24.1.2垂直于弦的直径 教学设计
人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。
本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。
教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。
但垂直于弦的直径这一性质较为抽象,学生可能难以理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。
三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。
2.培养学生的观察、思考、动手和合作能力。
3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。
四. 教学重难点1.垂直于弦的直径的性质及其证明。
2.灵活运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。
3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。
4.实践操作法:让学生动手操作,加深对性质的理解。
六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。
2.教学素材:准备相关的几何图形,便于学生观察和操作。
3.教学设备:投影仪、计算机、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。
2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。
3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。
4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。
5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。
24.1.2 垂直于弦的直径 教学设计

24.1.2垂直于弦的直径一、教学目标①知识与能力目标:使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。
培养学生观察能力、分析能力及联想能力。
②过程与方法目标:老师利用多媒体和教具创设情境,激发学生的求知欲望,学生在老师的引导下进行自主探索,合作交流,收获新知,通过分层训练、深化新知,共同感受收获的喜悦。
③情感态度与价值观目标:对圆的轴对称美始于欣赏,进而分析提升,直至最终领悟数学美。
从而陶冶学生情操,发展学生心灵美,提高数学审美力。
二、教学重点、难点教学重点:垂径定理的探索及应用;教学难点:垂径定理的探索及对题设与结论的理解。
三、教学方法探究、引导法四、教学过程设计:1、复习引入,揭示课题(3分钟)学生对切水果感兴趣,认为从中间切比较均匀,比较爽,左右能形成对称。
学生能准备识别轴对称图形,并的内容中来。
能找到对称轴。
投影图片,由学生熟悉的“切水果”游戏入手,激发学生兴趣:问题:同学们切水果时第一刀习惯怎么切?数学中还有许多对称的图形,请学生自己动手操作,对折圆形纸片,能自己归纳出:(1)圆是轴对称图形。
(2)对称轴是过圆点的直线(或教师活动学生活动设计意图由生活中的有趣的游戏引入,吸引学生学生识别,并能找到对称轴。
任何一条直径所在的直线)(3)圆的对称轴有无穷多条圆是轴对称图形吗 折一折:你能利用手中的圆形纸片说明圆是轴对称图形吗?画一画:⑴作一圆;⑵在圆上任意作一条弦AB ;⑶过圆心作AB 的垂线的直径CD 且交AB 于E 。
(板书课题:垂直于弦的直径)2、师生互动,探索新知(9分钟)猜猜:现在CD 是一条垂直于弦的直径,那么请思考两个问题:(1)点A 和点B 有什么位置关系?(2)你能发现图中有哪些相等的线段和弧?证一证:提问:这个结论是同学们通过观察猜想出来的,结论是否正确还要从理论上证明它,下面我们试着来证明它已知:CD 是。
O 的直径,AB 是弦,AB X CD证明:AE=EB 、弧AC=>CB 、弧AD=<DB 学生可以从全等、等腰三角形三线合一等证明线段相等,至于弧相等,看学生是否能想到用叠合的方法进行证明,如果不能,老师提示等弧的概念,通过翻折达到完全重合。
人教版九年级数学上册《24.1.2垂直于弦的直径》公开课教学设计

人教版九年级数学上册《24.1.2垂直于弦的直径》公开课教学设计一. 教材分析人教版九年级数学上册《24.1.2垂直于弦的直径》这一节主要讲述了圆中垂直于弦的直径的性质。
通过这一节的学习,学生能够理解并掌握垂直于弦的直径的性质,并能运用这一性质解决相关问题。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对圆的基本概念和性质有所了解。
但是,对于圆中垂直于弦的直径的性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步探究和理解新知识。
三. 教学目标1.理解并掌握圆中垂直于弦的直径的性质。
2.能够运用垂直于弦的直径的性质解决相关问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.垂直于弦的直径的性质。
2.如何运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.引导探究法:通过引导学生观察、思考和讨论,让学生自主发现和理解垂直于弦的直径的性质。
2.例题讲解法:通过讲解典型例题,让学生掌握运用垂直于弦的直径的性质解决问题的方法。
3.练习法:通过课堂练习和课后作业,巩固所学知识,提高解决问题的能力。
六. 教学准备1.准备相关课件和教学素材。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过回顾圆的基本性质和概念,引导学生进入新的学习内容。
2.呈现(10分钟)展示圆中垂直于弦的直径的性质,引导学生观察和思考。
3.操练(15分钟)讲解典型例题,让学生掌握运用垂直于弦的直径的性质解决问题的方法。
4.巩固(10分钟)布置课堂练习题,让学生巩固所学知识。
5.拓展(5分钟)通过解决实际问题,让学生运用所学知识解决实际问题。
6.小结(5分钟)总结本节课所学内容,引导学生理解垂直于弦的直径的性质。
7.家庭作业(5分钟)布置课后作业,巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点。
《24.1.2-垂直于弦的直径》教学设计

24.1.2 垂直于弦的直径教学设计教学过程设计:一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性。
二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神 活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O ,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD ; 第三步,在⊙O 上任取一点A ,过点A 作CD 折痕的垂线,得到新的折痕,其中点M 是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B ,如图1。
在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么? (课件:探究垂径定理)学生活动设计:如图2所示,连接OA 、OB ,得到等腰△OAB ,即OA =OB 。
因CD ⊥AB ,故△OA M 与△OB M 都是直角三角形,又O M 为公共边,所以两个直角三角形全等,则A M =B M 。
又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,弧AC 与弧BC 重合。
因此AM =B M ,弧AC =弧BC ,同理得到弧AD=弧BD 。
教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质: (1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
活动3:如图3,弧AB 所在圆的圆心是点O ,过O 作OC ⊥AB 于点D ,若CD =4m ,弦AB =16m ,求此圆的半径。
人教版九年级上册24.1.2垂直于弦的直径24.1.2垂直于弦的直径教学设计

人教版九年级上册24.1.2垂直于弦的直径教学设计一、教学目标1.理解垂线、垂足、垂直平分线、相交于垂足的两条线段互为垂直。
2.掌握垂直平分线的性质和应用。
3.学会用垂直平分线求直径。
二、教学重难点1.理解垂线、垂足、垂直平分线的定义和性质。
2.通过垂直平分线求直径,需要掌握数学计算方法。
三、教学过程1. 导入让学生在纸上画一个圆并标记圆心、半径,引出“弦”的概念。
通过学生们的互动,让他们理解弦是圆上任意两点之间的线段。
2. 自主学习让学生自己研究什么是垂直平分线,特别是24.1.2题目中所述的垂直于弦的直径是如何求得的。
学生可以结合自己的理解和常识,得出一些初步的结论。
3. 合作探究将学生分成若干小组,每组成员之间相互讨论,举一反三,尝试解决一些类似的问题。
为了使学生更好地理解,可以在板书上示意图,或在黑板上画出一幅图形,引导学生进行讨论。
4. 指导讲解在学生讨论之后,老师进行正式的讲解,着重讲解垂足、垂线和垂直平分线的性质,并解释直径是如何通过垂直平分线来求得的。
5. 练习巩固让学生进行巩固训练,可以把一些类似的题目给学生进行练习,根据不同程度的学生做出相应的安排和调整,以及针对学生的问题进行讲解和指导;也可以让学生在课堂上完成这些题目,检验学生的掌握程度。
例如:已知圆O的直径AB,通过直线CD(平行于AB)构造两条弦EF、GH,其中EF=9cm,GH=7.5cm,请问EF和GH的中垂线上的某点到圆心的距离是多少?6. 总结归纳在巩固训练之后,对项目进行总结归纳,在课堂上梳理本课内容,使学生对本课内容有一个深入的理解。
此外,还要通过本教学的方式来告诉学生,数学并不是枯燥无味的,也充满了趣味和乐趣。
四、教学评价教学方法:•通过讨论和示例引导学生,促进他们的思维和创造力。
•通过现代媒介如电子白板和计算机等来优化整个教学流程。
教学效果:•从学生的态度和反应来看,这种教学方式能够轻松使学生更好地理解课程内容。
人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计1

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计1一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册的一节重要内容。
本节内容主要介绍了垂径定理及其应用。
教材通过实例引导学生探究圆中垂直于弦的直径的性质,并运用这一性质解决一些实际问题。
本节内容既是前面所学知识的延续,也为后续学习圆的性质和圆的方程打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
但是,他们对圆的性质和应用的理解还不够深入。
因此,在教学过程中,教师需要从学生的实际出发,逐步引导学生理解和掌握垂径定理,并能够运用这一定理解决实际问题。
三. 教学目标1.让学生理解垂径定理的内容,并能够运用垂径定理解决一些实际问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.激发学生对数学的兴趣,提高他们的数学素养。
四. 教学重难点1.重难点:垂径定理的理解和运用。
2.难点:如何引导学生从实际问题中发现垂径定理的规律,并能够一般性地表述这一规律。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论、总结等方式发现和理解垂径定理。
2.运用多媒体辅助教学,通过动画演示和实例分析,帮助学生直观地理解垂径定理。
3.采用分组合作学习的方式,让学生在合作中发现问题、解决问题,培养他们的团队协作能力。
六. 教学准备1.准备相关的教学多媒体课件和教学素材。
2.准备一些实际问题,用于引导学生运用垂径定理解决实际问题。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考圆中垂直于弦的直径的性质。
例如,在一个圆形水池中,有一根绳子绕着水面漂浮,绳子的两端分别固定在圆形水池的两侧,求绳子的中点与水池中心的距离。
2.呈现(10分钟)通过多媒体展示垂径定理的证明过程,让学生直观地理解垂径定理。
同时,引导学生观察和思考垂径定理的适用范围和条件。
人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。
本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。
教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。
他们具备了一定的观察、分析和解决问题的能力。
但对于垂直于弦的直径的性质及其应用,可能还比较陌生。
因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。
三. 教学目标1.理解垂直于弦的直径的性质。
2.学会运用垂直于弦的直径的性质解决与圆有关的问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.垂直于弦的直径的性质。
2.运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。
2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。
3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。
六. 教学准备1.课件:制作课件,展示相关实例和问题。
2.练习题:准备一些与垂直于弦的直径性质有关的练习题。
3.圆规、直尺等画图工具:为学生提供画图所需的工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。
2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。
3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。
在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。
人教版九年级数学上册《24.1.2 垂直于弦的直径》 教案

第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标1.理解圆的对称性;掌握垂径定理.2.利用垂直于弦的直径的性质解决相关实际问题.二、教学重点及难点重点:垂直于弦的直径所具有的性质以及证明.难点:利用垂直于弦的直径的性质解决实际问题.三、教学用具多媒体课件,三角板、直尺、圆规。
四、相关资源《赵州桥》图片.五、教学过程【合作探究,形成知识】探究圆的对称性1.学生动手操作问:大家把事先准备好的一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?师生活动:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.教师在学生归纳的过程中注意学生语言的准确性和简洁性.2.探索得出圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.师生活动:学生总结操作结论,教师强调圆的对称轴是直径所在的直线.3.问:圆有几条对称轴?师生活动:学生回答,教师强调圆有无数条对称轴.4.你能证明这个结论吗?师生活动:四人一小组,小组合作交流,尝试证明.让学生注意要证明圆是轴对称图形,只需证明圆上任意一点关于对称轴的对称点也在圆上.教师板书分析及证明过程.设计意图:在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,掌握证明轴对称图形的方法.探究垂径定理按下面的步骤做一做,回答问题:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,垂足为点M;第四步,将纸打开,设AM的延长线与圆交于另一点B,如图1.图1 图2问题1在上述操作过程中,你发现了哪些相等的线段和相等的弧?为什么?师生活动:学生动手操作,观察操作结果,得出结论,看哪个小组做得又快、又好,记入今天的英雄榜.最后师生共同演示、验证猜想的正确性,从而解决本节课的又一难点——垂径定理的证明,此时再板书垂径定理及其推理的过程.证明:如上图2所示,连接OA,OB,得到等腰△OAB,即OA=OB.因为CD⊥AB,所以△OAM与△OBM都是直角三角形.又因为OM为公共边,所以这两个直角三角形全等.所以AM=BM.又因为⊙O关于直径CD所在的直线对称,所以A点和B点关于直线CD对称.所以当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此AM=BM,AC=BC.同 .理可得AD BD垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.问题2 你能用符号语言表达这个结论吗?师生活动:学生尝试将文字转变为符号语言,用数学符号表达定理的逻辑关系.教师更正并板书.符号语言表达:AM MB CD O AC BC CD AB M AD BD=⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩,是圆的直径,,于点⇒ 设计意图:增加学生的兴趣,使学生通过探索发现、思维碰撞,获得对数学知识最深刻的感受,体会成功的乐趣,发展思维能力.【例题应用 提高能力】例1 如图,AB 所在圆的圆心是点O ,过点O 作OC ⊥AB 于点D .若CD =4 m ,弦AB = 16 m ,求此圆的半径.师生活动:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形.在直角三角形中可以利用勾股定理构造方程.教师在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.解:设圆的半径为R ,由题意可得OD =R -4,AD =8 m .在Rt △ADO 中,222AO OD AD =+,即222(4)8R R =-+.解得R =10(m ).答:此圆的半径是10 m .设计意图:增加一道引例,是基础应用题,为课本例题的实际应用作铺垫,有过渡作用,不但让学生掌握了知识,又增加了学习数学的兴趣,更体会到成功的喜悦.例2如图,赵州桥是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).【教学图片】《二次函数》图片6赵州桥的图片,用于教学过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公开课教案
讲解新课:
1
、证明猜想
⑴提问: 什么是猜想的题设?
什么是猜想的结论?
⑵要求学生根据“猜想”的题设和结论说出已知和求证.
⑶用大屏幕打出证明过程.
结合证明过程提问:
(1)证明利用了圆的什么性质?
(2)证明CE=DE还有其它方法吗?
教师小结:通过证明,我们知道猜想是正确的,因此我们可以把
它叫做“垂径定理”.
2、垂径定理
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的
﹤2﹥﹤1﹥﹤3﹥﹤4﹥﹤5﹥
两条弧.(优弧、劣弧)
为运用方便,将原定理叙述为:⑴过圆心;⑵垂直于弦;⑶平分
弦⑷平分弦所对的优弧;⑸平分弦所对的劣弧.
练习1
⑴若AB为⊙O的直径,
CD⊥AB于E ,
⑵在下列图形中,你能否利用垂径定理找到相等的线段或的圆弧.
3、例题讲解
例1已知:如图,在⊙O中,弦AB的长为8㎝,圆心O到AB的距离
为3㎝.
求:⊙O的半径.(学生回答,教师板书过程)
学生积极思考作答。
积极观察、思考,得
出新的证明方法。
引导学生剖析定理的
条件,结论,有利于
学生的深刻理解和全
面把握。
巩固定理的条件和结
论。
教 学 过 程
学 生 活 动
解:连结OA,作OE ⊥AB,垂足为 E. ∵OE ⊥AB, ∴AE=EB. ∵AB=8 ㎝ ,∴AE=4㎝. 又∵OE=3 ㎝ , 在Rt △AOE 中,
()cm AE OE OA 5432222=+=+=
∴⊙O的半径为5㎝.
教师强调:从例1可以看出“弦心距”是一条很重要的辅助线,弦心距的作用就是平分弦,平分弦所对的弧,它和直径一样. 练习2
⑴半径为5 ㎝的⊙O中,弦AB=6 ㎝,那么圆心O 到弦AB 的距离是 ;
⑵⊙O的直径为10㎝,圆心O 到弦AB 的距离为3 ㎝,那么弦AB 的长是 ;
⑶半径为2㎝的圆中,过半径的中点且垂直于这条半径的弦长是 .
例2①已知:在以O 为圆心 的两个同心圆中,大圆的
直径AB 交小圆于C 、D 两点. 求证:AC=BD.
例2②已知:在以O 为圆心的 两个同心圆中,大圆的弦AB 交小圆于C 、D 两点. 求证:AC=BD.
课堂小结
⑴垂径定理相当于说一条直线如果具备:⑴过圆心;⑵垂直于弦;则它有以下的性质:⑶平分弦⑷平分弦所对的优弧;⑸平分弦所对的劣弧.
⑵在圆中解决有关于弦的问题时,经常是过圆心作弦的垂线段(弦心距),连结半径等辅助线,为应用垂径定理创造条件.
作业:
① 证明垂径定理(用等腰三角形三线合一性质证明) 书中P88 3 P89 4 ② 目标P90.
学生口述证明过程,教师板书。
引导学生总结出圆的一条重要辅助线。
巩固定理内容。
通过例题的变式,分层教学,使学生达到不同的目标。
设计说明
一、教材处理
“垂径定理”是圆的重要性质,为证明线段相等和进行圆的有关计算提供了方法和依据。
由于定理的证明所采用的推理方法学生比较生疏,不易理解,故在讲课时首先复习轴对称图形,根据小学学习“圆的认识”结合轴对称的定义,学生易作出判断:圆是轴对称图形,并且经过圆心的每一条直线都是它的对称轴。
这既是圆的性质,也可用作论证的基础。
定理的得出,采用学生自己动手,动口,动脑,教师引导,注意抓住关键,突破难点,然后通过对定理的分析与强调使学生理解定理的实质。
两个例题属计算、证明两种类型,但解题方法有相同之处,因此,把例2作为例1的延伸,将它们组合在一起,比较自然。
练习分两段插入,促进目标达成。
二、教法的设计
1、符合学生的认识规律
“垂径定理”的引入与证明,充分利用教具,并运用“实验——观察——猜想——验证”的思想方法逐步由感性到理性的认识定理,这样安排符合学生的认知规律,揭示了知识的发生、发展过程。
也符合现代教育理论中的“要把学生学习知识当作认识事物的过程来进行教学”的观点。
2、体现学生的主体地位
在教学的过程中始终体现着“以学生为主体,教师为主导”的原则,通过学生自己的
动手、观察、分析和推理获得新知识。
讲练结合,适时点拨,充分调动学生思维。
另外,注重引导学生阅读课本,巩固、总结,给以学法指导。
最后给出思考和变式,
引导学生思维向更深更广发展,以培养学生良好的思维品质,并为以后的学习作好铺垫。
X。