(刘昌全)资源应用计划表

合集下载

21-资源管理及资源系统相关功能应用

21-资源管理及资源系统相关功能应用

蓄电池组
入网时间 额定容量 组数 厂商 型号
开关电源
入网时间 厂商 型号 类型
空调
入网时间 制热功率 制冷功率 厂商 型号 类型
资源数据整治二期考核指标如上表,到6月底,二阶段资源数据准确率达到98%以上。 新建站址关键资源录入以及退网资源变更及时率及准确率均要达到98%以上。
通过预留标识位识别站址的不同来源:
00PMS应急系统同步(PMS应急系统生成,规则已停用) 01CRM导入需求订单,或者PMS主动规划申请(资源系统生成,初始设计态) 022015年4月1日中午前通过CRM受理(资源系统生成,很少量,规则已停用) 502015-07-01后通过CRM流程,在需求整合新增的站址(资源系统生成,初始需求态) 60规划支撑系统新增站址(资源系统生成,初始规划态) 70资源系统存量补录站址(资源系统生成,在网态) 90从清查系统同步过来的存量站址(资源系统生成,在网态)
2.1 资源管理系统PC端功能简介
资源管理
资源信息维护 标签打印
隐患信息导入 地图定位 综合管理 上站巡查
资产管理
资产目录 资产卡片 资产流程 站址流程 资产盘点 工单查询
统计分析
数量专题 质量专题 进度专题 巡查专题 资产流程 数据整治
2.2.1 资源管理系统手机APP-安装
安装【中国铁塔手机APP】 登陆【中国铁塔手机APP】,在应用中下载安装【资源手机APP】 代维人员账号/权限的分配,由4A管理员在4A系统创建代维人员账号,并分配在资源系统的
6/10位区域内序号
管理区域代码:该站址所属区域的区域编码。 预留标识位:作为预留,以适应后续可能的扩位需求,以及标识站址来源等其他用途。 站址序号:6位或10位站址流水号 由于站址编码一旦生成,就不再变更,所以如果用户在维护站址信息的时候变更了区域信息,该

2.2 探索2 资源的管理与贡献 教学设计 苏科版(2023)初中信息技术七年级上册

2.2   探索2  资源的管理与贡献 教学设计 苏科版(2023)初中信息技术七年级上册

定义解释:首先,教师明确资源管理的定义,即合理地组织、存储、检索、维护和利用计算机系统中的各种资源,包括文件、文件夹、应用程序等。

重要性阐述:通过案例分析,让学生理解资源管理对于提高学习效率、保护信息安全、促进资源共享等方面的重要性。

2. 文件夹与文件的管理
文件夹的创建与命名:教师演示如何在计算机中创建文件夹,并强调文件夹命名的规范性和易读性。

可以引导学生思考如何为不同的文件夹命名,以便快速找到所需文件。

文件的分类与存储:讲解文件分类的原则和方法,如按学科、项目、日期等分类。

演示如何将文件移动到相应的文件夹中,并介绍文件的复制、粘贴、删除等基本操作。

目录树的构建:通过图表或动画展示目录树的结构,让学生理解文件夹之间的层级关系。

鼓励学生动手实践,构建自己的目录树。

3. 资源的贡献与分享
分享的意义:阐述资源共享对于促进学习交流、提高工作效率等方面的意义。

网盘的使用:介绍网盘的基本功能和特点,如在线存储、同步更新、分享链接等。

演示如何使用网盘上传文件、设置分享权限以及生成分享链接。

注意事项:强调在分享资源时需要注意的版权问题、隐私保护以及信息安全等问题。

4. 实用技巧与工具
快捷键操作:介绍一些常用的文件管理快捷键,如Ctrl+C(复制)、Ctrl+V(粘贴)、Ctrl+X(剪切)等,提高操作效率。

文件搜索:演示如何使用计算机的搜索功能快速找到所需文件。

专业软件推荐:根据学生需求推荐一些专业的文件管理软件或工具,如Evernote、OneNote等。

三、课堂实践
1. 分组实践
将学生分成若干小组,每组分配一个主题或项目任务,如“整理班。

信息化资源应用计划表

信息化资源应用计划表

信息化资源应用计划表第一篇:信息化资源应用计划表信息化资源应用计划表知识点 1 2 3 45资源名称素材类型水平来源使用时间应用方式和作用说明:(1)水平:知识和技能的掌握水平,分为识记,理解,应用,分析,综合,评价(2)名称:为此知识点的信息化资源起一个名字(3)类型:指图形/图像、视频、音频、文本、动画(包括Flash),或者上述几类的组合,比如:“图+文+声”,注,可以自定义其他类型(一般以超级链接的形式来集成中演示型课件中),如认知工具类(4)来源:开发、现有、现有需修改、下载(5)使用时间:资源在课堂教学中使用的时间(6)应用方式:该资源在教学中如何使用?它起什么作用?第二篇:资源应用计划表资源应用计划表(注:只有需要用到信息化资源的知识点才需要填写此表)知识点 1感知莲花 2朗读全文资源名称情感体验莲花《爱莲说》朗读录音素材类型图像水平感知与体验来源下载使用时间2分钟应用方式和作用情景导入,激发动机录音识记下载 3分钟配乐朗读,陶冶性情3文言词语积累重点语句注释图像文本识记开发 3分钟教师讲解,学生巩固4体会莲的品质莲的君子品格动画文本理解分析开发 5分钟教师讲解,学生巩固资源内容描述说明(请详细说明此知识点信息化资源的主要内容,此表需要与教学设计紧密挂钩,同时在收集、下载、处理和开发素材的过程中不断修改与完善):(样式:资源名称,主要内容)1、情感体验莲花,6幅莲花图,保存在素材文件下,文件名为“情感体验莲花.bmp”2、《爱莲说》朗读录音,音频格式,长度1分50秒。

保存在素材文件下,文件名为“《爱莲说》朗读录音.wav”3、重点语句注释,文本,保存在素材文件下,文件名为“重点语句注释.doc”4、莲的君子品格,动画,主要内容是课文理解。

保存在素材文件下,文件名为“莲的君子品格.doc”说明:(1)水平:知识和技能的掌握水平,分为识记,理解,应用,分析,综合,评价(2)名称:为此知识点的信息化资源起一个名字(3)类型:指图形/图像、视频、音频、文本、动画(包括Flash),或者上述几类的组合,比如:“图+文+声”,注,可以自定义其他类型(一般以超级链接的形式来集成中演示型课件中),如认知工具类(4)来源:开发、现有、现有需修改、下载(5)使用时间:资源在课堂教学中使用的时间(6)应用方式:该资源在教学中如何使用?它起什么作用?第三篇:资源应用计划表资源应用计划表(注:只有需要用到信息化资源的知识点才需要填写此表)知识点感知教学内容感知教学内容理解含义深刻的语句理解含义深刻的语句拓展阅读资源名称 1作者生平简介素材类型音象文本水平识记来源下载使用时间应用方式和作用播放—默读创设情景激发兴趣2课文朗读音象文本理解下载 8 播放—感受欣赏陶冶整体感知3导读问题及词句品析答案 4课文分析展示五次擦火柴文本文本分析自制 5 出示—讲析设难质疑引起思辨综合下载 5 出示—讨论—总结突破化解教学难点5拓展资料文本6习题训练文本应用现有需修改出示—讨论—感悟培养情感提高认知小练笔评价现有需修改出示—总结知识巩固课外延伸资源内容描述说明(请详细说明此知识点信息化资源的主要内容,此表需要与教学设计紧密挂钩,同时在收集、下载、处理和开发素材的过程中不断修改与完善):(样式:资源名称,主要内容)说明:(1)水平:知识和技能的掌握水平,分为识记,理解,应用,分析,综合,评价(2)名称:为此知识点的信息化资源起一个名字(3)类型:指图形/图像、视频、音频、文本、动画(包括Flash),或者上述几类的组合,比如:“图+文+声”,注,可以自定义其他类型(一般以超级链接的形式来集成中演示型课件中),如认知工具类(4)来源:开发、现有、现有需修改、下载(5)使用时间:资源在课堂教学中使用的时间(6)应用方式:该资源在教学中如何使用?它起什么作用?第四篇:资源应用计划表演示型课件资源应用计划表(注:凡是需要用到信息化资源的知识点才需要填写此表)知识点牛顿第一定律2力是改变物体运动状态的原因资源名称认识牛顿素材类型视频+图片+文本水平感知与体验识记来源下载使用时间 3分钟应用方式和作用情境导入,激发动机时动时静的滚摆视频+文本下载3分钟自主阅读,开阔视野资源内容描述说明(请详细说明此知识点信息化资源的主要内容,此表需要与教学设计紧密挂钩,同时在收集、下载、处理和开发素材的过程中不断修改与完善):(样式:资源名称,主要内容)1.2.认识牛顿,一段MP3视频,长度约5分钟,流量不超过256KB/s,主要内容是认识牛顿的生平大事及主要贡献,保存在素材文件下,文件名为“认识牛顿.mp3” 时动时静的滚摆,图片:滚摆,大小600*960,jpg格式,文件名为“时动时静的滚摆”;文本:滚摆是生活中常见的一种工具……,保持到素材文件下。

2021年2004年春季多种媒体教学资源使用计划总表(摘自中央电大)(整理

2021年2004年春季多种媒体教学资源使用计划总表(摘自中央电大)(整理
中国通史课程学习指导书
文字(辅)
99年第一版
林丙义
选修
高等教育出版社
中央电大出版社发行部
48
中国通史(1)
中国通史(上)
文字(主)
96年第一版
林丙义
选修
高等教育出版社
中央电大出版社发行部
49
中学心理学
中学心理学
文字(主)
93年第一版
陈安福
统必
高等教育出版社
中央电大出版社发行部
50
中学心理学
中学心理学辅导
18
大学英语III(1)
英语教学参考书5
文字(辅)
01年第一版
孔庆炎等
统必
高等教育出版社
中央电大出版社发行部
24
小学儿童教育心理学
小学儿童教育心理学
文字(主)
02年第一版
郭德俊
统必
中央电大出版社
中央电大出版社发行部
30
工程数学(本)
大学数学-线性代数
文字(主)
02年第一版
李林曙
统必
中央电大出版社
中央电大出版社发行部
31
工程数学(本)
大学数学-概率论与数理统计
文字(主)
02年第一版
李林曙
统必
中央电大出版社
中央电大出版社发行部
34
广告学概论
广告学概论
文字(主)
01年第一版
张金海
统必
中央电大出版社
中央电大出版社发行部
40
中国法制史
中国法制史
文字(主)
03年第一版
蒲坚
统必
中央电大出版社
中央电大出版社发行部
47

资源工作计划PPT

资源工作计划PPT

1 2
制定评估周期
设定合理的评估周期,如季度、半年或一年。
收集与分析数据
全面收集资源使用数据,进行深入分析,找出问 题所在。
3
反馈与整改
将评估结果反馈给相关部门,督促其进行整改和 优化。
根据实际情况调整资源计划
调整资源配置
01
根据实际需求,对资源进行合理调配,确保资源充分利用。
优化使用策略
02
针对使用过程中出现的问题,优化资源使用策略,降低浪费。
建立风险应对预案
应急储备
建立资源应急储备,以应对供应链中断等突 发情况。
跨部门协作
加强与其他部门沟通协作,共同应对资源风 险。
替代方案
制定替代资源方案,确保在主资源供应不足 时,能够迅速切换。
持续改进
定期评估风险管理效果,总结经验教训,持 续改进应对措施。
06
资源工作计划的持续优化 与改进
收集反馈意见,持续改进计划
人力资源调配
根据项目进度,合理安排人员入场、退场及轮班 制度。
物资调配
制定物资采购、运输、存储、发放等管理流程。
资金调配
确保项目资金来源稳定,制定资金拨付计划和成 本控制措施。
确保资源供应的稳定性
供应商选择
挑选信誉良好、质量可靠的供应商,签订长期合作协议。
库存管理
建立库存预警机制,确保物资供应充足,防止因短缺影响项目进度 。
成本控制
在项目实施过程中,加强成本控制 ,降低不必要的支出,提高资金使 用效率。
03
资源计划制定
明确资源类型与数量
人力资源
根据项目需求,明确各类专业人 员的数量及技能要求。
物资资源
列出项目所需设备、材料、零部 件等的种类与数量。

刘红军_企业资源计划(ERP)原理及应用第2章

刘红军_企业资源计划(ERP)原理及应用第2章

ERP原理及应用
3. 第3层次——主生产计划
主生产计划(Master Production Schedule,MPS)
根据客户合同和预测,把销售与运作规划中的产品系列 具体化,确定出厂产品,使之成为展开MRP与CRP运算的主 要依据,起了从宏观计划向微观计划过渡的承上启下作用。
MPS又是联系市场、组装厂或配套厂及销售网点(面向 企业外部)同生产制造(面向企业内部)的桥梁,起了沟 通内外的作用;
• 特点是适宜于类别比较多的分类。综合码一般用于需要多 方面分类,而项目内容长时间稳定的代码。
ERP原理及应用
②文字码
✓ 一般文字码。项目以英文字母编号表示项目名的代码。 如 A——铣床,B——磨床 这种码要比数字码0—9所表示的项目类型多,但书写不 方便,也不利于计算机处理。适用于码位数不多而要求 分类多的使用文字的代码。
ERP原理及应用
2.物料的管理特性
同一性:不同性质的物料均同一地以“物料”对待, 在物料主文件里统一编码存放。
相关性:任何物料因为某些因素而存在,相互之间 存在着一定的依存关系。
流动性:物料总是从供应向需求的方向流动,是物 料相关性的必然结果。
价值性:采购要付货款,库存要占用资金,保管保 险也要发生费用。对于一些无直接价格表现的资源 要素,要进行价值化处理。
尾数码。项目末位用具有一定意义的数字来表示项目名。 如 0489的末位表示单位:1——个,2——打,3——
箱。 Ÿ 尾数码一般用于需说明意义的分类代码。
ERP原理及应用
➢ 综合码。综合码是以上各种码的组合。综合码是用各种不 同编码方式组合来表示项目名的代码。
如8 1 1 0 0 1
|
|
年份 入库

C. 2002, ‘Optimal crop planning and conjunctive use of water resources in a coastal river

C. 2002, ‘Optimal crop planning and conjunctive use of water resources in a coastal river

Water Resources Management16:145–169,2002.145©2002Kluwer Academic Publishers.Printed in the Netherlands.Optimal Crop Planning and Conjunctive Use of Water Resources in a Coastal River BasinLAXMI NARAYAN SETHI1,D.NAGESH KUMAR2∗,SUDHINDRA NATH PANDA1and BIMAL CHANDRA MAL11Agricultural and Food Engineering Department,Indian Institute of Technology,Kharagpur-721302,India2Civil Engineering Department,Indian Institute of Science,Bangalore560012,India(∗author for correspondence)(Received:25June2001;accepted:2March2002)Abstract.Due to increasing trend of intensive rice cultivation in a coastal river basin,crop planning and groundwater management are imperative for the sustainable agriculture.For effective manage-ment,two models have been developed viz.groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types(saline and non-saline),type of agriculture(rainfed and irrigated)and seasons(monsoon and winter).A groundwater balance model has been developed considering mass balance approach.The components of the groundwater balance considered are recharge from rainfall,irrigated rice and non-ricefields,baseflow from rivers and seepageflow from surface drains.In the second phase,a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic re-turns.The models developed were applied to a portion of coastal river basin in Orissa State,India and optimal cropping pattern for various scenarios of riverflow and groundwater availability was obtained.Key words:groundwater balance,linear programming,optimum cropping,salinity and permissible mining allowance,water resources management1.IntroductionIn view of the ever-increasing human population,intensive rice cultivation and non-availability of canal water in the coastal humid regions of eastern India,the groundwater resources are under high pressure of deterioration in quantity and quality.The deterioration of the groundwater quality is the result of intrusion of seawater into the aquifers due to lowering of fresh groundwater level caused by ex-cessive groundwater abstraction.Due to increasing water scarcity,greater attention is being given to water management in irrigated as well as in rainfed agriculture.A farmer at the start of each irrigation season needs to have optimum cropping pattern and irrigation programs,which will maximize the economic return.Under these circumstances there is an urgent need to introduce efficient techniques in land146LAXMI NARAYAN SETHI ET AL. and water resources management for optimal utilization of the available land and water resources.A number of simulation and optimization models have been applied in the past to decide planning and operating strategies for irrigation reservoir systems(Kumar and Pathak1989;Vedula and Mujumdar,1992).Rao et al.,(1990)developed a model for optimal weekly irrigation scheduling policy for two crops by considering both seasonal as well as intra seasonal competition for water.Vedula and Nagesh Kumar(1996)developed a mathematical programming model to determine the steady state optimal operating policy and the associated optimal crop-water al-locations to all the crops for a single purpose irrigation reservoir,combining linear programming in the intraseasonal period and stochastic dynamic programming in inter seasonal period.Most farming situations are concerned with several crops grown in the same season.Both allocations of land and water resources under a multi-crop situation in a season should be considered(Paul et al.,2000).Paul et al.,(2000)developed optimal resources allocation strategies for a canal command in the semiarid region of India in a stochastic regime,considering the competition of crops in a season, both for irrigation water and area of cultivation.The development of optimization models for improved water management ex-panded rapidly in the last decade.Linear programming is used for multiple crop models and dynamic programming for a single crop model.In irrigated agricul-ture,where various crops are competing for a limited quantity of land and water resources,linear programming is one of the best tools for optimal allocation of land and water resources(Smith,1973;Maji and Heady,1980;Loucks et al.,1981; Yaron and Dinar,1982:Pleban,et al.,1983;Tyagi and Dhruva Narayana,1984; Chavez-Morales,et al.,1987;Loftis and Houghtalen1987;Sritharan,et al.,1988; Afshar and Marino,1989;Mayya and Prasad,1989;Paudyal and Gupta,1990; Kaushal,et al.,1985;Panda et al.,1996;Sethi,2001).In recent years considerable attention has been given to problems associated with groundwater management and salinity control.Groundwater management has been studied from different view points,e.g.,the economic control of groundwater management under institutional restrictions(Burt,1970),the conjunctive manage-ment of groundwater and surface water(Cummings and Winkle,1974,Khepar and Chaturvedi,1982,Panda et al.,1985)and groundwater management and salinity control(Cummings and Winkle,1974,Hallaji and Yazicigil,1996).Water resources management is generally done by water balance for crop plan-ning.In the present study the optimal cropping pattern and area allocation with respect to availability of water resources(both surface and groundwater)were obtained for different seasons by developing an optimization model.Water balance model has also been developed using the methods of Satish Chandra and Saxena (1975)and Panda et al.(1996)considering mass balance approach.In addition to the rational water use,there is need for selecting economically viable cropping pattern for a given area with available resources.Such cropping pattern can beOPTIMAL CROP PLANNING AND CONJUNCTIVE USE OF WATER RESOURCES147 obtained through the use of optimization models.The optimal cropping pattern was obtained for different soil types(saline and non-saline),type of agriculture(rainfed and irrigated)and seasons(monsoon and winter)using Linear Programming(LP) model.The objective of the LP model is tofind the maximum annual net return from different cropping patterns and areas for all types of agriculture(rainfed and irrigated)under different soil types.This optimization is subject to various constraints such as surface and groundwater availability and their mass balance, cropping pattern restrictions.These models were applied to a portion of coastal river basin in Orissa State,India.The study was undertaken with a view to assist in taking decisions about crop planning and groundwater management.2.Study AreaThe study area,a portion of coastal river basin in India,is situated within the north latitude of21◦27 0 to21◦45 45 and east longitude of86◦56 15 to87◦20 30 spanning over an area of1066square kilometers,out of which833.15square kilometers is cultivable land(Figure1).The area is situated in three administrative blocks,namely,Balasore Sadar,Basta and Baliapal of Balasore district in Orissa State,India.The study area is bounded on the north and the south by two rivers(Subarn-arekha and Budhabalang),on the east by Bay of Bengal and on the west by hilly areas of Mayurbhanj district of Orissa State.The area can be categorized into three distinct morphological units viz.saline marshy tract along the coast,the gently slopping alluvial plain in the central part and the hilly region in the western parts. The saline marshy tract forms a long and narrow strip along the coast.The width of this tract varies from3to5km and is intersected by a good number of tidal streams and is covered by shrubby vegetation.The gently sloping alluvial plain is situated to the west of the saline marshy tract and is the most fertile part of the area.The general slope of this tract is towards east and southeast and varies from0.57to1.33 m per km.The hilly region in the western part is an extension of the Eastern Ghats mountain range.These hill ranges are trending roughly in the northeast-southwest direction.The maximum elevation in this region is40m above mean sea level. The climate of the area is characterized by tropical monsoon climate having three distinct seasons viz.monsoon,winter and summer.The average annual rainfall of the region varies between1500–2000mm,two third of which occurs in monsoon season between mid-June and mid-September.During this period,a large volume of rainwater from the ricefields discharges into the sea through surface drains and rivers.In this process,a huge quantity of fertile soil nutrients and applied fertilizers are drained into the sea.A study of the existing cultivation practices reveals that the farmers usually grow crops in two seasons(monsoon and winter) in both rainfed and irrigated areas.Farmers normally grow rice as a principal crop.Apart from rice,pulses,oilseeds and vegetables are the other crops grown during monsoon and winter seasons.In summer season there is no cultivation in148LAXMI NARAYAN SETHI ET AL.Figure1.Location map of study area.the area.In the various seasons the cropping area does not remain the same.This is due to the uncertainty of rainfall,scanty water resources,uncontrolled grazing of animals,management problems due to considerable distance from the farmers’houses,theft possibilities of high valued crops and other socio-economic problems. The only sources of water available for irrigation are the groundwater and the river water from Subarnarekha and Budhabalang.In the study area,no canal irrigation system is available.The structures used for irrigation are the government owned deep tubewells(more than60m)and private shallow(less than20m)and mini-deep tubewells(between20and60m)and river lifts.Cost of groundwater from government owned deep tubewells(here afterwards referred as government tube-OPTIMAL CROP PLANNING AND CONJUNCTIVE USE OF WATER RESOURCES149 wells)is subsidized by the state government.Therefore,groundwater abstraction is intensive in the rice-cultivated areas.If the present increasing trend of groundwater abstraction continues,it may further lead to decline in groundwater table,seawater intrusion,and non-functioning of shallow tubewells operated by centrifugal pumps. So,a farmer at the start of each irrigation season needs to have optimum cropping pattern and irrigation program to maximize his economic returns.3.Model DevelopmentTwo models,viz.groundwater balance model and optimum cropping and ground-water management model are developed to determine the optimum cropping pat-tern and groundwater allocation corresponding to different soil type(saline and non-saline),type of agriculture(rainfed and irrigated)and seasons(monsoon and winter).3.1.GROUNDWATER BALANCE MODELGroundwater balance is an important aspect of any study on allocation of water resources,planning and management.The objective of the groundwater balance model is to regulate the groundwaterflow system so as to prevent the water table from rising too close and/or declining too far from the root zone of the crops.This amounts to increasing or reducing the groundwater discharge at different locations as per requirement.The simplest form of groundwater balance equation is given by:S=TGR r–TGD d(1) in which S=change of groundwater storage,m3;TGR r=total groundwater recharge,m3;and TGD d=total groundwater draft,m3.3.1.1.Groundwater RechargeGroundwater recharge consists of recharge from rainfall,seepageflow from surface drains,baseflow from rivers,deep percolation from irrigated rice and non-rice areas.However,seepage fromfield drainage channels and conveyance system has been neglected.The annual groundwater recharge(starting of monsoon season to end of winter season)has been estimated by using the following equation: TGR r=R r+GR p+GR np+BF+SF(2)in which R r=recharge to the groundwater from rainfall,m3;GR p=recharge to the groundwater from irrigated rice area,m3;GR np=recharge to the groundwater from irrigated non-rice area,m3;SF=seepageflow to the study area from drains, m3;and BF=baseflow to the area from the rivers,m3.150LAXMI NARAYAN SETHI ET AL. Recharge from RainfallTo compute the recharge from rainfall,ten years monthly rainfall data of the study area was collected from the Central Water Commission office,Balasore,Orissa. Annual groundwater recharge(cm)from rainfall in cm was calculated using the following equation given by Satish Chandra and Saxena(1975).R r=3.984(R av–40.64)0.5(3) in which R av=average annual rainfall of the area,cm.Recharge from Irrigated FieldsRecharge from irrigatedfields including losses infield channels was estimated us-ing the norms recommended by the Groundwater Estimation Committee(1984)as follows.The different percentages of seepage and percolation in cropfields adopted are based on the studies conducted in similar areasa)Recharge from irrigated rice area(GR p):35to64%of tubewell dischargeb)Recharge from irrigated non-rice area(GR np):30to36%of tubewell dis-chargeIn the present study recharge from tubewells and from river lift irrigatedfields (including losses infield channels)for rice and non-ricefields are taken as55and 30%,respectively.Base Flow from RiversIn the present study,the major groundwater recharge contribution is the baseflow from Subarnarekha and Budhabalang rivers.Until recently,the common methods used for estimation of baseflow are direct-measurement method,the curve tangent method,the basin area method and the chemical and isotope method(Delleur, 1998).In the present study,direct-measurement methodology has been used for estimation of the baseflow from rivers,where an accurate estimate of hydraulic conductivity of the soils of the riverbeds was obtained using Falling Head Per-meameter method in the laboratory.The Darcy’s law was used to estimate the base flow from rivers considering the annual average groundwaterflow gradient on both sides of the rivers and the cross-sectional area through whichflow takes place. Seepage Flow from DrainsSeepage from drains depends on factors like seepage rate,wetted perimeter,length of drains contributing to seepage and the number of days water remains in the drains.Due to unavailability of data related to estimation of the seepage from drains,it was computed considering run off available in drains as40%of the total rainfall(Sarma et al.,1983).Seepageflow from drains to groundwater was assumed as8%of the total run off available in drains(Satish Chandra and Saxena, 1975).OPTIMAL CROP PLANNING AND CONJUNCTIVE USE OF WATER RESOURCES151 Table I.Existing seasonal water resources systems and the extraction from the water resourcesName of Structures Number Average Operating Total draft(Mm3) sources discharge hours(m3s−1)(h day−1)Mon-Win-Mon-Win-Monsoon Wintersoon ter soon terSurface River lift15370.020912 1.12 3.84 waterGovernment200(4)507(4)0.040121442.30130.95tubewellGround-Private shallow962400.0061012 2.997.47 water tubewellPrivate107(45)335(45)0.025121219.7051.62mini-deeptubewellSource:Lift Irrigation Corporation,Balasore,Orissa,India.Note:Figures in the parenthesis indicate number of structures in saline area.3.1.2.Groundwater DischargeGroundwater discharge consists of draft from tubewells and evaporation from ground-water,which is given by:TGD d=GD t+GD e(4) in which GD t=groundwater draft from tubewells,m3;GD e=evaporation from groundwater,m3.Groundwater DraftPrivate shallow and mini-deep tubewells and government deep tubewells in the study area are being used for pumping the groundwater.The number of tubewells varies in different years.The year-wise groundwater draft is based on discharge, number of wells and duration of operation of wells in each season(Table I). Evapotranspiration from GroundwaterEvapotranspiration from groundwater is difficult to be evaluated.In the study area the average groundwater level varies from3to9m below surface.The evapotran-spiration from groundwater is assumed negligible due to high depth of water table from the surface and absence of deep-rooted forest plants.152LAXMI NARAYAN SETHI ET AL.3.2.OPTIMAL CROPPING AND GROUNDWATER MANAGEMENT MODELThe objective of the model is to maximize the net annual return from the study area considering the returns from crop but excluding the irrigation cost.The de-cision variables of the models are seasonal area allocation to crops and surface water and groundwater application for crop production.The rainfall and irrigation requirement of crops,which are inputs to the model,are considered as stochastic variables.3.2.1.Objective FunctionThe objective function consists of maximizing the net annual return(Z)from the coastal river basin subject to constraints on the availability of water and other inputs.MaxZ=2i=12j=12k=1nc=1a ijkc A ijkc−2i=12j=12k=1C RWijkRW ijk+(1+L r)C GW PijkGW P ijk+C GW GijkGW G ijk(5)in which i=soil type,i=1for coastal saline soil and i=2for inland non-saline soil;f=type of agriculture,j=1for rainfed agriculture and j=2for irrigated agriculture;k=crop growing season,k=1for monsoon season,and=k=2for the winter season;c=1,2...,n;n=number of crops;a ijkc=net return(excluding the cost of irrigation water)for crop c grown in season k of j th type of agriculture in soil type i(Rs ha−1)(US$1≈Indian Rupees,Rs.48);A ijkc=area allocated to crop c grown in season of k of j th type of agriculture in soil type i(ha);C RWijk=cost of lifting river water(RW)in season k for j th type of agriculture in soil type i(Rs ha-m−1);RW ijk=river water allocated in season k for j th type of agriculture in soiltype i(ha-m);C GW Pijk=cost of groundwater from private tube well(P)in season k for j th type of agriculture and in soil type i(Rs ha-m−1);GW P ijk=groundwater pumped from private tube wells in season k for j th type of agriculture in soil typei(ha-m);C GW Gijk=cost of groundwater from government tube well(G)in season k for j th type of agriculture and in soil type i(Rs ha-m−1);GW G ijk=groundwater pumped from government tube well in season k for j th type of agriculture in soil type i(ha-m);and L r=leaching requirement(fraction).3.2.2.ConstraintsMaximization of the objective function is subject to the following constraints. 1.Water Allocation ConstraintThe expected irrigation requirements of all the crops must be fully satisfied during all the seasons from the available surface and groundwater resources and rainfallOPTIMAL CROP PLANNING AND CONJUNCTIVE USE OF WATER RESOURCES153 for both rainfed and irrigated agriculture of the coastal saline and non saline soil areas.2 i=12j=1nc=1NIR ijkc A ijkc−2i=12j=1α1(β1RW ijk++GW P ijk+GW G ijk)≤0for all k;(6)in which NIR ijkc=net irrigation requirement of crop c,grown in season k for j th type of agriculture in soil type i(m);α1=(1-θ2)=field water application efficiency(fraction);θ2=field water application loss(fraction);β1=(1-θ1)= conveyance efficiency of river lift system(fraction);andθ1=conveyance loss of river lift system(fraction);nd Area ConstraintLand allocated to various crops during the monsoon and winter seasons must not exceed the available cultivable area for all types of agriculture and the soil types.2 i=12j=1nc=1A ijkc≤TA k for all k(7)in which TA k=total land area available in season k(ha);3.Water Availability ConstraintsThe availability of water for irrigation from the surface water source is limited.So allocation of surface water must not exceed the available surface water during a season.Similarly for groundwater resources,tube well water allocation must not exceed the availability of groundwater during the season for the corresponding type of agriculture and also the type of soil.(a)River Water2 i=12j=1RW ijk≤ARW k for all k(8)(b)Groundwater2 i=12j=1(1+L r)(GW P ijk+GW G ijk)≤AGW k for all k(9)in which ARW k=total available river water in season k after allowing for losses (ha-m);and AGW k=total available groundwater in season k after allowing for losses(ha-m).154LAXMI NARAYAN SETHI ET AL.Figure2.Flow chart of groundwater balance for the study area.4.Hydrologic Balance of aquiferThe proper hydrologic balance of groundwater aquifer will help in keeping the water table at balanced position.Thus a hydrologic balance constraint should be satisfied(Figure2).Neglecting run-off,seepage fromfield drainage channels and evaporation losses and rainfall contribution to the water delivery systems during conveyance,the following expression is obtained.2 i=12j=12k=1GW P ijk+GW G ijk)−θ1RW ijk+θ3E(R)A ijk+θ2(β1RW ijk+GW P ijk+GW G ijk−BF−SF≤PMA(10)By rearranging2 i=12j=12k=1(1−θ2)(GW Pijk+GW G ijk)−(θ1+θ2β1)RW ijk≤PMA+BF+SF+θ3E(R)A ijk(11)in whichθ3=rainfall recharge(fraction);E(R)=expected annual rainfall(m);SF =seepage loss to the study area from the drain(ha-m);BF=seepage loss to the study area from the river(ha-m);PMA=permissible annual mining allowance of the aquifer(ha-m);and A=cultivable area under considerations(ha). Permissible annual mining allowance is determined as follows:PMA= h×A×Y(12) in which h=permissible annual average groundwater tablefluctuations(m);and Y=specific yield of aquifer(fraction).5.Minimum/Maximum Allowable AreaManagement considerations restrict some minimum and/or maximum value for irrigated areas under certain crops to meet the local food requirement.a)For Maximum areaA ijkc≤µmax ijkc T A ijkc(13-a) b)For Minimum areaA ijkc≥µmin ijkc T A ijkc(13-b)=factor by which existing area of crop c can be increased in season in whichµmaxijkc=factor by which existing area of k for j th type of agriculture and soil type i;µminijkccrop c can be decreased in season k for j th type of agriculture and soil type i and TA ijkc=area of crop c as per existing pattern in season k for j th type of agriculture and soil type i(ha).6.Non-negativityA ijkc≥0;RW ijk≥0;GW P ijk≥0;and GW G ijk≥0for all i,j,k,and c(14a-d)4.Estimation of Model InputsThe model inputs include determination of the water resources data,leaching frac-tion,net irrigation requirement of crops at different probability of exceedances,net return of crops and permissible mining allowance.4.1.WATER RESOURCESIn the study area,the sources of water available for irrigation purpose are river water and groundwater.Although the river water is of good quality,it falls short of the irrigation requirement of the area adjoining the river due to very few river lift-pumping units installed by government.The average electrical conductivity of thegroundwater is3.75dS m−1(deci Siemen/meter)in the saline area.The structures used for irrigation are the river lifts and government owned tubewells and private (shallow and mini deep)tubewells.The river water is supplied through37river lift irrigation schemes in the study area,which are programmed for different seasons (monsoon and winter)and soil type(saline and non-saline)according to demand. Details of river lift and groundwater pumping sources are given in Table I.4.2.LEACHING REQUIREMENTThe upper aquifer of coastal saline area is of poor quality not suitable for irrigation whereas deeper aquifer is suitable for all purposes due to which all the mini-deep and deep tubewells are installed in the said layer.The leaching requirement(L r) can be calculated based upon the electrical conductivity of irrigation water in salt affected areas(EC iw)and threshold value of the electrical conductivity of irrigation water(EC th)for crop tolerance as follows:Lr=EC iwEC th(15)in which EC iw=electrical conductivity of irrigation water(dS m−1);and EC th= threshold electrical conductivity of water draining from the root zone(dS m−1). 4.3.IRRIGATION REQUIREMENT OF CROPSCrops grown in study area during monsoon season are rice(Oryza sativa),maize (Zea mays),sweet potato(Ipomoea batatas)and pigeon pea(Cajanus cajan)whereas winter season crops are rice,wheat(Triticum aestivum),groundnut(Arachis hy-pogaea),mustard(Brassica juncea),black gram(Phaseolus mungo),green gram (Phaseolus aureus),onion(Allium cepa),and garlic(Allium sativum).Various methods are available to estimate the reference crop evapotranspiration (ET o)(Doorenbos and Pruitt,1977;Allen et al.,1998).Based on the availability of meteorological data of the study area,the Hargreaves and Samani(1985)method of estimating ET o was selected as given below:ET o=0.0135R sl(T mean+17.8)(16) in which ET o=reference evapotranspiration in a given period(month)(mm/month); R sl=incoming short-wave solar radiation in the considered period(mm/month); T mean=mean temperature(T max+T min)/2;T max=monthly maximum air temper-ature(◦C);T min=monthly minimum air temperature(◦C).R sl=0.16R a(T max−T min)0.5(17) in which R a=extra terrestrial solar radiation(mm/month).Now,the crop evapotranspiration(ET c)is calculated using the following equa-tion,ET c=k c ET o(18) where,k c=crop coefficient.The crop coefficient(k c)values for each crop were obtained from literature (Doorenbos and Pruitt,1977and Allen et al.,1998).The U.S.Department of Agriculture(USDA)Soil Conservation Service(SCS)method(Dastane,1977)was used to determine the effective rainfall.The total depth of net irrigation requirement of crop that needs to be applied to meet the crop demand can be estimated from the following equation:NIR=ET c−E R(19) in which NIR=net irrigation requirement in a given month,mm/month;and E R= effective rainfall in the given month,mm/month;The seasonal net irrigation requirement(NIR)of crops has been computed by adding the monthly NIR of crops corresponding to the months in the growing season.4.4.PROBABILITY OF EXCEEDANCE(PE)The daily rainfall and temperature of the study area for10yr(1991–2000)was collected and converted to monthly values.These values were used to predict the expected monthly rainfall and evapotranspiration at different probability levels. The values were entered in the database of SMADA package(Statistical Model for Analysis of Distribution function)considering Weibull’s distribution as ref-erence andfitted to different probability functions.From the best-fit distribution (in this case,normal distribution),the value of the monthly-expected reference evapotranspiration at10,20,30,40,50,60,70,80,and90%probability levels could be obtained.Based on these values,the net irrigation requirements(NIR)of crops at various probability levels of exceedance(PE)were computed for both the growing seasons,and are shown in Figures3and4for monsoon season and winter season respectively.The optimal annual returns at different probability levels of NIR and the optimal groundwater allocation are computed by assuming that all the components of the groundwater balance taken in the calculations are correct. RETURNS OF CROPSThe net return from the cultivation of selected crops per unit area of farming was calculated by considering the potential yield from the crops.The variation of net return excluding irrigation water cost depends upon the type of soil,agriculture and the crops with their corresponding yield,market price and the cost of cultivation.Figure 3.Variation of net irrigation requirement of crops with different probability of exceedance level during monsoon season.The potential yield values of the study area were collected from the Agriculture De-partment,Government of Orissa.The cost of production of various crops excluding the cost of irrigation water was obtained from the budget for monsoon and winter crops suggested by the Department of Statistics and Economics,Orissa,India.The net returns excluding the irrigation water cost for crop c,season k,agriculture type j and soil type i were determined based on these inputs(Table II).4.6.PERMISSIBLE MINING ALLOWANCEPermissible mining allowance(safe yield)is the upper limit of groundwater pump-ing without creating adverse effect on groundwater management.Adverse effect may be either declining or rising of groundwater table or intrusion of poor quality water either from sea(salt water intrusion)or from adjoining aquifer due to creation of adverseflow gradients.The groundwater should be managed so that the aver-age depletion does not exceed the permissible mining allowance.The permissible mining allowance(PMA)is calculated using Equation12.。

(完整版)资源分配计划及资源计划表

(完整版)资源分配计划及资源计划表

(完整版)资源分配计划及资源计划表1. 引言本文档旨在描述资源分配计划及资源计划表,以确保项目的顺利进行。

资源分配计划是指在项目执行过程中,合理分配和利用各种资源的计划。

资源计划表则是对这些资源进行详细规划和记录的表格。

2. 资源分配计划资源分配计划包括以下几个方面的内容:2.1 人力资源分配根据项目需求和工作任务的复杂程度,确定所需的人力资源数量和技能要求。

将合适的人员分配到相应的岗位,并确保他们具备所需的培训和技术支持。

人力资源分配应兼顾项目进度、工作质量和成本效益。

2.2 资金资源分配根据项目的预算和经费安排,合理分配和利用资金资源。

确保项目开支与实际情况相符合,并及时进行预算调整和财务监控。

资金资源分配应遵守相关法规和内部控制要求,确保资金使用的合规性和透明度。

2.3 物资资源分配根据项目需求,确定所需的物资资源种类、数量和质量标准。

与供应商建立合作关系,确保物资的及时供应和质量保证。

物资资源分配应充分考虑项目需求的稳定性、灵活性和成本效益。

2.4 技术资源分配根据项目的技术需求和要求,确定所需的技术资源类型和规模。

确保项目团队拥有必要的技术设备、软件工具和专业知识。

技术资源分配应关注项目的技术支持和协同工作能力,以提高项目的执行效率和成果质量。

3. 资源计划表资源计划表是对资源分配计划的详细记录和规划。

表格的列项包括资源类型、数量、负责人、分配日期、预算和实际支出等内容。

通过资源计划表,可以清晰了解资源的状况和使用情况,及时进行资源的调整和优化。

以下是一个资源计划表的示例:4. 结论资源分配计划及资源计划表是确保项目顺利进行的重要工具和依据。

通过合理的资源分配和详细的资源记录,可以更好地管理和控制项目的进展和成果。

在项目执行过程中,应不断优化和调整资源的分配,以适应实际情况和需求变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
演示型课件资源应用计划表
(注:凡是需要用到信息化资源的知识点才需要填写此表)
知识点
资源名称
素材类型
水平
来源
使用时间应用方式和作用1、BS的概念电脑文本
理解
开发
5
演示、理解记忆
2、用户名
电脑
文本
应用
开发
15
演示、实际应用
3、交流
电脑
文本
应用,综合
开发
20
演示、实际应用
4
5
资源内容描述说明(请详细说明此知识点信息化资源的主要内容,此表需要与教学设计紧密挂钩,同时在收集、下载、处理和开发素材的过程中不断修改与完善):
(样式:资源名称,主要内容)
说明:
1)水平:知识和技能的掌握水平,分为识记,理解,应用,分析,综合,评价
2)名称:为此知识点的信息化资源起一个名字
3)类型:指图形/图像、视频、音频、文本、动画(包括flash),或者上述几类的组合,比如:“图+文+声”,注,可以自定义其它类型(一般以超级链接的形式来集成中演示型课件中),如认知工具类
4)来源:开发、现有、现有需修改、下载
5)使用时间:资源在课堂教学中使用的时间
6)应用方式:该资源在教学中如何使用?它起什么作用?
相关文档
最新文档