电磁场镜像法与电轴法(完美解析)资料重点

合集下载

1-7镜像法

1-7镜像法
设在点电荷附近有一接地导体球,求导体球外空间的电位及电 场分布。
1)
边值问题: 边值问题:
∇ 2ϕ = 0
ϕ ϕ
r→ ∞ 导球面
=0 =0
(除q点外的导 体球外空间)
2)设镜像电荷-q 位于球内,球 面上任一点电位为:
ϕp =
图1-29 点电荷对接地导体球面的镜像
q 4 πε 0 r1

q' 4 πε 0 r2
2.点电荷和接地导体球 q点电荷附近接地导体 球的影响 可用镜像电荷(-q′) 可用镜像电荷( 代替感应电荷, 代替感应电荷,其中 位置与电荷量为: 位置与电荷量为:
R2 b= d b R q' = q= q d d
3.点电荷和两种不同介质 平面分界面S的上下半空间充满介电常数为ε 平面分界面 的上下半空间充满介电常数为ε1和ε2的均 的上下半空间充满介电常数为 匀介质,在上半空间距S为 处有一点电荷 处有一点电荷q, 匀介质,在上半空间距 为h处有一点电荷 ,求空间 的电场 设上半空间电位为ϕ1,下半空间 根据唯一性定理, 电位为ϕ2,根据唯一性定理, ϕ1 应满足: 和ϕ2应满足: (1)
r2
h
q′
1 q q′ + ϕ1 = 4πε1 r1 r2
镜像系统为: 镜像系统为:下半空间 由原来电荷q处的像电荷 由原来电荷 处的像电荷 q″所产生(介电常数ε2 所产生( 所产生 介电常数ε 冲满整个空间) 冲满整个空间)
r1
ϕ1 =
1 q q′ + 4πε1 r1 r2
长直平行双传输线
思路:采用等效观点, 思路:采用等效观点, 对于两圆柱导体外部的电场, 对于两圆柱导体外部的电场,可以设想将两圆柱 撤去,而其表面电荷效应代之以两根很长的带电 撤去,而其表面电荷效应代之以两根很长的带电 细线。 细线。 如图相距为2b( 的数值待定 的数值待定) 如图相距为 (b的数值待定)的两根电荷线密度 的带电细线,它们所在的轴线就是电轴, 为τ、-τ的带电细线,它们所在的轴线就是电轴, 这种方法称为电轴法。 这种方法称为电轴法。

4镜像法和电轴法

4镜像法和电轴法


考虑如图b,在导体平面下方h处放点电荷-q,
并撤去导体,整个空间充满介质的情况
14
q
P

h


qr
P r’ 单一介质!
h
h
-q
(图b)
(图a)
结论:
P
q 4 r

q 4 r
1. 图a中电介质中的电场分布可用图b计算; 2. -q 为镜像电荷,它代替了分布在导电平板上的负值 感应电荷的作用; 3. 用镜像法要注意有效范围: 4. 镜像电荷必须放在有效范围之外。
b
=0
n n x Dn sin y (x,y) = Bn sh b b n 1

n 1
5
1.5.1直角坐标系中的分离变量法
例一、长直金属槽如图.三边接地,另一边电位为V0,求槽内电位分布. 解: ▽
2
b |(y=0,0<x<a)= 0 =V0 =0 |(x=a,0<y<b) = V0 x =0 n n 0 a x Dn sin y (x,y) = Bn sh b b n 1 na ny 由边界条件4 : Bn Dn sh b sin b V0 n 1 b b na ny my my 数学处理: Bn Dn sh sin sin dy V0 sin dy 0 0 b b b b n 1
BnDn sh (na/b ) =

|(x=0,0<y<b) =0 |(y=b,0<x<a)= 0
2 2 2 =0 2 x y
金属槽内
y
=0
4V0/ n 0
n为奇数
n为偶数
6

电磁场课件6镜像法、电轴法、电容

电磁场课件6镜像法、电轴法、电容

电磁场问题求解
• 电磁场问题可以分为电磁场分析(正问题)、逆问题 (含优化设计问题)和电磁场工程三个部分。
➢求解电磁场问题的方法,归纳起来可分为三大类,分别 是解析法、数值法和半解析数值法。
解析法包括积分法、分量变量法、镜像法、电轴法等 ; 数值计算方法包括有限元法(FEM)、时域有限差分法 (FDTD)、矩量法(MOM)和边界元法等 ; 半解析数值法是解析法和数值法的综合。
联立求解
q2 (b2 R2 ) q'2 (d 2 R2 ) 0 q'2 d q2b 0
得到
b R2 d
镜像电荷位置
q' b q R q 镜像电荷大小 dd
图1.7.4 球外的电场计算
球外任一点 P 的电位与电场为
p
q
4π 0r1
q'
4π 0r2
q
qR
EP 4π 0r12 er1 4π 0dr22 er2
1.7 镜像法与电轴法
1.7.1 镜像法
1.接地无限大导体平面上方点电荷的电场
2 0 0
s D dS q
(除 q 所在点外的区域) (导板及无穷远处)
(S 为包围 q 的闭合面)
2.正负点电荷在上半空间产生的电场
2 0
除 q 所在点外的区域
q q 0 4 0r 4 0r
中间对称面处
s D dS q
设镜像电荷 q'如图,球面电位
p
q
4π 0r1
q'
4π 0r2
0
图1.7.3 点电荷对接地导体球的镜像
r12 d 2 R2 2Rd cos r22 b2 R2 2Rb cos
将 r1, r2 代入方程 qr2 q 'r1 0,得

4镜像法和电轴法

4镜像法和电轴法
r ( x + b) + y = = K2 2 ( x b)2 + y2 r+
2 2 2
+τ x
K2 +1 2 2bK 2 2 ) (x 2 b) + y = ( 2 K 1 K 1
则等位线为若干圆,设圆心到原点的距离为d,圆半径为R 则等位线为若干圆,设圆心到原点的距离为 ,圆半径为
K2 + 1 d= 2 b K 1
电轴法:将圆柱导体撤去,代之以两带电细线(等效电轴 电轴法:将圆柱导体撤去,代之以两带电细线 等效电轴 。 两带电细线 等效电轴) 注意确定等效电轴的位置。 等效电轴的位置 注意确定等效电轴的位置。
设圆柱导体的半径为a,两圆心距离为 ,两等效电轴的距离为2b 设圆柱导体的半径为 ,两圆心距离为2h,两等效电轴的距离为
a
-τ 0 P’ 2b U0 D
x
9
不同半径)外部的电场 四、两长直平行带电圆柱导体(不同半径 外部的电场: 两长直平行带电圆柱导体 不同半径 外部的电场:
电轴法:将圆柱导体撤去,代之以两带电细线(等效电轴 电轴法:将圆柱导体撤去,代之以两带电细线 等效电轴 。 两带电细线 等效电轴) 注意确定等效电轴的位置。 注意确定等效电轴的位置。 等效电轴的位置
导体内部 的电场? 的电场?
a2+b2 =h2
y -τ a -τ
r_ r+
若取y轴电位为 , 若取 轴电位为0, 轴电位为 则圆柱导体外任一点 的电位为 的电位为: 则圆柱导体外任一点P的电位为
P(x, y) + +τ τ x
r τ ln P = 2πε r+
0 2b
2h
8
例一、两长直平行带电圆柱导体的电压为 尺寸如图, 例一、两长直平行带电圆柱导体的电压为U0,尺寸如图,求导体 及导体外任意点P的电位 的电位。 轴向单位长度电荷量τ及导体外任意点 的电位。 解:用电轴法

电磁场理论第10讲-镜像法与电轴法

电磁场理论第10讲-镜像法与电轴法

电轴法
∇2ϕ = 0 导线以外的空间
ϕ surface A = constant

D ⋅ dS = −τ
S
ϕ
surface
B=
constant

D ⋅ dS = −τ
S
长直平行圆柱导体传输线
两两根根细细导导线线产产生生的的电电场场
∫ ϕ1 =
Q ρ1
τ 2πε
0
ρ

=

τ 2πε 0
ln
ρ1
+
平面导体上电荷的场 平面导体的镜像
平面导体上电荷的场边值问题


=
0
ϕ = 0

D ⋅ dS
s
=
q
除点电荷之外区域 平面导体和无穷远 S为包围点电荷面积
上半区域场边值问题


=
0
除 点电荷之外的区域
ϕ
=
q 4πε 0 r

q 4πε 0 r
= 0 平面导体和无穷远

D ⋅ dS
s
=
q
S为包围点电荷面积
b = h2 − a2
圆柱导线间电场和电位
E
P
=
τ 2πε 0
(1 ρ1
eρ1

1 ρ2
eρ2 )
ϕ p
=
τ 2πε 0
ln
ρ2 ρ1
(以y轴为电位为参考点)
已知两根不同半径,相互平行,轴线距离为d 的带 电长直圆柱导体。试决定电轴位置。
解:
b 2 b 2
= =
h12 h22
− −
a12
a

求电场强度的六种特殊方法 (解析版)

求电场强度的六种特殊方法    (解析版)

求电场强度的六种特殊方法一、镜像法(对称法)镜像法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。

例1.(2005年上海卷4题)如图1,带电量为+q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心.若图中a点处的电场强度为零,根据对称性,带电薄板在图中b点处产生的电场强度大小和方向如何?(静电力恒量为k)二、微元法微元法就是将研究对象分割成若干微小的的单元,或从研究对象上选取某一“微元”加以分析,从而可以化曲为直,使变量、难以确定的量转化为常量、容易确定的量。

例2.如图2所示,均匀带电圆环所带电荷量为Q,半径为R,圆心为O,P为垂直于圆环平面的称轴上的一点,OP=L,试求P点的场强。

三、等效替代法“等效替代”方法,是指在效果相同的前提下,从A事实出发,用另外的B事实来代替,必要时再由B而C……直至实现所给问题的条件,从而建立与之相对应联系,得以用有关规律解之。

如以模型代实物,以合力(合运动)替代数个分力(分运动);等效电阻、等效电源等。

例3. 如图3所示,一带正Q电量的点电荷A,与一块接地的长金属板MN组成一系统,点电荷A与板MN间的垂直距离为为d,试求A与板MN的连线中点C处的电场强度.四、补偿法求解物理问题,要根据问题给出的条件建立起物理模型。

但有时由题给条件建立模型不是一个完整的模型,这时需要给原来的问题补充一些条件,组成一个完整的新模型。

这样,求解原模型的问题就变为求解新模型与补充条件的差值问题。

例4. 如图5所示,用长为L的金属丝弯成半径为r的圆弧,但在A、B 之间留有宽度为d的间隙,且d远远小于r,将电量为Q的正电荷均为分布于金属丝上,求圆心处的电场强度。

五、等分法利用等分法找等势点,再连等势线,最后利用电场强度与电势的关系,求出电场强度。

电磁场 镜像法与电轴法(完美解析)

电磁场 镜像法与电轴法(完美解析)


r

球面
0
设镜像电荷 q '如图,球面电位
q q' p 0 4 π 0 r1 4 π 0 r2
r1 d 2 R 2 2 Rd cos
2
图1.7.3 点电荷对接地导体球的镜像
r2 b 2 R 2 2 Rb cos
2
返 回
上 页
下 页
第 一 章
qh p=Dn 0 E 2 π(h 2 x 2 ) 3 / 2
地面上感应电荷的总量为 qh S p dS 0 2π(h2 x 2 )3/ 2 2πxdx
q
图1.7.2 地面电荷分布
返 回 上 页 下 页
第 一 章
静 电 场
2. 球面导体的镜像 点电荷位于接地导体球外的边值问题 (除q点外的空间) 2 0
q q' q' ' sin sin sin 2 2 2 4πr 4πr 4πr
2 2 1 2 q 解得 q ' q 和 q' ' 1 2 返 回 1 2
上 页
下 页
第 一 章
静 电 场
思考
1 中的电场由 q 与 q’ 共同产生,q’
等效替代极化电荷的影响。
球面电位
q = 4 π 0 d
图1.7.7 点电荷位于不接地导体 球附近的场图
返 回
上 页
下 页
第 一 章
静 电 场
3. 不同介质分界面的镜像
图1.7.9 点电荷对无限大介质分界面的镜像
根据惟一性定理
E1t E2 t
D1n D2n
q q' q' ' cos cos cos 2 2 2 4π1r 4π1r 4π 2 r

求电场强度的六种特殊方法 (解析版)

求电场强度的六种特殊方法    (解析版)

求电场强度的六种特殊方法一、镜像法(对称法)镜像法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。

例1.(2005年上海卷4题)如图1,带电量为+q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心.若图中a点处的电场强度为零,根据对称性,带电薄板在图中b点处产生的电场强度大小和方向如何?(静电力恒量为k)二、微元法微元法就是将研究对象分割成若干微小的的单元,或从研究对象上选取某一“微元”加以分析,从而可以化曲为直,使变量、难以确定的量转化为常量、容易确定的量。

例2.如图2所示,均匀带电圆环所带电荷量为Q,半径为R,圆心为O,P为垂直于圆环平面的称轴上的一点,OP=L,试求P点的场强。

三、等效替代法“等效替代”方法,是指在效果相同的前提下,从A事实出发,用另外的B事实来代替,必要时再由B而C……直至实现所给问题的条件,从而建立与之相对应联系,得以用有关规律解之。

如以模型代实物,以合力(合运动)替代数个分力(分运动);等效电阻、等效电源等。

例3. 如图3所示,一带正Q电量的点电荷A,与一块接地的长金属板MN组成一系统,点电荷A与板MN间的垂直距离为为d,试求A与板MN的连线中点C处的电场强度.四、补偿法求解物理问题,要根据问题给出的条件建立起物理模型。

但有时由题给条件建立模型不是一个完整的模型,这时需要给原来的问题补充一些条件,组成一个完整的新模型。

这样,求解原模型的问题就变为求解新模型与补充条件的差值问题。

例4. 如图5所示,用长为L的金属丝弯成半径为r的圆弧,但在A、B 之间留有宽度为d的间隙,且d远远小于r,将电量为Q的正电荷均为分布于金属丝上,求圆心处的电场强度。

五、等分法利用等分法找等势点,再连等势线,最后利用电场强度与电势的关系,求出电场强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d
d
任一点场强
E
q
4π 0
(
1 r2
er
R dr12
er1
R dr22
er2
)
返回 上页 下页
第一章
静电场
任一点电位
q (1 R R ) 4π0 r dr1 dr2
球面电位
= q 4π 0 d
图1.7.7 点电荷位于不接地导体 球附近的场图
返回 上页 下页
第一章
3. 不同介质分界面的镜像
解: a) 取圆柱坐标系
电轴位置 b h2 a2
图1.7.16 平行传输线电场的计 算
b) 圆柱导线间的电场与电位
EP
2π 0
(1
1
e1
1
2
e2
)
p
2π 0
ln
2 1
( 以 y 轴为参考电位)
返回 上页 下页
第一章
静电场
例1.7.4 试决定图示不同半径平行长直导线的电轴位置。
图1.7.17 不同半径传输线的电轴位置
解:
b2
b
2
h12 h22
a12 a22
d h1 h2
确定 b, h1, h2
返回 上页 下页
第一章
静电场
例1.7.5 已知平行传输线之间电压为U0, 试求电位分布。
解: 确定电轴的位置
b2 h2 a2
d
2h
b (d )2 a2 2
设电轴线电荷 ,任一点电位
ln 2 2π0 1
S
pdS
0
qh 2π(h2 x2 )3/2
2πxdx
图1.7.2 地面电荷分布
q
返回 上页 下页
第一章
2. 球面导体的镜像
点电荷位于接地导体球外的边值问题
静电场
2 0(除q点外的空间) r 球面 0
设镜像电荷 q'如图,球面电位
p
q
4π 0r1
q'
4π 0r2
0
图1.7.3 点电荷对接地导体球的镜像
U0
2π 0
ln
b b
(h (h
a) a)
ln
b b
(h (h
a)
a)
所以
2 ln
U0 b (h
a)
ln
2 1
b (h a)
图1.7.19 电压为U0的传输线
返回 上页 下页
第一章
镜像法(电轴法)小结
静电场
镜像法(电轴法)的理论基础是:
静电场惟一性定理; 镜像法(电轴法)的实质是:
图1.7.5 球外的电场分布
返回 上页 下页
第一章
静电场
例1.7.2 不接地金属球附近放置点电荷q的电场分布。
解: 边值问题
2 0(除q点外的空间)
const S
思路
SD dS 0
球面等位( q'位于球心)
通量为零( q', - q'大小相等)
图1.7.6 不接地金属球的镜像

q' R q, b R2
P
ln 2π 0
2 1
2π 0
ln
(x b)2 y2 (x b)2 y2
令:P C, 等位线方程
(x b)2 (x b)2
y2 y2
K2
返回 上页 下页
第一章
静电场
整理后,等位h线方K程2 1(bx K2 1
K K
2 2
1 b)2 1
y2
(
2bK
K
2
) 1
2
圆心坐标 h, 0
方程相同,边界条件相同,解惟一。
返回 上页 下页
第一章
静电场
例1.7.1 试求空气中点电荷 q 在地面引起的感应电荷分布。
解:设点电荷 q 镜像后
E E E (方向指向地面)
E
2
q cos 4π0r 2
qh
2π 0 (h2 x2 )3/ 2
p=Dn
0 E
qh 2π(h2 x2 )3/2
地面上感应电荷的总量为
用虚设的镜像电荷(电轴)替代未知电荷的分
布,使计算场域为无限大均匀媒质;
镜像法(电轴法)的关键是:
确定镜像电荷(电轴)的个数、大小及位置; 应用镜像法(电轴法)解题时,注意:
S D dS , 电荷分布不均匀
导体B const
1.7.12 长直平行双传输线
S D dS , 电荷分布不均
返回 上页 下页
第一章
静电场
1. 两根细导线产生的电位
1
Q
1
d 2π 0
2ቤተ መጻሕፍቲ ባይዱ 0
ln
1
C1
2
2π 0
ln
2
C2
P
1
2
2π 0
ln
2 1
C
以 y 轴为参考电位, C=0, 则 图1.7.13 两根带电细导线
第一章
思考
静电场
1中的电场由 q 与 q’ 共同产生,q’
等效替代极化电荷的影响。
2中的电场由 q” 决定,q” 等效替
代自由电荷与极化电荷的作用。
图1.7.10 电场分布图
返回 上页 下页
第一章
1.7.2 电轴法(Electric Axis Method)
静电场
边值问题
2 0 (导线以外的空间) 导体A const
静电场
图1.7.9 点电荷对无限大介质分界面的镜像
根据惟一性定理
E1t E2t
q
4π1r 2
cos
q'
4π1r 2
cos
q''
4π 2r 2
cos
D1n D2n
q 4πr 2
sin
q' 4πr 2
sin
q'' 4πr 2
sin
解得 q' 1 2 q 和 q'' 22 q
1 2
1 2 返 回 上 页 下 页
圆半径
a
2bK K 2 1
图1.7.14 两根细导线的等位线
K 取不同值时,得到一族偏心圆。
a2 b2
( K2b2 K1)2 b2
(
K K
2 2
1 1
b)2
h2
a、h、b满足关系
a2 h2 b2 (h b)(h b) 返 回 上 页 下 页
第一章
2. 电轴法
静电场
例1.7.3 试求两带电长直平行传输线的电场及电位分布。
得到
R2 b
d
镜像电荷位置
q' b q R q 镜像电荷大小 dd
返回 上页 下页
第一章 图1.7.4 球外的电场计算
静电场
球外任一点 P 的电位与电场为
p
q
4π 0r1
q'
4π 0r2
EP
q
4π 0 r12
er1
qR
4π 0 dr2 2
er2
镜像电荷放在当前求解的场域外。
镜像电荷等于负的感应电荷总量。
r12 d 2 R2 2Rd cos r22 b2 R2 2Rb cos
返回 上页 下页
第一章
将 r1, r2 代入方程 qr2 q'r1 0 ,得
静电场
[q2 (b2 R2 ) q'2 (d 2 R2 )] 2R(q'2 d q2b) cos 0
联立求解
q2 (b2 R2 ) q'2 (d 2 R2 ) 0 q'2 d q2b 0
第一章
1.7 镜像法与电轴法
静电场
Image Method and Electric Axis Method
1.7.1 镜像法(Image Method)
1. 平面导体的镜像
a 2 0
空气中除点电荷外
导板=0
图1.7.1 平面导体的镜像
b 2 0 上半场域除点电荷外
q q 0 4π0r 4π0r
相关文档
最新文档