人教八年级下册数学-二次根式的性质导学案
人教版数学八年级下册 二次根式的性质(导学案)

16.1二次根式投我以桃,报之以李。
《诗经·大雅·抑》原创不容易,【关注】店铺,不迷路!满招损,谦受益。
《尚书》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。
韩愈第2课时二次根式的性质一、新课导入1.导入课题我们知道二次根式a中a≥0,那么二次根式a还有哪些性质呢?今天我们学习“二次根式的性质”(板书课题).2.学习目标(1)知道a≥0(a≥0),会用非负数的性质解题.(2)会用公式()2a=a(a≥0)进行计算.(3)知道形如2a的化简方法及结果.3.学习重、难点重点:a≥0(a≥0),()2a=a(a≥0).难点:运用公式()2a=a(a≥0)和2a=a(a≥0)进行计算化简.二、分层学习1.自学指导(1)自学内容:探究:a(a≥0)及a(a≥0)中a的值的特点.(2)自学时间:5分钟.(3)自学方法:围绕探究提纲进行演算归纳.(4)探究提纲:①当a >0时,a 是什么数?当a =0时,a 是什么数?当错误!未找到引用源。
有意义时,a 是什么数?②从①中我们可以探究得出:当a ≥0时,a 是非负数,即a ≥0.③从a (a ≥0)所表示的数值特点,你知道有哪些式子的值具有这种特性?④已知()0112=++-y x ,求x ,y 的值.(x=1,y=-1) 2.自学:学生参照探究提纲进行自学.3.助学(1)师助生: ①明了学情:了解学生在探究中存在的认识偏差和困惑.②差异指导:引导学生分析a 表示的数值特点归纳已学过的非负数及其和为0时所足的条件.(2)生助生:学生相互交流帮助. 4.强化(1)当a ≥0时,错误!未找到引用源。
≥0,即a 的值为非负数.(2)回顾所学过的三类非负数:①一个数的偶次幂;②一个数的绝对值;③a (a 0).(3)非负数性质:若x +2y +|z|=0,则x=y=z=0.(4)练习:已知01=+++y x x ,求x ,y 的值.答案:x=-1,y=1.1.自学指导(1)自学内容:探究()2a (a ≥0)的结果. (2)自学时间:8分钟.(3)自学方法:通过回顾算术平方根的意义,归纳()2a (a ≥0)的结果. (4)探究提纲:①∵3的算术平方根是3,∴()23=3. ②∵32的算术平方根是32,∴232⎪⎪⎭⎫ ⎝⎛=32.③∵非负数a 的算术平方根是a ,∴()2a (a ≥0)=a . ④∵()222b a ab =,∴()()()2223232=⨯=18.⑤计算:答案:3;18;25;21. ⑥由①—⑤的探讨,归纳得出:一般地,()2a =a (a ≥0). 2.自学:学生可结合探究提纲进行自学.3.助学(1)师助生: ①明了学情:关注学生对()2a (a ≥0)的值的理解. ②差异指导:指导学生应用()2a (a ≥0)的结果进行计算. (2)生助生:相互交流帮助,矫正错误,归纳正确结论.4.强化(1)强调()2a =a (a ≥0)及其应用. (2)强调公式()2ab =22b a 和2⎪⎭⎫ ⎝⎛b a =22b a 在二次根式计算中的运用. (3)展示本节所学知识点和数学思想方法.1.自学指导(1)自学内容:探究:当a ≥0时,2a 等于什么?若a 的值无限定,2a 又等于什么?(2)自学时间:5分钟.(3)自学方法:结合探究提纲动手尝试2a (a ≥0)和2a 的化简,结果有何不同?(4)探究提纲:①==4222;==⎪⎭⎫ ⎝⎛4121221;==36.06.020.6;由此可以看出:当a ≥0时,2a =a 。
人教版八年级数学下册导学案(全册)【最新】

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
最新人教版八年级数学下册二次根式全章导学案

第16章 二次根式全章导学案16.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) 2)3(4(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义?①43-x ③ 2、(1)若有意义,则a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
最新人教版八年级数学下册二次根式全章导学案

三、学习过程
(一)复习回顾:
(1)4 的算术平方根为 2,用式子表示为 =_4_________ ;正数 a 的算术平方根为 _______ ,
0 的算术平方根为 _______;式子 a 0(a 0) 的意义是
。
(二)自主学习 (1)6 的算术平方根是 (2) 一个物体从高处自由落下,
; 落到地面的时间是
.
精品文档
16.1 二次根式 (2)
一、学习目标
1. 掌握二次根式的基本性质:
a2 a
2. 能利用上述性质对二次根式进行化简 . 二、学习重点 . 难点
重点:二次根式的性质 a 2 a .
难点:综合运用性质 a 2 a 进行化简和计算。
三、学习过程 (一)复习引入:
( 1)什么是二次根式,它有哪些性质?
A. a 3 B. a 3 C. a 3 D. a 2 3
4. 二次根式 a 1 中,字母 a 的取值范围是( ) A. a< l B. a≤ 1 C. a≥ 1 D. a>1 2. 已知 x 3 0 则 x 的值为 A. x>-3 B. x<-3 C. x=-3 D. x 的值不能确定
(五)小结反思:
(六)小结反思:
.
精品文档
一、学习目标
16.2 二次根式的乘除法
16.2.1 二次根式的乘法
理解 a · b = ab ( a ≥ 0, b≥ 0), ab = a · b ( a≥ 0, b≥ 0),并利用它
们进行计算和化简 二、学习重点 . 难点
重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。 难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。 三、学习过程 (一)复习引入
新人教版八年级数学下导学案(全册)

, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。
三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。
(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。
(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。
如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。
思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。
2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式a中,字母a必须满足,a才有意义。
3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(精品)最新八年级下册16.1二次根式第2课时二次根式的性质导学案新人教版

【变式题】实数a 、b 2244a ab b a b ++-.方法总结利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+-- 分析:针对训练 1.计算:22(1)(-2)(2)(-1.2). ;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为53的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.教学备注 配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)利用三角形三边关三边长均为正数,a +b >c 两边之和大于第三边,b +c -a >0,c -b -a <0负数的算术平0),把下列非负数分别写成一个非负数的平方的形式:。
新人教版八年级数学下册导学案(130页)

义务教育基础课程初中教学资料第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx 4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
最新八年级下册16.1二次根式第2课时二次根式的性质导学案新人教版【优选】

【变式题】实数a 、b 2244a ab b a b +++-.方法总结:利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+-- 分析:针对训练 1.计算:22(1)(-2)(2)(-1.2). ;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起来的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为5:3的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结:列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.教学备注 配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)利用三角形三边关三边长均为正数,a +b >c 两边之和大于第三边,b +c -a >0,c -b -a <0二、课堂小结 二次根式的性质 内容性质1一个非负数的算术平方根的平方等于它_______.即()()20.aa a =≥性质2一个数的平方的算术平方根等于它的______.即()()200.a a a a a a ≥⎧⎪==⎨-⎪⎩,<0),把下列非负数分别写成一个非负数的平方的形式:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 二次根式
16.1 二次根式
第2课时 二次根式的性质
一、学习目标:1.掌握二次根式的基本性质:(a )2=a (a ≥0);a a =2;
2.能利用上述性质对二次根式进行化简.
二、学习重点、难点
重点:二次根式的性质(a )2=a (a ≥0);a a =2.
难点:综合运用性质对二次根式进行化简和计算。
三、学习过程
(一)自学导航(课前预习)
(1)什么是二次根式,它有哪些性质?
(2)二次根式5
2-x 有意义,则x 。
(3)在实数范围内因式分解:-=-226x x ( )2=(x + )(y - )
(二)合作交流(小组互助)
1、计算 (1) 2)4(= (2)()=23
(3)2)5.0( = (4)2)3
1(= 根据计算结果,能得出结论: (0≥a )
2.计算:
(1)=24 =22.0 =2)54(
=220 观察其结果与根号内幂底数的关系,归纳得到:当a ﹥0时,=2a
(2) =-2)4( =-2)2.0( =-2)54(
=-2)20( ________)(2=a
观察其结果与根号内幂底数的系,归纳得到:当a<0时,=2a
(3)=20 得到:当a=0时,=2a
3.归纳总结
将上面做题过程中得到的结论综合起来,得到二次根式的非常重要的性质: 性质一:(a )2=a (a ≥0) 性质二:⎪⎩
⎪⎨⎧<-=>==0a a 0a 00a a 2
a a 4. (1)阅读课本思考:什么是代数式?我们前面还学过那些代数式吗?
(2)思考、讨论:二次根式的性质)0()(2≥=a a a 与a a =2有什么区
别与联系。
四.精讲点评 利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简目的,进行化简的关键是准确确定“a ”的取值。
五.当堂达标
1、化简下列各式
(1)(5.1)2 (2)(52)2 (3)22)33()10(-+--计算: ())0(42≥x x (5) 4x
2、化简下列各式
(1))3()3(2≥-a a (2)
()232+x (x <-2)
六.拓展延伸
(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________.
(2) 把(2-x)2
1-x 的根号外的(2-x )适当变形后移入根号内,得( )
A 、x -2
B 、2-x
C 、x --2
D 、2--x
(3) 已知2<x <3,化简:3)2(2-+-x x
七.教后反思
【素材积累】
1、人生只有创造才能前进;只有适应才能生存。
博学之,审问之,慎思之,明辨之,笃行之。
我不知道将来会去何处但我知道我已经摘路上。
思想如钻子,必须集中摘一点钻下去才有力量。
失败也是我需要的,它和成功对我一样有价值。
2、为了做有效的生命潜能管理,从消极变为积极,你必须了解人生的最终目的。
你到底想要什么?一生中哪些对你而言是最重要的?什么是你一生当中最想完成的事?或许,你从来没有认真思量过生命潜能管理旧是以有系统的方法管理自我及周边资源,达成 。