元器件降额使用参考

合集下载

(整理)元器件降额使用参考

(整理)元器件降额使用参考

元器件降额使用参考一、集成电路因为集成电路的复杂性和保密性,一般我们只能根据半导体结温来推断集成电路的可靠性了。

我们通常规定:1,最大工作电压,不超过额定电压80%2,最大输出电流,不超过额定电流75%3,结温,最大85摄氏度,或不超过额定最高结温的80%二、二极管二极管种类繁多,特性不一。

故而,有通用要求,也有特别要求:通用要求:长期反向电压<70%~90%×V RRM(最大可重复反向电压)最大峰值反向电压<90%×V RRM正向平均电流<70%~90%×额定值正向峰值电流<75%~85%×I FRM正向可重复峰值电流对于工作结温,不同的二极管要求略有区别:信号二极管< 85~150℃玻璃钝化二极管< 85~150℃整流二极管和快恢复、超快恢复二极管(<1000V)<85~125℃整流二极管和快恢复、超快恢复二极管(≥1000V)<85~115℃肖特基二极管< 85~115℃稳压二极管(<0.5W)<85~125℃稳压二极管(≥0.5W)<85~100℃T case(外壳温度)≤0.8×T jmax-2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。

这是一个可供参考的经验值三、功率MOSV GS<85%×V GSmax(最大栅极驱动电压)I D_peak<80%×I D_M(最大漏极脉冲电流)V DS<80~90%×额定电压dV/dt<50%~90%×额定值结温<85℃~80%×T jmax(最大工作结温)T case(外壳温度)≤0.8×T jmax-2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。

GB元器件可靠性降额准则国家标准

GB元器件可靠性降额准则国家标准

元器件可靠性降额准则GJB/Z 35-931 范围1.1 主题内容本标准规定了电子、电气和机电元器件(以下简称元器件)在不同应用情况下应降额的参数及其量值;同时提供了若干与降额使用有关的应用指南。

1.2 适用范围本标准适用于军用电子设备的设计。

其它电子设备可参照使用。

2引用文件GJB450-88 装备研制与生产的可靠性通用大纲GJB451-90 可靠性维修性术语GJB/Z 299A-91 电子设备可靠性预计手册3定义除下列术语外,本标准所用的其他术语及其定义见GJB451。

3.1 降额derating元器件使用中承受的应力低于其额定值,以达到延缓其参数退化,提高使用可靠性的目的。

通常用应力比和环境温度来表示。

3.2 额定值rating元器件允许的最大使用应力值。

3.3 应力stress影响元器件失效率的电、热、机械等负载。

3.4 应力比stress ratio元器件工作应力与额定应力之比。

应力比又称降额因子。

4一般要求4.1 降额等级的划分通常元器件有一个最佳降额范围。

在此范围内,元器件工作应力的降低对其失效率的下降有显著的改善,设备的设计易于实现,且不必在设备的重量、体积、成本方面付出大的代价。

应按设备可靠性要求、设计的成熟性、维修费用和难易程度、安全性要求,以及对设备重量和尺寸的限制等因素,综合权衡确定其降额等级。

在最佳降额范围内推荐采用三个降额等级。

a.Ⅰ级降额Ⅰ级降额是最大的降额,对元器件使用可靠性的改善最大。

超过它的更大降额,通常对元器件可靠性的提高有限,且可能对设备设计难以实现。

Ⅰ级降额适用于下述情况:设备的失效将导致人员伤亡或装备与保障设施的严重破坏;对设备有高可靠性要求,且采用新技术、新工艺的设计;由于费用和技术原因,设备失效后无法或不宜维修;系统对设备的尺寸、重量有苛刻的限制。

b.Ⅱ级降额Ⅱ级降额是中等降额,对元器件使用可靠性有明显改善。

Ⅱ级降额在设计上较Ⅰ级降额易于实现。

引起装备与保障设施的损坏;有高可靠性要求,且采用了某些专门的设计;需支付较高的维修费用。

元器件降额标准(参考)

元器件降额标准(参考)
'
TAM-20
TAM-20
TAM-20
输出功率
反射功率
占空比

声表面波器件
输入功率(f>100MHz)
降低+10dBm
输入功率(f<100MHz=
降低+20dBm
<
纤维光学器件
光纤光源
峰值光输出功率
(适用于ILD)
电流
(适用于ILD)
结温
设法降低
光纤探测器
PIN反向压降
结温
设法降低
光纤与光缆
温度
上限额定值-20;下限额定值+20
最高结温(℃)
改进散热方式降低结温
分离半导体器件
,
晶体管
方向
电压
一般晶体管
功率MOSFET的栅源电压
|
电流
功率
~
功率管安全工作区
集电极-发射极电压
[
集电极最大允许电流
最高结温
Tjm(℃)
200
115
140
160
175
100
125
145
≤150
Tjm-65
Tjm-40
Tjm-20
微波晶体管

最高结温
同晶体管
Note:Tj to Tcase has to be calculated for verification in any case
Diode

Vrm (%)
Io (%)
I fsm (%)
Tcase (°C)
Vrm (%)
Io (%)
I fsm (%)
Tcase (°C)
90
50

电路设计元器件降额标准

电路设计元器件降额标准

电路设计元器件降额标准1、晶体管/MOSFET:反向电压:0.7 0.8MOSFET栅源电压:0.6 0.7三极管集电极、发射机电压:0.7 0.8三极管集电极电流:0.7 0.8正反向电流:0.7 0.8温湿度0.7 0.82、二极管正向电压:10%稳定电压(稳压二极管):反向漏电流+200%恢复开关时间+20%反向电压0.7 0.8电流0.7 0.8功率0.65浪涌电压、电流0.7 0.8温湿度0.7 0.83、断路器熔断电流:0.75 0.9 阻/容性负载0.4 0.5 感性负载0.2 0.35 电机温度:Tmax-204、保险丝电流>0.5A 0.45~0.5电流<0.5A 0.2~0.4环境温度超过25度时,按0.005/oC增加降额5、可控硅,闸流管控制极正向压降10%漏电流+200%开关时间+20%其它指标同二极管6、光电器件指标同二极管7、电阻/电阻网络电压0.75功率0.6 0.7封装2512 2010 1206 0805 0603 0402 0201 功率 1 1/2 1/4,1/8 1/10 1/16 1/16 1/32最大电压200 200 200 100 50 50类型片式金属氧化膜水泥电阻功率1/4 1W/2W/5W 5W及以上8、绕线电阻电压0.75功率0.45 0.6 精密型0.6 0.7 功率型9、热敏电阻电压:电源电压80%功率:0.5 0.5温度:TMax-1510、压敏电阻电压:0.75功率:0.6 0.7不靠近发热可燃器件,离开其它器件3mm11、非绕线电位器电压0.75功率0.45 0.6 精密型0.6 0.7 功率型12、电容器固定纸、塑料薄膜电容/玻璃铀/固定云母/固定陶瓷/ 电流、电压0.6 0.7温度Tmax-10铝电解电压、电流0.6 0.7钽电解电压、电流0.5 0.7温度Tmax-20钽固体电解电压电流0.8 0.9 20V以下0.7 0.8 25V以上温度Tmax-20可变电容器电流、电压0.5浪涌电流电压0.6 0.7温度Tmax-1013、电感热点温度Tmax-10~25 Tmax-15~0工作电流0.6~0.7瞬态电压电流0.9介质耐压0.5~0.6电压0.714、磁珠工作电流0.6~0.7瞬态电压0.915、继电器<100mW不降额电阻负载:0.75~0.90电容负载(最大浪涌电流):0.75~0.90电感负载0.75 0.9 电感额定电流0.4 0.75 电阻额定电流电机负载0.75 0.9 电感额定电流0.2 0.75 电阻额定电流0.1 0.3 灯丝0.5 0.7 水印继电器(VA)线圈释放电压0.9最小~1.1最大温度额定-20振动额定60%16、开关<100mW不降额电阻负载:0.75~0.90电容负载(最大浪涌电流):0.75~0.90电感负载0.75 0.9 电感额定电流0.4 0.75 电阻额定电流电机负载0.75 0.9 电感额定电流0.2 0.75 电阻额定电流0.1 0.3 灯丝触点额定电压0.5 0.7功率0.5 0.717、电连接器电压0.7 0.8电流0.7 0.85温度Tmax-25 Tmax-2018、晶体温度:最低+10,最高-1019、光学器件光纤光源:峰值输出功率0.5峰值电流0.5结温设法降低光纤:温度:低温+20,高温-20张力:光纤20%拉力,光缆50%拉升值弯曲半径:最小允许值200%光纤连接器:温度:Tmax-25 Tmax-20。

元器件降额标准(参考)

元器件降额标准(参考)
分离半导体器件
晶体管
方向
电压
一般晶体管
功率MOSFET的栅源电压
电流
功率
功率管安全工作区
集电极-发射极电压
集电极最大允许电流
最高结温
Tjm(℃)
200
115
140
160
175
100
125
145
≤150
Tjm-65
Tjm-40
Tjm-20
微波晶体管
最高结温
同晶体管
二极管(基准管除外)
电压(不适用于稳压管)
输出电流
功率
最高结温(℃)
80
95
105
数字电路
双极型 电路
频率
输出电流
最高结温(℃)
85
100
115
MOS型电路
电源电压
输出电流
功率
最高结温(℃)
85
100
115
混和集成电路
厚模集成电路(W/cm2)
薄模集成电路(W/cm2)
最高结温(℃)
85
100
115
大规模集成电路
最高结温(℃)
改进散热方式降低结温
TAM-20
TAM-20
TAM-20
微调电容器
直流工作电压
~
最高额定环境温度TAM(℃)
TAM-10
TAM-10
TAM-10
电感元件
热点温度THS(℃)(简写T)
T-40~25
T-25~10
T-15~0
工作电流
~
~
~
瞬间电压/电流
介质耐压
~
~
~
扼流圈工作电压
继电器

元器件降额标准(参考)

元器件降额标准(参考)
峰值光输出功率
(适用于ILD)
电流
(适用于ILD)
结温
设法降低
光纤探测器
PIN反向压降
结温
设法降低
光纤 与光 缆
温度
上限额定值—20;下限额定值+20
张力
光纤
耐拉试验的
光缆
拉伸额定值的
弯曲半径
最小允许值的
核辐射
按产品详细规范降额或加固
导线 与电 缆
最大应用电压
最大绝缘电压规定值的
最大应用电流(A)
线规Avg
线绕 电位 器
电压
功率
普通型
非密封功率型


微调线绕型
环境温度
按元件负荷特性曲线降额
热敏电阻器
功率
最高环境温度(C)
Tam-15
Tam-15
Tam-15
电容

固定玻璃釉型
直流工作电压
最高额定环境温度Tam(C)
Tam-10
Tam-10
Tam-10
直流工作电压
固定云母型
最高额定环境温度Tam(C)
Tam-10
输出电流
功率
最高结温(C)
80
95
105
数字电路
双极型电 路
频率
输出电流
最高结温(C)
85
100
115
MOS型电路
电源电压
输出电流
功率
最高结温(C)
85
100
115
混和集成电路
厚模集成电路(W/cm2)
薄模集成电路(W/cm2)
最高结温(C)
85
100
115
大规模集成电路

元器件降额标准(参考)

元器件降额标准(参考)
0.80
0.90
0.90
功率
0.80
0.80
0.90
最高结温(℃)
85
100
115
混和集成电路
厚模集成电路(W/cm2)
7.5
薄模集成电路(W/cm2)
6.5
最高结温(℃)
85
100
115
大规模集成电路
最高结温(℃)
改进散热方式降低结温
分离半导体器件
晶体管
方向
电压
一般晶体管
0.60
0.70
0.80
功率MOSFET的栅源电压
电压
0.60
0.70
0.80
电流
0.50
0.65
0.80
最高结温
Tjm(℃)
200
115
140
160
175
100
125
145
≤150
Tjm-65
Tjm-40
Tjm-20
固定电阻器
合成型电阻器
电压
0.75
0.75
0.75
功率
0.50
0.60
0.70
环境温度
按元件负荷特性曲线降额
薄膜型电阻器
电压
0.75
0.75
0.90
电感负载
电感额定电流的
0.50
0.75
0.90
电阻额定电流的
0.35
0.40
0.75
电机负载
电机额定电流的
0.50
0.75
0.90
电阻额定电流的
0.15
0.20
0.35
灯丝负载
灯泡额定电流的
0.50

元器件降额规范

元器件降额规范
表目录
表1集成电路降额表.......................................................................3
表2分立半导体降额表......................................................................4
温度
Max-20℃
Max-20℃
Max-20℃
线绕电阻
电压
0.85
0.85
0.95
功率
精密型
0.8
0.8
0.9
功率型
0.8
0.8
0.9
温度
Max-20℃
Max-20℃
Max-20℃
保险丝
电压
0.85
0.85
0.95
电流
0.55
0.55
0.55
热敏电阻
电压
0.85
0.85
0.95
电流
0.85
0.85
0.95
电压
0.85
0.95
0.95
电流
0.85
0.95
0.95
最高结温,Tj
0.8
0.8
0.9
光电器件
电压
0.85
0.95
0.95
电流
光耦
0.85
0.95
0.95
发光二极管
0.65
0.85
0.85
最高结温Tj
0.8
0.9
0.9
注:Tj为器件最高允许结温
5.3固定电阻器、保险丝、热敏电阻
表3固定电阻降额表
元器件种类
100%(Ref.)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

跟我学系列之二,元器件降额使用参考让你记得我的好 原创Konway 整理为什么要降额使用元器件?因为如果元器件的工作状态不超过供应商提供的规格书上的指标。

那么可以实现全寿命工作。

降额使用,可以提高产品的可靠性。

降额使用规则的制订,是依据最差工况(worst case)来制定的。

处于最差工况工作的元件,是实际寿命达不到额定寿命的重要因素。

最差工况,就是元件工作时承受着最大应力的工作状况。

这种情况一般由外部环境的参数比如温度、电压、开关次数、负载等条件中的一种或多种组合而成。

这些应力的边界条件一般在元件的规格书中都是给出来的。

一个良好的设计,是应该根据最差工况时,元件的设计风险来评估设计的可靠性的。

风险评估同时可以确定失败的原因、潜在的风险、失败的概率、后果的严重性等。

要制定降额使用规范,就要进行worst case下的失败风险评估。

要进行风险评估,就要建立加速实验模型。

要是风险评估按照正常使用时间来做的话,等到评估完了,市场份额早就被瓜分完了。

模型的准确性,将严重影响风险评估的结果。

要精确保证模型的准确性,那又是一门大学问了。

在我们这里,就定性的简单分析一下吧。

加速试验的加速因子,一般遵循阿累尼乌斯定律:其中:A 加速因子Ea 活化能K 波尔兹曼常数,8.63E-5 eV/KT 绝对温度如果加速因子对应某个要降额条件下的值是已知的,那么可以用下面的公式来计算其他情况下的寿命:其中:T 温度,以摄氏度为单位Tref 参考降额使用温度,以摄氏度为单位tref 参考使用寿命,单位KHrs(千小时)t 使用寿命,单位KHrs(千小时)A 每10摄氏度加速因子举个例子:一个元件在90摄氏度下的寿命是30KHrs,加速因子A约等于2每10摄氏度,那么在什么温度下,元件的寿命就变成了20KHrs呢?一、集成电路因为集成电路的复杂性和保密性,一般我们只能根据半导体结温来推断集成电路的可靠性了。

我们通常规定:1,最大工作电压,不超过额定电压80%2,最大输出电流,不超过额定电流75%3,结温,最大85摄氏度,或不超过额定最高结温的80%二、二极管二极管种类繁多,特性不一。

故而,有通用要求,也有特别要求:通用要求:长期反向电压<70%~90%×VRRM(最大可重复反向电压)最大峰值反向电压<90%×VRRM正向平均电流<70%~90%×额定值正向峰值电流<75%~85%×IFRM正向可重复峰值电流对于工作结温,不同的二极管要求略有区别:信号二极管< 85~150℃玻璃钝化二极管< 85~150℃整流二极管和快恢复、超快恢复二极管(<1000V)<85~125℃整流二极管和快恢复、超快恢复二极管(≥1000V)<85~115℃肖特基二极管< 85~115℃稳压二极管(<0.5W)<85~125℃稳压二极管(≥0.5W)<85~100℃Tcase(外壳温度)≤0.8×Tjmax‐2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。

这是一个可供参考的经验值。

这里很多指标给的是个范围,因为不同的可靠性要求和成本之间有矛盾。

所以给出一个相对比较注重可靠性的和一个比较注重成本的两个值供参考。

下面同理。

三、功率MOSVGS<85%×VGSmax(最大栅极驱动电压)ID_peak<80%×ID_M(最大漏极脉冲电流)VDS<80~90%×额定电压dV/dt<50%~90%×额定值结温<85℃~80%×Tjmax(最大工作结温)Tcase(外壳温度)≤0.8×Tjmax‐2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。

这是一个可供参考的经验值。

四,三极管所有的电压指标都要限制在85%的额定值之下功率损耗不超过70%~90%额定值IC必须在RBSOA(反偏安全工作区)与FBSOA(正偏安全工作区)范围内降额30%(就是额定的70%)结温不超过85~125℃Tcase(外壳温度)≤0.75×Tjmax‐2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。

这是一个可供参考的经验值。

五,电解电容铝电解电容是开关电源中一个非常重要的元件。

而很多开关电源的故障率偏高,都是因为对铝电解的使用不当造成的。

由于铝电解的重要性,我们对他的研究比较多,因而制定出来的规则也比较多。

1,V dc+V ripple<90%×额定电压2,在电容体之下,PCB正面,尽量不要有地线之外的其他走线。

3,纹波电流,这个问题比较复杂,因为开关电源中,纹波电流的频谱是非常丰富的,所以必须把纹波电流折算一下:频率因子,供应商应该可以提供的。

纹波电流必须保证在供应商的额定值的70%~90%之内。

4,电解电容的初始容量要保证20%的裕量。

同时,要保证额外的20%的容量裕量,以应对寿命快到时的容量衰减。

5,电解电容的寿命温度加速因子为2每10℃,也就是说,温度每升高10度,寿命减半。

6,壳温T case受限于设计寿命。

7,自温升<5℃,所谓自温升,是指电容实际工作时,完全因为自身发热导致的温升。

六,瓷片电容工作电压<60%~90%×额定电压表面温度<105℃自温升<15℃或由规格书定义,以低的为准。

七,薄膜电容1,在开关电源中,不要使用聚苯乙烯电容,因为聚苯乙烯电容耐热比较差。

2,表面温度<85℃,超过85℃耐压按照下图降额使用。

此处的电压指的是直流电压叠加交流峰值电压。

3,聚酯电容自温升<8℃或由规格书定义,以低的为准4,聚丙烯电容自温升<5℃或由规格书定义,以低的为准5,薄膜电容的使用寿命取决于电压值和电压脉冲的上升速率。

允许的脉冲数量和电压值以及脉冲斜率的关系,如下式:其中:N pulse为脉冲总数V r,max最大额定直流电压V applied实际使用峰峰值电压(dv/dt)max最大额定脉冲斜率(dv/dt)applied实际使用脉冲斜率八,电阻电阻可以分为三大类:固定线性电阻、固定非线性电阻、可变电阻固定线性电阻包括:碳膜、金属膜、金属氧化膜、金属釉、碳质等电阻和绕线电阻。

固定非线性电阻包括:NTC、PTC电阻的可靠性主要取决于电阻的温度,而温度则是环境温度和自身功率损耗产生热量后叠加的效果。

功率和电压都对电阻的选择与使用产生限制:从图中可以知道,对于阻值低于临界阻值的电阻,使用是受功率限制,而对于高于临界阻值的电阻,使用上是受耐压的限制。

对于单个脉冲的功率限制,取决于脉冲的形状。

同时脉冲的峰值电压必须不能超过额定限制。

电阻的降额使用规则:1,在有瞬间高压脉冲的电路中使用金属釉电阻2,在有大的冲击电流的场合使用绕线电阻3,连续功率<50%×额定功率4,不要使用>1MΩ的碳膜电阻,因为长期稳定性太差5,高阻值长期稳定性好的电阻应采用金属釉电阻6,在热冲击试验后,电阻的阻值必须在±5%的额定范围内7,可熔断电阻,比如保险丝电阻,不要靠PCB太近,以免PCB过热8,尽量不要将矩形的贴片电阻用在ESD保护电路,因为矩形的尖角容易放电9,在电压、电流采样时,如果用贴片电阻,尽量使用尺寸在1206以上的。

10,耐压的降额使用:对于碳膜、金属膜、金属氧化膜电阻:R>100K时,V RMS<50%×额定最大连续工作电压R≤100K时,V RMS<90%×额定最大连续工作电压或90%×(P×R)0.5,以低的为准。

对于碳质电阻、金属釉电阻和绕线电阻:V RMS<90%×额定最大连续工作电压或90%×(P×R)0.5,以低的为准。

11,电路中有冲击电流的时候的瞬时功率可以按照下面的经验公式计算:P=I2×R×t/4,其中,t是电流跌落到最大值38%时的时间。

九,磁性元件磁性元件中,线对线之间的最大电压不能超过下表:将AWG线规可以按照此式转换为mm单位线径:d=25.4×0.005×92((36-AWG)/39)漆包线的使用寿命加速因子约为2.5每10℃。

线包的温度降额规定:CLASS B:95℃~110℃ 注:额定温度是130℃CLASS F:110℃~125℃ 注:额定温度是155℃CLASS H:125℃~150℃ 注:额定温度是180℃磁芯的降额规定:B max<80%×B sat 在任何条件下。

B sat是磁芯的饱和磁感应强度T CORE<70%×T curie-10℃ T curie是磁芯居里点温度十,金属氧化物压敏电阻MOVT case ≤85℃,在任何条件下具体选型推荐为:AC120V/127V 选用150V rmsAC220V 选用275V rms(此项尚存争议)AC277V 选用320V rmsAC347V 选用420V rms十一,印刷电路板PCB材料和最高可用表面温度如下:FR2 75℃FR3 90℃FR4 125℃CEM1 125℃CEM3 125℃此外,有以下一些规则:可以使用过孔帮助散热每个过孔流过电流不超过2A布线之间的间距与电压的关系参考UL935FR1的导热率是FR4的两倍,但FR1不适合做双面板十二,保险丝对保险丝的降额使用,是对电路保护可靠性和保险丝使用寿命之间的妥协。

降额使用保险丝,并不能直接带来产品可靠性的提升。

环境温度和电流是影响保险丝寿命的主要因素。

在25℃下,保险丝的电流应该降额25%使用。

在环境温度升高时,慢熔断的保险丝,要按照0.5%/℃来增加降额。

而快融断保险丝则按照0.1%/℃来增加降额。

十三,光耦最大工作电压<70%~90%×额定电压最大工作电流<25%~90%×额定电流电流传输比,按照产品寿命时间,保留20%裕量结温<85℃~100℃。

相关文档
最新文档