人教版九年级上册数学学案:24.1.2垂直于弦的直径(1)
人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。
本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。
教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。
但垂直于弦的直径这一性质较为抽象,学生可能难以理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。
三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。
2.培养学生的观察、思考、动手和合作能力。
3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。
四. 教学重难点1.垂直于弦的直径的性质及其证明。
2.灵活运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。
3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。
4.实践操作法:让学生动手操作,加深对性质的理解。
六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。
2.教学素材:准备相关的几何图形,便于学生观察和操作。
3.教学设备:投影仪、计算机、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。
2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。
3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。
4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。
5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。
人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计1

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计1一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册的一节重要内容。
本节内容主要介绍了垂径定理及其应用。
教材通过实例引导学生探究圆中垂直于弦的直径的性质,并运用这一性质解决一些实际问题。
本节内容既是前面所学知识的延续,也为后续学习圆的性质和圆的方程打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
但是,他们对圆的性质和应用的理解还不够深入。
因此,在教学过程中,教师需要从学生的实际出发,逐步引导学生理解和掌握垂径定理,并能够运用这一定理解决实际问题。
三. 教学目标1.让学生理解垂径定理的内容,并能够运用垂径定理解决一些实际问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.激发学生对数学的兴趣,提高他们的数学素养。
四. 教学重难点1.重难点:垂径定理的理解和运用。
2.难点:如何引导学生从实际问题中发现垂径定理的规律,并能够一般性地表述这一规律。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论、总结等方式发现和理解垂径定理。
2.运用多媒体辅助教学,通过动画演示和实例分析,帮助学生直观地理解垂径定理。
3.采用分组合作学习的方式,让学生在合作中发现问题、解决问题,培养他们的团队协作能力。
六. 教学准备1.准备相关的教学多媒体课件和教学素材。
2.准备一些实际问题,用于引导学生运用垂径定理解决实际问题。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考圆中垂直于弦的直径的性质。
例如,在一个圆形水池中,有一根绳子绕着水面漂浮,绳子的两端分别固定在圆形水池的两侧,求绳子的中点与水池中心的距离。
2.呈现(10分钟)通过多媒体展示垂径定理的证明过程,让学生直观地理解垂径定理。
同时,引导学生观察和思考垂径定理的适用范围和条件。
人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。
本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。
教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。
他们具备了一定的观察、分析和解决问题的能力。
但对于垂直于弦的直径的性质及其应用,可能还比较陌生。
因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。
三. 教学目标1.理解垂直于弦的直径的性质。
2.学会运用垂直于弦的直径的性质解决与圆有关的问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.垂直于弦的直径的性质。
2.运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。
2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。
3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。
六. 教学准备1.课件:制作课件,展示相关实例和问题。
2.练习题:准备一些与垂直于弦的直径性质有关的练习题。
3.圆规、直尺等画图工具:为学生提供画图所需的工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。
2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。
3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。
在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。
人教版数学九年级上册24.1.2 垂直于弦的直径 教案

24.1.2垂直于弦的直径●情景导入课件出示关于赵州桥的引例引例:你知道赵州桥吗?它是我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,现在有个人想要知道它主桥拱的半径是多少.同学们,你们能帮他求出来吗?学完了本节课的内容,我们一起来解决这个问题.【教学与建议】教学:通过赵州桥引例,导入圆的轴对称性及垂径定理.建议:学生提前收集有关圆的对称图形.●归纳导入(1)操作1:拿出准备的圆,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是__轴对称__图形,__任何一条直径所在直线__都是圆的对称轴.(2)操作2:将这个圆二等分、四等分、八等分.(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,沿垂线将纸片折叠;第四步,将纸打开,得到新的折痕,其中点M是两条折痕的交点,即垂足,新的折痕与圆交于另一点B,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?【归纳】垂直于弦的直径平分弦,并且平分弦所对的两条弧.【教学与建议】教学:通过对剪圆和折叠圆的操作,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质.命题角度1垂径定理及推论的辨析根据圆的轴对称性得到垂直于弦的直径所具有的性质.【例1】(1)如图,⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是(C)A.∠AOD=∠BOD B.AD=BDC.OD=DC D.AC=BC(2)下列命题中错误的命题有__②③④__.(填序号)①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③梯形的对角线互相平分;④圆的对称轴是直径.命题角度2直接利用垂径定理进行计算构造以半径、弦长的一半、弦心距为三边长的直角三角形,利用勾股定理求解.【例2】(1)如图,⊙O的半径OA=4,以点A为圆心,OA为半径的弧交⊙O于点B,C,则BC的长为(A) A.43B.52C.23D.32[第(1)题图][第(2)题图](2)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,则AC的长是__8-27__.命题角度3垂径定理的实际应用圆弧形拱桥等问题,常通过作辅助线,使之符合垂径定理的直角三角形,运用勾股定理求解.【例3】好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB 宽度16 m 时,拱顶高出水平面4 m ,货船宽12 m ,船舱顶部为矩形并高出水面3 m.(1)请你帮助小明求此圆弧形拱桥的半径;(2)小明在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.解:(1)连接OB .∵OC ⊥AB ,∴D 为AB 中点.∵AB =16 m ,∴BD =12AB =8 m .又∵CD =4 m ,设OB =OC =r ,则OD =(r -4)m.在Rt △BOD 中,根据勾股定理,得r 2=(r -4)2+82,解得r =10.答:此圆弧形拱桥的半径为10 m ;(2)连接ON .∵CD =4 m ,船舱顶部为矩形并高出水面3 m ,∴CE =4-3=1(m),∴OE =r -CE =10-1=9(m).在Rt △OEN 中,EN 2=ON 2-OE 2=102-92=19,∴EN =19 (m),∴MN =2EN =219 m <12 m ,∴此货船B 不能顺利通过这座拱桥.魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.(1)作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN ;(2)连接AN .并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C ;(3)连接BN .并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 的延长线于点D ;(4)以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆;(5)在OM 上作线段MF 等于NC ,以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.高效课堂 教学设计1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. ▲重点垂径定理、推论及其应用. ▲难点发现并证明垂径定理.◆活动1 新课导入1.请同学们把手中的圆对折,你会发现圆是一个什么样的图形? 答:圆是轴对称图形,每一条直径所在的直线都是圆的对称轴.2.请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?答:折痕是圆的一条弦,直径平分这条弦,并且平分弦所对的两条弧. ◆活动2 探究新知 1.教材P 81 探究. 提出问题:(1)通过上面的折纸,圆是轴对称图形吗?有几条对称轴?(2)“圆的任意一条直径都是它的对称轴”这种说法对吗?若不对,应该怎样说? 学生完成并交流展示.2.教材P 82 例2以上内容. 提出问题:(1)证明了圆是轴对称图形后,观察图24.1-6,对应线段、对应弧之间有什么关系?由此可得到什么结论?(2)若把P 81的条件“直径CD ⊥AA ′于点M ”改为“直径CD 平分弦AA ′(不是直径)于点M ”,还能证明出图形是轴对称图形吗?此时对应线段、对应弧之间有什么关系?(3)当第(2)问中的弦AA ′为直径时,相关结论还成立吗?为什么? 学生完成并交流展示. ◆活动3 知识归纳1.圆是__轴__对称图形,任何一条__直径所在的直线__都是它的对称轴,它也是中心对称图形,对称中心为__圆心__.2.垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧,即一条直线如果满足:①__AB 经过圆心O 且与圆交于A ,B 两点__;②__AB ⊥CD 交CD 于点E __;那么可以推出:③__CE =DE __;④CB =DB ;⑤CA =DA .3.__平分弦(不是直径)__ 的直径垂直于弦,并且__平分__弦所对的两条弧.提出问题:“推论”里的被平分的弦为什么不能是直径? 学生完成并交流展示. ◆活动4 例题与练习 例1 教材P 82 例2.例2 如图,D ,E 分别为AB ,AC 的中点,DE 交AB ,AC 于点M ,N .求证:AM =AN .证明:连接OD ,OE 分别交AB ,AC 于点F ,G .∵D ,E 分别为AB ,AC 的中点,∴∠DFM =∠EGN =90°.∵OD =OE ,∴∠D =∠E ,∴∠DMB =∠ENC .∵∠DMB =∠AMN ,∠ENC =∠ANM ,∴∠AMN =∠ANM ,∴AM =AN .练习1.教材P 83 练习第1,2题.2.已知弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为__134__cm__.3.如图,AB 为⊙O 的直径,E 是BC 的中点,OE 交BC 于点D ,BD =3,AB =10,则AC =__8__. 4.如图,⊙O 中弦CD 交半径OE 于点A ,交半径OF 于点B ,若OA =OB ,求证:AC =BD .证明:过点O 作OG ⊥CD 于点G . ∵OG 过圆心,∴CG =DG . ∵OA =OB .∴AG =BG ,∴CG -AG =DG -BG ,∴AC =BD . ◆活动5 课堂小结 垂径定理及其推论,以及常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).1.作业布置(1)教材P 90 习题24.1第8,11题; (2)对应课时练习. 2.教学反思。
《24.1.2垂直于弦的直径》学历案-初中数学人教版12九年级上册

《垂直于弦的直径》学历案(第一课时)一、学习主题本课学习主题为“垂直于弦的直径”,是初中数学中关于圆的基础知识之一。
通过本课的学习,学生将掌握垂直于弦的直径的定理及其应用,为后续学习圆的性质、计算以及解决实际问题打下基础。
二、学习目标1. 理解垂直于弦的直径的定理,并能够运用该定理解决简单的几何问题。
2. 掌握通过作图、计算等方式,验证垂直于弦的直径定理的正确性。
3. 培养学生的空间想象能力和几何直观能力,提高学生的数学思维能力。
三、评价任务1. 评价学生对垂直于弦的直径定理的理解程度,通过课堂提问和互动进行观察和记录。
2. 评价学生运用定理解决问题的能力,通过布置相关练习题,观察学生的完成情况和正确率。
3. 评价学生的作图和计算能力,通过学生的作图和计算过程及结果进行评价。
四、学习过程1. 导入新课:通过回顾之前学习的圆的相关知识,引出本课的学习主题——垂直于弦的直径。
2. 新课讲解:(1)讲解垂直于弦的直径的定理,包括定理的内容和定理的应用。
(2)通过作图、计算等方式,验证定理的正确性。
(3)举例说明定理在解决实际问题中的应用。
3. 学生活动:学生分组进行作图、计算等实践活动,加深对定理的理解和掌握。
4. 课堂小结:总结本课学习的重点和难点,强调垂直于弦的直径定理的重要性和应用价值。
五、检测与作业1. 检测:通过布置相关的练习题,检测学生对垂直于弦的直径定理的理解和运用能力。
2. 作业:布置适量的练习题和作业,包括作图、计算和应用等方面,要求学生认真完成并加以复习。
六、学后反思1. 本课的教学重点和难点是否把握得当?是否需要根据学生的实际情况进行调整?2. 学生在学习过程中是否存在困惑或疑问?如何帮助学生解决这些问题?3. 本课的教学方法和手段是否有效?是否需要采用更多的互动式教学或实践式教学方式?4. 学生在作图、计算和应用等方面是否存在不足?如何加强这方面的训练和提高?通过本课的反思,教师可以更好地了解学生的学习情况和自己的教学效果,从而调整教学策略,提高教学质量。
24.1.2垂直于弦的直径 教案 人教版数学九年级上册

人教版数学九年级上册24.1.2 垂直于弦的直径教学目标:1.知识与技能:(1)通过观察以及动手操作,理解圆的轴对称性。
(2)掌握垂径定理的内容及几何语言。
(3)会用垂径定理解决有关的证明与计算问题。
2.过程与方法:(1)通过探索圆的对称性及相关性质,培养学生动手操作能力及观察、分析、逻辑推理和归纳概括能力。
(2)经历探究垂径定理的过程,体会和理解研究几何图形的多种方法。
3.情感态度与价值观:(1)通过探究垂径定理的活动, 并引入实际问题,使学生知道数学在实际生活中的用处,激发学生探究、发现数学问题的兴趣。
(2)培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验。
教学重难点:【重点】垂径定理及其应用【难点】探索并证明垂径定理,利用垂径定理解决一些实际问题。
教学准备:多媒体课件、自制圆形纸片、导学案、作图工具一、情境引入我校总务处的李师傅遇到一件麻烦事,因我校一处圆形下水道破裂,他准备更换新管道,但只知道污水面宽60cm,水面至管道顶部10cm ,你能帮李师傅计算一下他应准备内径多大的管道吗?二、实践探究1.活动1: 我们在学轴对称的时候已经学过圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。
将你手中的圆形纸片沿着它的任意一条直径对折,重复做几次,验证圆的这一特性。
课本中有证明圆是轴对称图形的方法,课前已经让大家预习过了,现在大家再来看一下,进行巩固。
2.活动2: 在圆形纸片上操作:①找出圆心,记作O②作出一条直径,与⊙O交于C、D③在⊙O上的任意找一点A,过点A作一条弦AB使AB⊥CD, 交⊙O于点B,垂足为E。
沿着直径CD对折,你发现了什么?有哪些相等的线段和弧?观察发现:点A与重合,AE与重合,弧AC与重合,弧AD与重合。
相等的线段: ,相等的弧: .思考:如果AB是⊙O的一条直径呢?以上结论还会成立吗?【证明定理】动手操作之后,我们现在来进行理论证明。
学生用自己的方法证明,之后同学之间分享方法。
人教版九年级数学上册:24.1.2垂直于弦的直径(教案)

1.理论介绍:首先,我们要了解垂直于弦的直径的基本概念。垂直于弦的直径是圆内一条特殊的直径,它能够将弦平分,并且平分弦所对的两条弧。这个性质在解决与圆有关的问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何运用垂直于弦的直径来解决实际问题,比如求圆中某条线段的长度。
人教版九年级数学上册:24.1.2垂直于弦的直径(教案)
一、教学内容
人教版九年级数学上册:24.1.2垂直于弦的直径。本节课我们将学习以下内容:
1.垂径定理及其推论:掌握垂直于弦的直径的性质,即垂径定理,了解其推论及应用。
2.弦、弧、直径之间的关系:探讨弦与直径之间的数量关系,以及如何运用这些关系解决实际问题。
-理解直径与弦的关系:学生需明白直径是圆内特殊的弦,以及直径与普通弦在性质上的区别。
-解决实际问题时,能够正确识别和应用垂径定理:在实际问题中,学生需要能够识别哪些信息是关键,如何将垂径定理应用到问题解决中。
-掌握垂径定理推论的应用:学生需要理解并能够灵活运用推论,如弦的中点在直径上、直径垂直于弦等。
1.针对学生的个体差异,制定更具针对性的教学计划。
2.在几何证明部分,用更多的时间和精力引导学生理解证明过程,强调逻辑推理的重要性。
3.多给予学生鼓励和支持,提高他们在课堂上的自信心。
4.加强对学生实验操作的指导,帮助他们掌握操作要领。
3.增强学生的数学应用意识:将垂径定理应用于解决实际问题,培养学生的数学应用意识,提高解决实际问题的能力。
4.培养学生的合作交流能力:在小组讨论与合作学习中,培养学生主动参与、积极探讨、倾听他人意见的良好习惯,提高合作交流能力。
三、教学难点与重点
1.教学重点
人教版(2012)九年级数学上册 24.1.2垂直于弦的直径 教案

24.1.2 垂直于弦的直径③你能用一句话概括这些结论吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
④你能用几何方法证明这些结论吗?⑤你能用符号语言表达这个结论吗?3.火眼金睛:判断下列图形,能否使用垂径定理。
归纳:定理中的径可以是直径、半径、弦心距等过圆心的直线或线段。
练习:如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。
3.垂径定理推论①把条件和结论中的CD⊥AB,AE=BE互换,结论成立吗?平分弦(非直径)的直径垂直于弦并且平分弦所对的两条弧;②你能证明这个推论吗?③条件中的非直径可以去掉吗?能不能举个例子说明④你能用符号语言表达这个结论吗?4.“知二推三”并进行练习。
(1)若CD⊥A B, CD是直径,________,_________._______(2)若 CD是直径,AE=BE,则________,_________._______(3)若CD⊥AB,AE=BE,则________,_________._______(4)若CD是直径,弧AC=弧BC,则________,_________._______灵活应用提高能力简单应用例1:如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.反思:从此题的解决过程中,你得到什么启示?归纳:1、两条辅助线:连半径、作弦心距2、一个Rt△:半径、半弦、弦心距3、两个定理:垂径定理、勾股定理此题由学生独立思考,并讲解思路,教师可让学生自己进行评判.并让学生板演。
此题属于基本应用,让学生了解弦心距、半弦、半径组成的直角三角形是圆中常用的直角三角形,更深入的研究在下节课中研究。
本节课的应用是基础应用,在下节课中再进行灵活运用和深入应用。
小结升华与达标训练 小结升华(1)本节课你学到了哪些数学知识?(2)在利用垂径定理解决问题时,你掌握了哪些数学方法?(3)这些方法中你又用到了哪些数学思想?达标测试:1、如图,AB是⊙O的直径,CD为弦,CD⊙AB于E,则下列结论中不成立的是()A、⊙COE=⊙DOEB、CE=DEC、OE=AED、弧BD=弧BC第1题第2题2、如图,OE⊙AB于E,若⊙O的半径为10cm,OE=6cm,则AB=_____cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.2 垂直于弦的直径(1)
【学习目标】
理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
【重点难点】重点:垂径定理及其运用.难点:探索垂径定理及利用垂径定理解决问题.
【学习过程】
【问题探究】
请同学按下面要求完成下题:
如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .
(1)如图是轴对称图形吗?如果是,其对称轴是什么? 圆是 对称图形,其对称轴是任意一条过 的直线.
(2)你能发现图中有哪些相等的线段和弧?为什么?
相等的线段:
相等的弧:
2、探究结果:垂径定理
几何表述:∵ , ∴______________ ;_____________;_____________ 文字表述:垂直于 的直径平分弦,并且平分弦所对的两条 .
3、判断下列3个图是否是表示垂径定理的图形。
4、总结:对垂径定理条件的理解是: , 。
【例题讲解】
例1 如图,已知在⊙O 中,弦AB 的长为16,⊙O 的半径是10,求圆心O 到AB 的距离。
O A B P
B A O M 图5 图6 B (第16题)A
C
D
E O D B A C 图4 A 图3 B A C O M 例2 如图2,AB 是两个以O 为圆心的同心圆中大圆的弦径,
AB 交小圆交于C 、D 两点,求证:AC=BD
【练习巩固】如图3,如果弦HL=6,则HK=__________KL=__________
变式1: 如图4,已知CD=8,则圆心O 到CD 的距离是3,则弦长AB 是 。
变式2: 如图5,已知⊙O 的半径为5,圆心O 到AB 的距离是3,则弦长AB 是 。
变式3: 如图6,某公园的一座石拱桥是圆弧形(劣弧)其跨度为AB=24米,
拱的半径为13米,则拱高CD 为 ;
【归纳反思】
1、运用垂径定理求弦长、半径、弦心距时构造的关键图形是
由 、 、 构成是直角三角形。
2、关键三角形:圆的半径用R 表示,弦心距用d 表示,弦长用a 表示,
这三者之间有怎样的关系式?
【作业布置】1、⊙O 的半径为5,弦AB 的长为6,则AB 的弦心距长为 .
2、已知⊙O•中,•弦AB•的长是8cm ,•圆心O•到AB•的距离为3cm ,•则⊙O•的直径是_____cm .
3、⊙O 的半径是5,P 是圆内一点,且OP =3,过点P 最短弦的长为________、最长弦
的长为 .
4、如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于M ,OM=3,DM=2,求弦AB
的长.
【选做】⊙O的直径是50cm,弦AB∥CD,且AB=40cm,CD=48cm,则AB•与CD•之间的距离。
五、教学反思:。