二次函数第一节教学设计
二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数的图象和性质课教案

二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
二次函数第一课时教学设计

《二次函数》教学设计一、教材分析《二次函数》选自义务教育课程标准试验教科书人教版九年级上册第二十一章 这章是在学生学习了一次函数与反比例函数 对于函数已经有所认识从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容 1 通过具体的事例认识这种函数 2 探索这种函数的图像和性质 3 利用这种函数解决实际问题4 探索这种函数与相应方程等的关系。
本章“二次函数”的学习也是从以上几个方面展开。
首先让学生认识二次函数 掌握二次函数的图像和性质 然后让学生探索二次函数与一元二次方程的关系 从而得出用二次函数的图像求一元二次方程的方法。
最后让学生运用二次函数的图像和性质解决一些实际问题。
本章教学时间约需12课时 具体分配如下 仅供参考21 1 二次函数 6课时21 2用函数的观点看一元二次方程 1课时21 3实际问题与二次函数 3课时数学活动小结 2课时21 1 二次函数教学时间约为6课时 下面是第一课时的教学设计 此时学生对函数的相关知识已经很陌生 第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾 让学生重温学习函数应该从以下四个内容入手 认识函数 研究图像及其性质 利用函数解决实际问题 函数与相应方程的关系。
再通过分析实际问题 以及用关系式表示这一关系的过程 引出二次函数的概念 获得用二次函数表示变量之间关系的体验。
然后根据这种体验能够表示简单变量之间的二次函数关系 并能利用尝试求值的方法解决实际问题二、教学目标知识技能1 探索并归纳二次函数的定义2 能够表示简单变量之间的二次函数关系数学思考1 感悟新旧知识间的关系 让学生更深地体会数学中的类比思想方法《二次函数》教学设计一、教材分析《二次函数》选自义务教育课程标准试验教科书 五四学制 《数学》 人教版 九年级上册第二十一章 这章是在学生学习了一次函数与反比例函数 对于函数已经有所认识从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容 1 通过具体的事例认识这种函数 2 探索这种函数的图像和性质 3 利用这种函数解决实际问题4 探索这种函数与相应方程等的关系。
数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。
2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。
3、通过学生共同观看和争论,培育大家的合作沟通意识。
(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。
2、具有初步的创新精神和实践力量。
教学重点1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1、探究方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法争论探究法。
教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。
创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步进展估算力量。
(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《23.1二次函数》教学设计
主备人:余河初中徐斌(九年级数学)
参备人:刘进华刘华丽徐观群朱德鹏周宜昌徐观兵朱礼义
一、教学目标
1、知识与技能:掌握二次函数的概念;能够表示简单的变量之间的二次函数关系;知道实际问题中存在的二次函数关系中,对自变量的取值范围的要求。
2、过程与方法:经历探索、分析和建立两个变量之间的二次函数关系的过程,获得用二次函数表示变量之间关系的体验,体会从特殊到一般的数学思想和函数思想。
3、情感、态度和价值观:经历尝试、猜测以及动手验证等过程,发展合作交流意识,以及数学应用能力。
二、内容分析
本节从实际问题入手,结合学生已有的知识经验观察、归纳出二次函数的概念,以及一般表达式,学生会在探知过程中体会函数思想。
1、教学重点:二次函数的概念。
2、教学难点:具体地分析、确定实际问题中函数关系式。
三、教学方法:启发、探究、合作交流。
四、教学互动过程设计
(一)创设情景,导入新课
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
问题1.写出圆的半径是R(CM),它的面积S(CM2)与R 的关系式
答:S=πR2.(1)
问题2 某水产养殖湖用长40m的围栏,在水库中围一块矩形的水面,投放鱼苗。
要使围成的水面面积最大,它的长应是多少米?
分析设围成的矩形水面的长是x米,那么水面的宽为(20-x)米,它的面积S平方米,则
S=X (20-X)(2)
问题3 一种商品售价为每件10元,一周可卖50件。
市场调查表明:这种商品如果每件涨价1元,每周要卖5件。
已知该商品进价每件为8元,问每件商品涨价多少,才能使每周得到的利润最多?
分析设每件商品涨价X元,每周获得的利润为Y元,那么
Y=(10+X)(50-5X)-8(50-5X)(3)
问题4.写出用总长为60M的篱笆围成矩形场地,矩形面积S (M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2(4)
分析:(1)(2)(3)(4)四个关系式中S和R ,S 和X,Y和X之间是否存在函数关系?
它们是否是一次函数?
他们不是一次函数,那么他们是什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。
(板书课题)(二). 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),
那么,y叫做x的二次函数.
注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.
(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.
练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。
如:
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。
并通过开放性的练习培养学生思维的发散性、开放性。
题目用了一些人性化的词语,也增添了课堂的趣味性。
)
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。
)(三)尝试模仿、巩固提高
例1:如图2,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分),设AE=BF=CG=DH=x(cm),四边形EFGH的面积为y(cm2),求:1、y关于x的函数解析式和自变量的取值范围;2、当x分别为0.25,0.5,1,1.5,1.75时,对四边形EFGH的面积,并列表表示。
1学生独立分析思考,尝试写出y关于x的函数解析式,教学巡回辅导,适时点拨。
2引导学生加以分析总结:1、求差法2、直接法3、自
变量的取值范围。
例2:已知二次函数y=ax2+px+q,当x=1时,函数值是4,当x=2时,函数值是-5,求这个二次函数的解析式。
此例题难度较小,但却反映求二次函数解析式的一般方法,可让学生一边说,老师一边板书示范,强调书写格式和思考方法,结束后让学生完成强化。
练习:“课内练习”第2题。
(四).课时小结
本节课我们学习了如下内容:
1. 经历探索和表示二次函数关系的过程.猜想并归纳二次函数的定义及一般形式.
2.二次函数二次系数、一次项系数和常数项的概念。
3、如何求二次函数的解析式。
(五).课后作业
课本“作业题”
(六).活动与探究
若y=(m2+m)x m2-m是二次函数,求m的值.。