e ik 连 结 的 二 点 、v 的 标 号l ( u)、l (v ) 是 否 相 等 ? u 是 , 取k k 1, 转 ( 2) ; 否 , 取E1 E 1 {e ik } 。
1
5.与树定义等价的几个命题 定理给定图T, 以下关于树的定义是等价的。 ⑴无回路的连通图。 ⑵无回路且e=v-1 其中e是T的边数,v是T的 结点数。 ⑶连通的且e=v-1。 ⑷无回路但添加一条新边则得到一条仅有 的回路。 ⑸连通的,但删去任一条边,T便不连通。 ⑹每对结点之间有一条且仅有一条路。
2
二. 生成树(支撑树) 在图论的应用中,找出一个连通图的所有不 同的生成树,以及找出最小生成树是很有 意义的. 1.定义:如果图G的生成子图是树,则称此树 为G的生成树. 2.弦:图G中,不在其生成树里的边,称作弦. 所有弦的集合,称为该生成树的补. v1 定理 连通图至少有一棵生成树. v2 v3
v4 v5
3
三.赋权图的最小生成树 1.定义:一棵生成树中的所有边的权之和称为该生成树的 权. 具有最小权的生成树,称为最小生成树. 最小生成树很有实际应用价值.例如结点是城市名,边的权 表示两个城市间的距离, 从一个城市出发走遍各个城市, 如何选择最优的旅行路线.又如城市间的通信网络问题,如 何布线,使得总的线路长度最短. 例如:右图所示 2 v3 v2 2.求最小生成树算法 3 5 1 7 1 2 ---Kruskal算法: 7 v1 8 v8 v5 3 v4 (避圈法) 4 3 4 6 2 4 v7 v6 6
13
2013年8月21日
13
数学建模-图论
四、最小生成树问题及其算法
listV(d)=1; distance(e)=b; source(e)=s; destination(e)=d; e=e+1; end T=[source; destination]; for g=1:e-1 c(g)=a(T(1,g),T(2,g)); end T c
9
9
2013年8月21日
数学建模-图论
四、最小生成树问题及其算法
上述例题的matlab程序如下:
b=[1 1 2 2 3 3 3 4 5 5 6;2 6 3 6 4 6 7 7 6 7 7;2 4 4 5 8 3 7 8 3 7 6]; Krusf(b,1);
v5
运行结果如下:
T= 1 3 2 6 c= 26 5 6 1 6 6 7 3 4
(3) 对一切满足 (v j ) max{ (u) , l (v )} 的 v j ,令 l l l (v j ) min{ (u) , l (v )}。 l (4) E1 | V | 1? 是 , 算法终止;否取 k k 1,转 (2) 。 ,
注:算法构造的最小生成树的边集为 E1;标号 l 具有性质: 当且仅当 u、v 之间有一条仅由 E1 中的边形成的路时,l(u) = l(v),因此在步骤 (2) 发现 l(u) = l(v) 时,(u, v) 不 能放入 E1,否则会形成一个圈。
v1
2 v2
v6 3 4
v7 6 v3 8 7 6 7 v3 8 v4 v7
3
v5
1 1 2 2 3 3 3 4 5 5 6 b 2 6 3 6 4 6 7 7 6 7 7 2 4 4 5 8 3 7 8 3 7 6
v1 2 v2
10
4 5
4
v6 3
3
8
v4
2013年8月21日
4
数学建模-图论
四、最小生成树问题及其算法 Kruskal 算法
思想:在不形成圈得条件下,优先挑选权小的边形成生成 树。
v5 v1 4 5 v6 3 3 4 v5 7 v7 7 8 v4 v1 2 v2 3 4 v6 3 v3 8 v4
v7 6
6 v3
8
2 v2
5
数学建模-图论
四、最小生成树问题及其算法
14
2013年8月21日
14
数学建模-图论
四、最小生成树问题及其算法
上述例题的 Matlab 程序如下:
a=[0 2 inf inf inf 4 inf; 2 0 4 inf inf 5 inf;inf 4 0 8 inf 3 7; inf inf 8 0 inf inf 8;inf inf inf inf 0 3 7;4 5 3 inf 3 0 6; inf inf 7 8 7 6 0];%权矩阵 Primf(a);
v5 v1
7 6 7 v3 8
4 5 v2
4
v6 3 3
v7
2
8
v4
15
15
2013年8月21日
相关文档
最新文档